1
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
2
|
Liu T, Zhao H, Wang Y, Qu P, Wang Y, Wu X, Zhao T, Yang L, Mao H, Peng L, Zhan Y, Li P. Serum high mobility group box 1 as a potential biomarker for the progression of kidney disease in patients with type 2 diabetes. Front Immunol 2024; 15:1334109. [PMID: 38481996 PMCID: PMC10932975 DOI: 10.3389/fimmu.2024.1334109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background As a damage-associated molecular pattern protein, high mobility group box 1 (HMGB1) is associated with kidney and systemic inflammation. The predictive and therapeutic value of HMGB1 as a biomarker has been confirmed in various diseases. However, its value in diabetic kidney disease (DKD) remains unclear. Therefore, this study aimed to investigate the correlation between serum and urine HMGB1 levels and DKD progression. Methods We recruited 196 patients with type 2 diabetes mellitus (T2DM), including 109 with DKD and 87 T2DM patients without DKD. Additionally, 60 healthy participants without T2DM were also recruited as controls. Serum and urine samples were collected for HMGB1 analysis. Simultaneously, tumor necrosis factor receptor superfamily member 1A (TNFR-1) in serum and kidney injury molecule (KIM-1) in urine samples were evaluated for comparison. Results Serum and urine HMGB1 levels were significantly higher in patients with DKD than in patients with T2DM and healthy controls. Additionally, serum HMGB1 levels significantly and positively correlated with serum TNFR-1 (R 2 = 0.567, p<0.001) and urine KIM-1 levels (R 2 = 0.440, p<0.001), and urine HMGB1 has a similar correlation. In the population with T2DM, the risk of DKD progression increased with an increase in serum HMGB1 levels. Multivariate logistic regression analysis showed that elevated serum HMGB1 level was an independent risk factor for renal function progression in patients with DKD, and regression analysis did not change in the model corrected for multiple variables. The restricted cubic spline depicted a nonlinear relationship between serum HMGB1 and renal function progression in patients with DKD (p-nonlinear=0.007, p<0.001), and this positive effect remained consistent across subgroups. Conclusion Serum HMGB1 was significantly correlated with DKD and disease severity. When the HMGB1 level was ≥27 ng/ml, the risk of renal progression increased sharply, indicating that serum HMGB1 can be used as a potential biomarker for the diagnosis of DKD progression.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yanmei Wang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xiai Wu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Tingting Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
3
|
Mo J, Chen Z, Wang M, Cheng A, Li J, Pan Y, Jiang Y, Jing J, Wang Y, Pu Y, Li Z. Association between Interleukin-6 and Multiple Acute Infarctions in Symptomatic Intracranial Atherosclerotic Disease. Curr Neurovasc Res 2024; 21:292-299. [PMID: 39069699 DOI: 10.2174/0115672026323216240722194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Interleukin-6 (IL-6) plays an important role in the pathophysiology of atherosclerosis. This study aimed to determine whether IL-6 is a crucial biomarker associated with Multiple Acute Infarctions (MAIs), which indicate an important stroke mechanism of artery-to-artery embolism with a high risk of stroke recurrence in symptomatic Intracranial Atherosclerotic Disease (sICAD). We tested the association between circulating IL-6 levels and the presence of MAIs in a prospective population-based registry. METHODS We included 1,919 patients with sICAD and baseline IL-6 levels from the Third China National Stroke Registry for the current analysis, The baseline IL-6 was centrally measured at Beijing Tiantan Hospital, Images of the brain parenchyma and vascular structures were digitized and then blindly and independently read by two groups of trained readers, The recruited patients were divided into 3 groups according to IL-6 tertiles, The relationship between baseline IL-6 tertile levels and the presence of MAIs was modeled using multivariate logistic regression. RESULTS Compared to patients in the first IL-6 tertile those in the second and third tertiles demonstrated a significantly higher proportion of MAIs. The odds ratios were 1.81 [95% Confidence Interval (CI), 1.42-2.30] for the second versus first tertile and 2.15 (95% CI 1.66-2.79) for the third versus first tertile, The proportion of patients with MAIs increased with rising IL-6 tertiles observed at 59.3%, 71.6% and 76.4% for the first, second and third tertiles, respectively (P for trend < 0.001). The association between higher IL-6 tertiles and increased proportion of MAIs was also present in subgroups defined by age < 65 years, age ≥ 65 years, male, and high-sensitivity C-reactive Protein (hs-CRP) ≥ 2 mg/L. Furthermore, a significant interaction was detected for the hs- CRP subgroup (P = 0.038). In sensitivity analyses, the positive correlation between IL-6 levels and the proportion of MAIs remained consistent. CONCLUSION In patients with sICAD, higher IL-6 levels were associated with an increased proportion of MAIs. IL-6 could be used as a biomarker and a potential therapeutic target for future atherosclerosis treatment and prevention in patients with sICAD.
