1
|
Mühling L, Baur T, Molitor B. Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39363002 DOI: 10.1007/10_2024_270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.
Collapse
Affiliation(s)
- Lucas Mühling
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Tina Baur
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
3
|
Duller S, Vrbancic S, Szydłowski Ł, Mahnert A, Blohs M, Predl M, Kumpitsch C, Zrim V, Högenauer C, Kosciolek T, Schmitz RA, Eberhard A, Dragovan M, Schmidberger L, Zurabischvili T, Weinberger V, Moser AM, Kolb D, Pernitsch D, Mohammadzadeh R, Kühnast T, Rattei T, Moissl-Eichinger C. Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome. Nat Commun 2024; 15:7593. [PMID: 39217206 PMCID: PMC11366006 DOI: 10.1038/s41467-024-52037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Archaea are vital components of the human microbiome, yet their study within the gastrointestinal tract (GIT) is limited by the scarcity of cultured representatives. Our study presents a method for the targeted enrichment and isolation of methanogenic archaea from human fecal samples. The procedure combines methane breath testing, in silico metabolic modeling, media optimization, FACS, dilution series, and genomic sequencing through Nanopore technology. Additional analyzes include the co-cultured bacteriome, comparative genomics of archaeal genomes, functional comparisons, and structure-based protein function prediction of unknown differential traits. Successful establishment of stable archaeal cultures from 14 out of 16 fecal samples yielded nine previously uncultivated strains, eight of which are absent from a recent archaeome genome catalog. Comparative genomic and functional assessments of Methanobrevibacter smithii and Candidatus Methanobrevibacter intestini strains from individual donors revealed features potentially associated with gastrointestinal diseases. Our work broadens available archaeal representatives for GIT studies, and offers insights into Candidatus Methanobrevibacter intestini genomes' adaptability in critical microbiome contexts.
Collapse
Affiliation(s)
- Stefanie Duller
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Simone Vrbancic
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Łukasz Szydłowski
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
| | - Alexander Mahnert
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Marcus Blohs
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Michael Predl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Christina Kumpitsch
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Verena Zrim
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Sano Centre for Computational Medicine, Krakow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Anna Eberhard
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Dragovan
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Laura Schmidberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Zurabischvili
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Viktoria Weinberger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Adrian Mathias Moser
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Dominique Pernitsch
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Torben Kühnast
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
4
|
Biderre-Petit C, Mbarki M, Courtine D, Benarab Y, Vial C, Fontanille P, Dubessay P, Keramati M, Jouan-Dufournel I, Monjot A, Guez JS, Fadhlaoui K. Comparison of methane yield of a novel strain of Methanothermobacter marburgensis in pure and mixed adapted culture derived from a methanation bubble column bioreactor. BIORESOURCE TECHNOLOGY 2024; 406:131021. [PMID: 38909868 DOI: 10.1016/j.biortech.2024.131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The ongoing discussion regarding the use of mixed or pure cultures of hydrogenotrophic methanogenic archaea in Power-to-Methane (P2M) bioprocess applications persists, with each option presenting its own advantages and disadvantages. To address this issue, a comparison of methane (CH4) yield between a novel methanogenic archaeon belonging to the species Methanothermobacter marburgensis (strain Clermont) isolated from a biological methanation column, and the community from which it originated, was conducted. This comparison included the type strain M. marburgensis str. Marburg. The evaluation also examined how exposure to oxygen (O2) for up to 240 min impacted the CH4 yield across these cultures. While both Methanothermobacter strains exhibit comparable CH4 yield, slightly higher than that of the mixed adapted culture under non-O2-exposed conditions, strain Clermont does not display the lag time observed for strain Marburg.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France.
