1
|
Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta DR, Hasegawa N, Ohya T, Bhattarai SK, Sasajima S, Aoto Y, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridoshi Y, Sugita K, Stražar M, Avila-Pacheco J, Pierce K, Clish CB, Skelly AN, Hattori M, Nakamoto N, Caballero S, Norman JM, Olle B, Tanoue T, Suda W, Arita M, Bucci V, Atarashi K, Xavier RJ, Honda K. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024; 633:878-886. [PMID: 39294375 PMCID: PMC11424487 DOI: 10.1038/s41586-024-07960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Persistent colonization and outgrowth of potentially pathogenic organisms in the intestine can result from long-term antibiotic use or inflammatory conditions, and may perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, although an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. Here we isolated and down-selected commensal bacterial consortia from stool samples from healthy humans that could strongly and specifically suppress intestinal Enterobacteriaceae. One of the elaborated consortia, comprising 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby re-establishing colonization resistance and alleviating Klebsiella- and Escherichia-driven intestinal inflammation in mice. Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection.
Collapse
Affiliation(s)
- Munehiro Furuichi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marie-Madlen Pust
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naomi Hasegawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Satoshi Sasajima
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Aoto
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Mizuki Yaginuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ueda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Okahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kimiko Amafuji
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kiridoshi
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Sugita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Martin Stražar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
2
|
Branska B, Koppova K, Husakova M, Patakova P. Application of fed-batch strategy to fully eliminate the negative effect of lignocellulose-derived inhibitors in ABE fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:87. [PMID: 38915101 PMCID: PMC11197323 DOI: 10.1186/s13068-024-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Inhibitors that are released from lignocellulose biomass during its treatment represent one of the major bottlenecks hindering its massive utilization in the biotechnological production of chemicals. This study demonstrates that negative effect of inhibitors can be mitigated by proper feeding strategy. Both, crude undetoxified lignocellulose hydrolysate and complex medium supplemented with corresponding inhibitors were tested in acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii NRRL B-598 as the producer strain. RESULTS First, it was found that the sensitivity of C. beijerinckii to inhibitors varied with different growth stages, being the most significant during the early acidogenic phase and less pronounced during late acidogenesis and early solventogenesis. Thus, a fed-batch regime with three feeding schemes was tested for toxic hydrolysate (no growth in batch mode was observed). The best results were obtained when the feeding of an otherwise toxic hydrolysate was initiated close to the metabolic switch, resulting in stable and high ABE production. Complete utilization of glucose, and up to 88% of xylose, were obtained. The most abundant inhibitors present in the alkaline wheat straw hydrolysate were ferulic and coumaric acids; both phenolic acids were efficiently detoxified by the intrinsic metabolic activity of clostridia during the early stages of cultivation as well as during the feeding period, thus preventing their accumulation. Finally, the best feeding strategy was verified using a TYA culture medium supplemented with both inhibitors, resulting in 500% increase in butanol titer over control batch cultivation in which inhibitors were added prior to inoculation. CONCLUSION Properly timed sequential feeding effectively prevented acid-crash and enabled utilization of otherwise toxic substrate. This study unequivocally demonstrates that an appropriate biotechnological process control strategy can fully eliminate the negative effects of lignocellulose-derived inhibitors.
Collapse
Affiliation(s)
- Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| | - Kamila Koppova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Marketa Husakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| |
Collapse
|
3
|
Honda K, Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta D, Hasegawa N, Ohya T, Bhattarai S, Sasajima S, Yoshimasa A, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridooshi Y, Sugita K, Stražar M, Skelly A, Suda W, Hattori M, Nakamoto N, Caballero S, Norman J, Olle B, Tanoue T, Arita M, Bucci V, Atarashi K, Xavier R. Rationally-defined microbial consortia suppress multidrug-resistant proinflammatory Enterobacteriaceae via ecological control. RESEARCH SQUARE 2023:rs.3.rs-3462622. [PMID: 37961431 PMCID: PMC10635318 DOI: 10.21203/rs.3.rs-3462622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aoto Yoshimasa
- JSR-Keio University Medical and Chemical Innovation Center
| | | | | | | | | | | | | | | | | | | | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences
| | | | | | - Silvia Caballero
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zu TNK, Liu S, Gerlach ES, Mojadedi W, Sund CJ. Co-feeding glucose with either gluconate or galacturonate during clostridial fermentations provides metabolic fine-tuning capabilities. Sci Rep 2021; 11:29. [PMID: 33420096 PMCID: PMC7794554 DOI: 10.1038/s41598-020-76761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.