Collapse
Affiliation(s)
- Jinglin Mo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Zimo Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Mengxing Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Aichun Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Jiejie Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100071, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100071, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100071, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100071, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
4
|
Chen J, Xu F, Mo X, Cheng Y, Wang L, Yang H, Li J, Zhang S, Zhang S, Li N, Cao Y. Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1344-1357. [PMID: 37608666 DOI: 10.2174/1386207326666230822122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans. OBJECTIVE This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS). METHODS We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles. RESULTS From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc. Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.
Collapse
Affiliation(s)
- Juhai Chen
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Internal Medicine Department Three Ward, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fengyan Xu
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xiangang Mo
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yiju Cheng
- The Department of Respiratory and Critical Medicine, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lan Wang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Hui Yang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jiajing Li
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shiyue Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuping Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Nannan Li
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yang Cao
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| |
Collapse
|
5
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
6
|
Shan D, Wang S, Wang J, Lu J, Ren J, Chen J, Wang D, Qi P. Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability. Front Neurol 2023; 14:1151326. [PMID: 37396779 PMCID: PMC10312009 DOI: 10.3389/fneur.2023.1151326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Vulnerable carotid atherosclerotic plaque (CAP) significantly contributes to ischemic stroke. Neovascularization within plaques is an emerging biomarker linked to plaque vulnerability that can be detected using contrast-enhanced ultrasound (CEUS). Computed tomography angiography (CTA) is a common method used in clinical cerebrovascular assessments that can be employed to evaluate the vulnerability of CAPs. Radiomics is a technique that automatically extracts radiomic features from images. This study aimed to identify radiomic features associated with the neovascularization of CAP and construct a prediction model for CAP vulnerability based on radiomic features. CTA data and clinical data of patients with CAPs who underwent CTA and CEUS between January 2018 and December 2021 in Beijing Hospital were retrospectively collected. The data were divided into a training cohort and a testing cohort using a 7:3 split. According to the examination of CEUS, CAPs were dichotomized into vulnerable and stable groups. 3D Slicer software was used to delineate the region of interest in CTA images, and the Pyradiomics package was used to extract radiomic features in Python. Machine learning algorithms containing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perception (MLP) were used to construct the models. The confusion matrix, receiver operating characteristic (ROC) curve, accuracy, precision, recall, and f-1 score were used to evaluate the performance of the models. A total of 74 patients with 110 CAPs were included. In all, 1,316 radiomic features were extracted, and 10 radiomic features were selected for machine-learning model construction. After evaluating several models on the testing cohorts, it was discovered that model_RF outperformed the others, achieving an AUC value of 0.93 (95% CI: 0.88-0.99). The accuracy, precision, recall, and f-1 score of model_RF in the testing cohort were 0.85, 0.87, 0.85, and 0.85, respectively. Radiomic features associated with the neovascularization of CAP were obtained. Our study highlights the potential of radiomics-based models for improving the accuracy and efficiency of diagnosing vulnerable CAP. In particular, the model_RF, utilizing radiomic features extracted from CTA, provides a noninvasive and efficient method for accurately predicting the vulnerability status of CAP. This model shows great potential for offering clinical guidance for early detection and improving patient outcomes.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Lu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhong Ren