| | - Mariem Mbarki
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Damien Courtine
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Yanis Benarab
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Christophe Vial
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Pierre Fontanille
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Misagh Keramati
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Isabelle Jouan-Dufournel
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Arthur Monjot
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France
| | - Jean Sébastien Guez
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
| | - Khaled Fadhlaoui
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes : Génome et Environnement, F-63000, Clermont-Ferrand, France; Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
5
|
Ale Enriquez F, Ahring BK. Phenotypic and genomic characterization of Methanothermobacter wolfeii strain BSEL, a CO 2-capturing archaeon with minimal nutrient requirements. Appl Environ Microbiol 2024; 90:e0026824. [PMID: 38619268 PMCID: PMC11107166 DOI: 10.1128/aem.00268-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024] Open
Abstract
A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Birgitte K. Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, Washington, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
- Biological Systems Engineering Department, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Pilliol V, Morsli M, Terlier L, Hassani Y, Malat I, Guindo CO, Davoust B, Lamglait B, Drancourt M, Aboudharam G, Grine G, Terrer E. Candidatus Methanosphaera massiliense sp. nov., a methanogenic archaeal species found in a human fecal sample and prevalent in pigs and red kangaroos. Microbiol Spectr 2024; 12:e0514122. [PMID: 38189277 PMCID: PMC10845953 DOI: 10.1128/spectrum.05141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/24/2023] [Indexed: 01/09/2024] Open
Abstract
Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Madjid Morsli
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Laureline Terlier
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Yasmine Hassani
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Ihab Malat
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Cheick Oumar Guindo
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | | | - Elodie Terrer
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Cheng H, Medina JS, Zhou J, Pinho EM, Meng R, Wang L, He Q, Morán XA, Hong PY. Predicting Anaerobic Membrane Bioreactor Performance Using Flow-Cytometry-Derived High and Low Nucleic Acid Content Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2360-2372. [PMID: 38261758 PMCID: PMC10851436 DOI: 10.1021/acs.est.3c07702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.
Collapse
Affiliation(s)
- Hong Cheng
- Key
Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry
of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, People’s
Republic of China
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Julie Sanchez Medina
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jianqiang Zhou
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- State
Power Investment Corporation Research Institute, Beijing 102209, People’s Republic of China
| | - Eduardo Machado Pinho
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Bioengineering, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
| | - Rui Meng
- Lawrence
Berkeley National Laboratory, Berkeley, California 94301, United States
- Amazon,
Incorporated, Palo Alto, California 94301, United States
| | - Liuwei Wang
- Systems
Medicine of Infectious Disease (P5), Robert
Koch Institute, 13353 Berlin, Germany
- Department
of Mathematics and Computer Science, Freie
Universität Berlin, 10117 Berlin, Germany
| | - Qiang He
- Key
Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry
of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, People’s
Republic of China
| | - Xosé Anxelu
G. Morán
- Red
Sea Research Center, Biological and Environmental Science & Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Pilliol V, Beye M, Terlier L, Balmelle J, Kacel I, Lan R, Aboudharam G, Grine G, Terrer E. Methanobrevibacter massiliense and Pyramidobacter piscolens Co-Culture Illustrates Transkingdom Symbiosis. Microorganisms 2024; 12:215. [PMID: 38276200 PMCID: PMC10819710 DOI: 10.3390/microorganisms12010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Among oral microbiota methanogens, Methanobrevibacter massiliense (M. massiliense) has remained less studied than the well-characterised and cultivated methanogens Methanobrevibacter oralis and Methanobrevibacter smithii. M. massiliense has been associated with different oral pathologies and was co-isolated with the Synergistetes bacterium Pyramidobacter piscolens (P. piscolens) in one case of severe periodontitis. Here, reporting on two additional necrotic pulp cases yielded the opportunity to characterise two co-cultivated M. massiliense isolates, both with P. piscolens, as non-motile, 1-2-µm-long and 0.6-0.8-µm-wide Gram-positive coccobacilli which were autofluorescent at 420 nm. The two whole genome sequences featured a 31.3% GC content, gapless 1,834,388-base-pair chromosome exhibiting an 85.9% coding ratio, encoding a formate dehydrogenase promoting M. massiliense growth without hydrogen in GG medium. These data pave the way to understanding a symbiotic, transkingdom association with P. piscolens and its role in oral pathologies.