Collapse
Affiliation(s)
- Theresah N K Zu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA.
| | - Sanchao Liu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Elliot S Gerlach
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Wais Mojadedi
- Oak Ridge Associated Universities, Belcamp, MD, 21017, USA
| | - Christian J Sund
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| |
Collapse
|
5
|
Singh RP, Tingirikari JMR. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824. mSystems 2018; 3:e00064-18. [PMID: 30374459 PMCID: PMC6199471 DOI: 10.1128/msystems.00064-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.
Collapse
Affiliation(s)
| | | | | | | | - Sanchao Liu
- U.S. Army Research Laboratory, RDRL-SEE-B, Adelphi, Maryland, USA
| | | |
Collapse
|
7
|
Hydrogen-Cycling during Solventogenesis in Clostridium acetobutylicum American Type Culture Collection (ATCC) 824 Requires the [NiFe]-Hydrogenase for Energy Conservation. FERMENTATION 2018. [DOI: 10.3390/fermentation4030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clostridium acetobutylicum has traditionally been used for production of acetone, butanol, and ethanol (ABE). Butanol is a commodity chemical due in part to its suitability as a biofuel; however, the current yield of this product from biological systems is not economically feasible as an alternative fuel source. Understanding solvent phase physiology, solvent tolerance, and their genetic underpinning is key for future strain optimization of the bacterium. This study shows the importance of a [NiFe]-hydrogenase in solvent phase physiology. C. acetobutylicum genes ca_c0810 and ca_c0811, annotated as a HypF and HypD maturation factor, were found to be required for [NiFe]-hydrogenase activity. They were shown to be part of a polycistronic operon with other hyp genes. Hydrogenase activity assays of the ΔhypF/hypD mutant showed an almost complete inactivation of the [NiFe]-hydrogenase. Metabolic studies comparing ΔhypF/hypD and wild type (WT) strains in planktonic and sessile conditions indicated the hydrogenase was important for solvent phase metabolism. For the mutant, reabsorption of acetate and butyrate was inhibited during solventogenesis in planktonic cultures, and less ABE was produced. During sessile growth, the ΔhypF/hypD mutant had higher initial acetone: butanol ratios, which is consistent with the inability to obtain reduced cofactors via H2 uptake. In sessile conditions, the ΔhypF/hypD mutant was inhibited in early solventogenesis, but it appeared to remodel its metabolism and produced mainly butanol in late solventogenesis without the uptake of acids. Energy filtered transmission electron microscopy (EFTEM) mapped Pd(II) reduction via [NiFe]-hydrogenase induced H2 oxidation at the extracelluar side of the membrane on WT cells. A decrease of Pd(0) deposits on ΔhypF/hypD comparatively to WT indicates that the [NiFe]-hydrogenase contributed to the Pd(II) reduction. Calculations of reaction potentials during acidogenesis and solventogenesis predict the [NiFe]-hydrogenase can couple NAD+ reduction with membrane transport of electrons. Extracellular oxidation of H2 combined with the potential for electron transport across the membrane indicate that the [NiFe}-hydrogenase contributes to proton motive force maintenance via hydrogen cycling.
Collapse
|
8
|
Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017; 93:4331632. [DOI: 10.1093/femsec/fix127] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/29/2017] [Indexed: 01/16/2023] Open
|
9
|
Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 2017; 25:339-348. [PMID: 29472788 PMCID: PMC5815992 DOI: 10.1016/j.sjbs.2017.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 01/22/2023] Open
Abstract
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.