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Peng Qi
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Huo X, Su B, Qin G, Zhao L. HMGB1 promotes Ox-LDL-induced endothelial cell damage by inhibiting PI3K/Akt signaling pathway. BMC Cardiovasc Disord 2022; 22:555. [PMID: 36544080 PMCID: PMC9768960 DOI: 10.1186/s12872-022-03003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Atherosclerosis is the pathological basis of cardio-cerebrovascular diseases. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for atherosclerosis. Ox-LDL leads to endothelial cell (EC) damage and dysfunction through various processes and promotes the occurrence and deterioration of atherosclerosis. High mobility group box-1 (HMGB1) is a protein associated with cellular damage. In the present study, the effect of HMGB1 on ox-LDL-induced EC damage was determined and the underlying mechanism explored. MATERIALS AND METHODS Human umbilical vein ECs (HUVECs) were exposed to ox-LDL to induce endothelial damage and changes in HMGB1 expression level were detected using western blotting analysis and reverse transcription-quantitative PCR. To observe the effect of HMGB1 on ox-LDL-induced damage, the HMGB1 expression was downregulated with siRNA, and cell viability, cytotoxicity, and apoptosis rate were assessed. HUVECs were pretreated with LY294002, an inhibitor of the PI3K/Akt pathway, to determine whether the effect of HMGB1 on damage is via the PI3K-Akt pathway. RESULTS The results showed that ox-LDL can upregulate HMGB1 expression in HUVECs and downregulation of HMGB1 expression can prevent ox-LDL-induced damage in HUVECs. Furthermore, the effect of HMGB1 on ox-LDL-induced damage could be promoted by inhibiting the PI3K/Akt signaling pathway. CONCLUSION The results indicate HMGB1 may be a promising research target to alleviate ox-LDL-induced EC damage.
Collapse
Affiliation(s)
- Xin Huo
- grid.477425.7Department of Vascular Surgery, Liuzhou People’s Hospital, No. 8 Wenchang Road, Chengzhong District, Liuzhou, 545001 Guangxi China
| | - Boyou Su
- grid.477425.7Department of Vascular Surgery, Liuzhou People’s Hospital, No. 8 Wenchang Road, Chengzhong District, Liuzhou, 545001 Guangxi China
| | - Guoti Qin
- grid.477425.7Department of Vascular Surgery, Liuzhou People’s Hospital, No. 8 Wenchang Road, Chengzhong District, Liuzhou, 545001 Guangxi China
| | - Liming Zhao
- grid.477425.7Department of Vascular Surgery, Liuzhou People’s Hospital, No. 8 Wenchang Road, Chengzhong District, Liuzhou, 545001 Guangxi China
| |
Collapse
|
8
|
The Association between High Mobility Group Box 1 and Stroke-Associated Pneumonia in Acute Ischemic Stroke Patients. Brain Sci 2022; 12:brainsci12111580. [PMID: 36421903 PMCID: PMC9688221 DOI: 10.3390/brainsci12111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: This study aimed to investigate the association between high-mobility-group box 1 (HMGB1) and stroke-associated pneumonia (SAP) in acute ischemic stroke (AIS) patients. Methods: AIS patients were enrolled in two centers. The serum samples were collected within the first 24 h after admission, and HMGB1 levels were measured by enzyme-linked immunosorbent assay. Logistic regression models were used to calculate the odds ratio (OR) and 95% confidence interval (95% CI) of SAP for HMGB1 concentrations. Restricted cubic splines (RCS) were performed to explore the shapes of the association between HMGB1 concentrations and SAP. Results: From January 2022 to May 2022, a total of 420 AIS patients were enrolled. Ninety-six (22.9%) patients develop SAP. The levels of HMGB1 in the SAP group were higher than those in the non-SAP group (p < 0.001). Using the first quartile of HMGB1 group as a reference, patients in the fourth quartile of HMGB1 group had the highest likelihood of experiencing SAP in the unadjusted model (OR = 3.687; 95% CI: 1.851−7.344), age- and sex-adjusted model (OR = 3.511; 95% CI: 1.725−7.147), and multivariable-adjusted model (OR = 2.701; 95% CI: 1.045−6.981). HMGB1 was also independently associated with SAP as a continuous variable in the unadjusted model (OR = 1.132; 95% CI: 1.069−1.199), age- and sex-adjusted model (OR = 1.131; 95% CI: 1.066−1.200), and multivariable-adjusted model (OR = 1.096; 95% CI: 1.011−1.188). RCS showed a linear association between HMGB1 and SAP (p for linear trend = 0.008) Conclusions: HMGB1 might be able to act as a potential biomarker of SAP in AIS patients.