Collapse
Affiliation(s)
- Virginie Pilliol
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Mamadou Beye
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Laureline Terlier
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Julien Balmelle
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Idir Kacel
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Romain Lan
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
- CNRS, EFS, ADES, Aix-Marseille University, 13385 Marseille, France
| | - Gérard Aboudharam
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| | - Ghiles Grine
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- IHU Méditerranée Infection, 13005 Marseille, France; (M.B.); (I.K.)
| | - Elodie Terrer
- IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, 13005 Marseille, France; (V.P.); (L.T.); (J.B.); (G.A.)
- Ecole de Médecine Dentaire, Aix-Marseille University, 13385 Marseille, France;
| |
Collapse
|
9
|
Prakash O, Dodsworth JA, Dong X, Ferry JG, L'Haridon S, Imachi H, Kamagata Y, Rhee SK, Sagar I, Shcherbakova V, Wagner D, Whitman WB. Proposed minimal standards for description of methanogenic archaea. Int J Syst Evol Microbiol 2023; 73. [PMID: 37097839 DOI: 10.1099/ijsem.0.005500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Methanogenic archaea are a diverse, polyphyletic group of strictly anaerobic prokaryotes capable of producing methane as their primary metabolic product. It has been over three decades since minimal standards for their taxonomic description have been proposed. In light of advancements in technology and amendments in systematic microbiology, revision of the older criteria for taxonomic description is essential. Most of the previously recommended minimum standards regarding phenotypic characterization of pure cultures are maintained. Electron microscopy and chemotaxonomic methods like whole-cell protein and lipid analysis are desirable but not required. Because of advancements in DNA sequencing technologies, obtaining a complete or draft whole genome sequence for type strains and its deposition in a public database are now mandatory. Genomic data should be used for rigorous comparison to close relatives using overall genome related indices such as average nucleotide identity and digital DNA-DNA hybridization. Phylogenetic analysis of the 16S rRNA gene is also required and can be supplemented by phylogenies of the mcrA gene and phylogenomic analysis using multiple conserved, single-copy marker genes. Additionally, it is now established that culture purity is not essential for studying prokaryotes, and description of Candidatus methanogenic taxa using single-cell or metagenomics along with other appropriate criteria is a viable alternative. The revisions to the minimal criteria proposed here by the members of the Subcommittee on the Taxonomy of Methanogenic Archaea of the International Committee on Systematics of Prokaryotes should allow for rigorous yet practical taxonomic description of these important and diverse microbes.
Collapse
Affiliation(s)
- Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India
- Symbiosis Centre for Climate Change and Sustainability, Symbiosis International (Deemed University), Lavale, Pune-412115, Maharashtra, India
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephane L'Haridon
- CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, University of Brest, F-29280, Plouzané, France
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoichi Kamagata
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Republic of Korea
| | - Isita Sagar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, All-Russian Collection of Microorganisms (VKM), Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 3, Pushchino, Moscow, 142290, Russian Federation
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg A71-359, 14473 Potsdam, Germany
- Institut of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Rani J, Pandey KP, Kushwaha J, Priyadarsini M, Dhoble AS. Antibiotics in anaerobic digestion: Investigative studies on digester performance and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 361:127662. [PMID: 35872275 DOI: 10.1016/j.biortech.2022.127662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing consumption of antibiotics in both humans and animals has increased their load in municipal and pharmaceutical industry waste and may cause serious damage to the environment. Impact of antibiotics on the performance of commercially used anaerobic digesters in terms of bioenergy output, antibiotics' removal and COD removal have been compared critically with a few studies indicating >90% removal of antibiotics. AnMBR performed the best in terms of antibiotic removal, COD removal and methane yield. Most of the antibiotics investigated have adverse effects on microbiome associated with different stages and methane generation pathways of AD which has been assessed using high throughput technologies like metatranscriptomics, metaproteomics and flow cytometry. Perspectives have been given for understanding the fate and elimination of antibiotics from AD. The challenge of optimization and process improvement needs to be addressed to increase efficiency of the anaerobic digesters.