Collapse
Affiliation(s)
- Najeeb Kaid Nasser Al-Shorgani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Mohtar Wan Yusoff
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
10
|
Patil Y, Müller N, Schink B, Whitman WB, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Junghare M. High-quality-draft genome sequence of the fermenting bacterium Anaerobium acetethylicum type strain GluBS11 T (DSM 29698). Stand Genomic Sci 2017; 12:24. [PMID: 28250895 PMCID: PMC5322786 DOI: 10.1186/s40793-017-0236-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
Anaerobium acetethylicum strain GluBS11T belongs to the family Lachnospiraceae within the order Clostridiales. It is a Gram-positive, non-motile and strictly anaerobic bacterium isolated from biogas slurry that was originally enriched with gluconate as carbon source (Patil, et al., Int J Syst Evol Microbiol 65:3289-3296, 2015). Here we describe the draft genome sequence of strain GluBS11T and provide a detailed insight into its physiological and metabolic features. The draft genome sequence generated 4,609,043 bp, distributed among 105 scaffolds assembled using the SPAdes genome assembler method. It comprises in total 4,132 genes, of which 4,008 were predicted to be protein coding genes, 124 RNA genes and 867 pseudogenes. The G + C content was 43.51 mol %. The annotated genome of strain GluBS11T contains putative genes coding for the pentose phosphate pathway, the Embden-Meyerhoff-Parnas pathway, the Entner-Doudoroff pathway and the tricarboxylic acid cycle. The genome revealed the presence of most of the necessary genes required for the fermentation of glucose and gluconate to acetate, ethanol, and hydrogen gas. However, a candidate gene for production of formate was not identified.
Collapse
Affiliation(s)
- Yogita Patil
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | | - Alicia Clum
- DOE-Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- DOE-Joint Genome Institute, Walnut Creek, CA USA
| | | | | | | | | | | | - Chris Daum
- DOE-Joint Genome Institute, Walnut Creek, CA USA
| | | | | | | | - Tanja Woyke
- DOE-Joint Genome Institute, Walnut Creek, CA USA
| | - Madan Junghare
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
- Konstanz Research School of Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
11
|
Liu H, Huang D, Wen J. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microb Cell Fact 2016; 15:36. [PMID: 26879529 PMCID: PMC4753663 DOI: 10.1186/s12934-016-0436-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/01/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. RESULTS Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. CONCLUSIONS The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.
Collapse
Affiliation(s)
- Huanhuan Liu
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, People's Republic of China.
| | - Jianping Wen
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Patil Y, Junghare M, Pester M, Müller N, Schink B. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. Int J Syst Evol Microbiol 2015; 65:3289-3296. [PMID: 26297346 DOI: 10.1099/ijsem.0.000410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11T stained Gram-positive and were non-motile, straight rods, measuring 3.0-4.5 × 0.8-1.2 μm. The temperature range for growth was 15-37 °C, with optimal growth at 30 °C, the pH range was 6.5-8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H2 and CO2. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c. The DNA G+C content of strain GluBS11T was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11T is a member of subcluster XIVa within the order Clostridiales. The closest cultured relatives are Clostridium herbivorans (93.1 % similarity to the type strain), Clostridium populeti (93.3 %), Eubacterium uniforme (92.4 %) and Clostridium polysaccharolyticum (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11T is considered to represent a novel genus and species, for which the name Anaerobium acetethylicum gen. nov., sp. nov. is proposed. The type strain of Anaerobium acetethylicum is GluBS11T ( = LMG 28619T = KCTC 15450T = DSM 29698T).
Collapse
Affiliation(s)
- Yogita Patil
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | - Madan Junghare
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany.,Konstanz Research School of Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Pester
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
13
|
Germane KL, Servinsky MD, Gerlach ES, Sund CJ, Hurley MM. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105. Acta Crystallogr F Struct Biol Commun 2015; 71:1100-8. [PMID: 26249707 PMCID: PMC4528949 DOI: 10.1107/s2053230x15012121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR.
Collapse
Affiliation(s)
- Katherine L. Germane
- Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017, USA
| | - Matthew D. Servinsky
- RDRL-SEE-B, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Elliot S. Gerlach
- Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401, USA
| | - Christian J. Sund
- RDRL-SEE-B, US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Margaret M. Hurley
- RDRL-SEE-B, US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, USA
| |
Collapse
|