Collapse
|
9
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Rando MM, Biscetti F, Cecchini AL, Nardella E, Nicolazzi MA, Angelini F, Iezzi R, Eraso LH, Dimuzio PJ, Pitocco D, Gasbarrini A, Massetti M, Flex A. Serum high mobility group box-1 levels associated with cardiovascular events after lower extremity revascularization: a prospective study of a diabetic population. Cardiovasc Diabetol 2022; 21:214. [PMID: 36244983 PMCID: PMC9571458 DOI: 10.1186/s12933-022-01650-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Peripheral arterial disease (PAD) is one of the most disabling cardiovascular complications of type 2 diabetes mellitus and is indeed associated with a high risk of cardiovascular and limb adverse events. High mobility group box-1 (HMGB-1) is a nuclear protein involved in the inflammatory response that acts as a pro-inflammatory cytokine when released into the extracellular space. HMBG-1 is associated with PAD in diabetic patients. The aim of this study was to evaluate the association between serum HMGB-1 levels and major adverse cardiovascular events (MACE) and major adverse limb events (MALE) after lower-extremity endovascular revascularization (LER) in a group of diabetic patients with chronic limb-threatening ischemia (CLTI). Methods We conducted a prospective observational study of 201 diabetic patients with PAD and CLTI requiring LER. Baseline serum HMGB-1 levels were determined before endovascular procedure. Data on cardiovascular and limb outcomes were collected in a 12-month follow-up. Results During the follow-up period, 81 cases of MACE and 93 cases of MALE occurred. Patients who subsequently developed MACE and MALE had higher serum HMGB-1 levels. Specifically, 7.5 ng/mL vs 4.9 ng/mL (p < 0.01) for MACE and 7.2 ng/mL vs 4.8 ng/mL (p < 0.01) for MALE. After adjusting for traditional cardiovascular risk factors, the association between serum HMGB-1 levels and cardiovascular outcomes remained significant in multivariable analysis. In our receiver operating characteristic (ROC) curve analysis, serum HMGB-1 levels were a good predictor of MACE incidence (area under the curve [AUC] = 0.78) and MALE incidence (AUC = 0.75). Conclusions This study demonstrates that serum HMGB-1 levels are associated with the incidence of MACE and MALE after LER in diabetic populations with PAD and CLTI.