Collapse
Affiliation(s)
- Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
11
|
The Fluorescence-Activating and Absorption-Shifting Tag (FAST) Enables Live-Cell Fluorescence Imaging of Methanococcus maripaludis. J Bacteriol 2022; 204:e0012022. [PMID: 35657707 DOI: 10.1128/jb.00120-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Live-cell fluorescence imaging of methanogenic archaea has been limited due to the strictly anoxic conditions required for growth and issues with autofluorescence associated with electron carriers in central metabolism. Here, we show that the fluorescence-activating and absorption-shifting tag (FAST) complexed with the fluorogenic ligand 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR) overcomes these issues and displays robust fluorescence in Methanococcus maripaludis. We also describe a mechanism to visualize cells under anoxic conditions using a fluorescence microscope. Derivatives of FAST were successfully applied for protein abundance analysis, subcellular localization analysis, and determination of protein-protein interactions. FAST fusions to both formate dehydrogenase (Fdh) and F420-reducing hydrogenase (Fru) displayed increased fluorescence in cells grown on formate-containing medium, consistent with previous studies suggesting the increased abundance of these proteins in the absence of H2. Additionally, FAST fusions to both Fru and the ATPase associated with the archaellum (FlaI) showed a membrane localization in single cells observed using anoxic fluorescence microscopy. Finally, a split reporter translationally fused to the alpha and beta subunits of Fdh reconstituted a functionally fluorescent molecule in vivo via bimolecular fluorescence complementation. Together, these observations demonstrate the utility of FAST as a tool for studying members of the methanogenic archaea. IMPORTANCE Methanogenic archaea are important members of anaerobic microbial communities where they catalyze essential reactions in the degradation of organic matter. Developing additional tools for studying the cell biology of these organisms is essential to understanding them at a mechanistic level. Here, we show that FAST, in combination with the fluorogenic ligand HMBR, can be used to monitor protein dynamics in live cells of M. maripaludis. The application of FAST holds promise for future studies focused on the metabolism and physiology of methanogenic archaea.
Collapse
|
12
|
Fc-MBL-modified Fe 3O 4 magnetic bead enrichment and fixation in Gram stain for rapid detection of low-concentration bacteria. Mikrochim Acta 2022; 189:169. [PMID: 35364796 DOI: 10.1007/s00604-022-05277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Functional bacterial enrichment magnetic beads (Fe3O4@SiO2@Fc-MBL) and Gram staining were combined for the fast diagnosis of infecting bacteria in meningitis. Fe3O4@SiO2@Fc-MBL has excellent microbial binding ability and can be used for bacterial enrichment from cerebrospinal fluid (CSF). The enriched bacteria are recognized by Gram stain at very low concentrations (10 CFU·mL-1). The feasibility of this method was verified by five common bacteria in meningitis infection (Gram-positive: Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus capitis; Gram-negative: Klebsiella pneumoniae and Escherichia coli). The extraction efficiency of Fc-MBL-modified Fe3O4 magnetic beads was approximately 90% in artificial CSF for the selected bacteria, with the exception of E. coli (~ 60%). The bacteria were successfully recognized by Gram staining and microscopic observation. Fe3O4@SiO2@Fc-MBL acts by capturing and fixing the bacteria in a magnetic field throughout the experiment. Compared with traditional CSF Gram staining, this new method avoids interference by inflammatory cells and red blood cells during microscopic examination. Furthermore, the sensitivity of this method is much better than the centrifugation smear method. The whole process can be accomplished within 30 min. This novel method may have potential as a clinical tool for analysis of bacteria in the CSF.