Collapse
|
11
|
Cecchini AL, Biscetti F, Rando MM, Nardella E, Pecorini G, Eraso LH, Dimuzio PJ, Gasbarrini A, Massetti M, Flex A. Dietary Risk Factors and Eating Behaviors in Peripheral Arterial Disease (PAD). Int J Mol Sci 2022; 23:10814. [PMID: 36142725 PMCID: PMC9504787 DOI: 10.3390/ijms231810814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary risk factors play a fundamental role in the prevention and progression of atherosclerosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process of taking in food and using it for growth, metabolism and repair, remains undefined with regard to PAD. This article describes the interplay between nutrition and the development/progression of PAD. We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently created four descriptive tables to summarize the relationship between PAD, dietary risk factors and outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetarian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors (emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals, home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD. Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns and eating habits. Dietary patterns and eating disorders affect the development and progression of PAD, as well as its disabling complications including major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Elisabetta Nardella
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giovanni Pecorini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Gasbarrini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimo Massetti
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Andrea Flex
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
12
|
Kadoglou NPE, Kapetanios D, Korakas E, Valsami G, Tentolouris N, Papanas N, Lambadiari V, Karkos C. Association of serum levels of osteopontin and osteoprotegerin with adverse outcomes after endovascular revascularisation in peripheral artery disease. Cardiovasc Diabetol 2022; 21:171. [PMID: 36050687 PMCID: PMC9438128 DOI: 10.1186/s12933-022-01605-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background Osteoprotegerin (OPG) and osteopontin (OPN) are vascular calcification inhibitors with a known role in the atherosclerotic and inflammatory process. We investigated their relationship with adverse outcomes (restenosis/adverse cardiovascular events) after endovascular revascularisation of patients with peripheral arterial disease (PAD). Methods 203 consecutive patients were enrolled in the PAD group (PADG) and 78 age and sex-matched subjects with less than two cardiovascular risk factors served as control group (COG). PADG underwent standard medical assessment at baseline and 12 months after the procedure. During follow up major adverse cardiovascular events (MACEs) including arterial restenosis with need for reintervention were documented and the PADG was divided accordingly into two subgroups. Results During 12-month follow-up, 82 MACE were recorded (MACE subgroup). The rest of 124 PAD patients remained free of MACE (non-MACE subgroup). At baseline, OPG (9.89 ± 2.85 ng/ml vs 3.47 ± 1.95 ng/ml, p < 0.001) and OPN (79.99 ± 38.29 ng/ml vs 35.21 ± 14.84 ng/ml, p < 0.001) levels were significantly higher in PADG compared to COG, as well as in MACE subgroup compared to non-MACE subgroup (13.29 ± 3.23 ng/ml vs 10.86 ± 3 ng/ml and 96.45 ± 40.12 ng/ml vs 78.1 ± 38.29 ng/ml, respectively). An independent association of PAD with OPG and OPN was found in the whole patient cohort. Although OPG and OPN were significantly related to MACE incidence in the univariate analysis, multiple logistic regression analysis failed to detect any independent predictor of MACE within the PADG. Conclusion Baseline high OPG and OPN levels were independently associated with PAD presence. Even higher levels of those biomarkers were detected among PAD patients with MACE, however, their prognostic role should be further clarified.
Collapse
Affiliation(s)
- Nikolaos P E Kadoglou
- Medical School, University of Cyprus, 215/6 Old road Lefkosias-Lemesou, 2029, Aglatzia, Nicosia, Cyprus. .,Department of Vascular Surgery, University Hospital, LMU Munich, Munich, Germany.
| | - Dimitrios Kapetanios
- Department of Vascular Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Emmanouil Korakas
- 2nd Department of Internal Medicine, Research Institute and Diabetes Centre, Athens University Medical School, Attikon University General Hospital, Athens, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine, Research Institute and Diabetes Centre, Athens University Medical School, Attikon University General Hospital, Athens, Greece
| | - Christos Karkos
- 5Th Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
14
|
Biscetti F, Tinelli G, Rando MM, Nardella E, Cecchini AL, Angelini F, Straface G, Filipponi M, Arena V, Pitocco D, Gasbarrini A, Massetti M, Flex A. Correction to: Association between carotid plaque vulnerability and high mobility group box‑1 serum levels in a diabetic population. Cardiovasc Diabetol 2021; 20:184. [PMID: 34503518 PMCID: PMC8431924 DOI: 10.1186/s12933-021-01376-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Federico Biscetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy. .,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy. .,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Giovanni Tinelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Vascular Surgery, Fondazione Policlinico Univer-Sitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Margherita Rando
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Elisabetta Nardella
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giuseppe Straface
- Department of Internal Medicine, St. M. Goretti Hospital, Roma, Italy
| | | | - Vincenzo Arena
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Massimo Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Cardiovascular Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy.,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|