Collapse
|
13
|
Bellais S, Nehlich M, Ania M, Duquenoy A, Mazier W, van den Engh G, Baijer J, Treichel NS, Clavel T, Belotserkovsky I, Thomas V. Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. MICROBIOME 2022; 10:24. [PMID: 35115054 PMCID: PMC8812257 DOI: 10.1186/s40168-021-01206-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND There is a growing interest in using gut commensal bacteria as "next generation" probiotics. However, this approach is still hampered by the fact that there are few or no strains available for specific species that are difficult to cultivate. Our objective was to adapt flow cytometry and cell sorting to be able to detect, separate, isolate, and cultivate new strains of commensal species from fecal material. We focused on the extremely oxygen sensitive (EOS) species Faecalibacterium prausnitzii and the under-represented, health-associated keystone species Christensenella minuta as proof-of-concept. RESULTS A BD Influx® cell sorter was equipped with a glovebox that covered the sorting area. This box was flushed with nitrogen to deplete oxygen in the enclosure. Anaerobic conditions were maintained during the whole process, resulting in only minor viability loss during sorting and culture of unstained F. prausnitzii strains ATCC 27766, ATCC 27768, and DSM 17677. We then generated polyclonal antibodies against target species by immunizing rabbits with heat-inactivated bacteria. Two polyclonal antibodies were directed against F. prausnitzii type strains that belong to different phylogroups, whereas one was directed against C. minuta strain DSM 22607. The specificity of the antibodies was demonstrated by sorting and sequencing the stained bacterial fractions from fecal material. In addition, staining solutions including LIVE/DEAD™ BacLight™ Bacterial Viability staining and polyclonal antibodies did not severely impact bacterial viability while allowing discrimination between groups of strains. Finally, we combined these staining strategies as well as additional criteria based on bacterial shape for C. minuta and were able to detect, isolate, and cultivate new F. prausnitzii and C. minuta strains from healthy volunteer's fecal samples. CONCLUSIONS Targeted cell-sorting under anaerobic conditions is a promising tool for the study of fecal microbiota. It gives the opportunity to quickly analyze microbial populations, and can be used to sort EOS and/or under-represented strains of interest using specific antibodies, thus opening new avenues for culture experiments. Video abstract.
Collapse
Affiliation(s)
| | | | - Maryne Ania
- BIOASTER, 28 rue du Docteur Roux, 75015, Paris, France
| | | | | | | | - Jan Baijer
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, Institut de Radiobiologie Cellulaire et Moléculaire, Fontenay-aux-Roses, France
| | - Nicole Simone Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH, Aachen, Germany
| | | | | |
Collapse
|
14
|
Grinter R, Greening C. Cofactor F420: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea. FEMS Microbiol Rev 2021; 45:fuab021. [PMID: 33851978 PMCID: PMC8498797 DOI: 10.1093/femsre/fuab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Many bacteria and archaea produce the redox cofactor F420. F420 is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F420 to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F420 was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F420 was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F420-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F420 and identified enantioselective F420H2-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F420 to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F420 have shifted, and new F420-dependent organisms and processes continue to be discovered.
Collapse
Affiliation(s)
- Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
15
|
De Vrieze J, Heyer R, Props R, Van Meulebroek L, Gille K, Vanhaecke L, Benndorf D, Boon N. Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles. WATER RESEARCH 2021; 202:117422. [PMID: 34280807 DOI: 10.1016/j.watres.2021.117422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic digestion microbiome has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a non-targeted holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and cytomics, in their ability to characterise the full-scale anaerobic digestion microbiome. Cytometric fingerprinting through cytomics reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting by flow cytometry. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters, each reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and cytometric traits, yielded certain similar features, yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, cytometric fingerprinting through flow cytometry is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium; Division of Soil and Water Management, Department of Earth and Environmental sciences, KU Leuven, Kasteelpark Arenberg 20, PO box 2411, B-3001, Leuven, Belgium; Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, PO box 2424, B-3001, Leuven, Belgium.
| | - Robert Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Karen Gille
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany; Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354, Köthen, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
16
|
Singh A, Kumar V. Recent developments in monitoring technology for anaerobic digesters: A focus on bio-electrochemical systems. BIORESOURCE TECHNOLOGY 2021; 329:124937. [PMID: 33712339 DOI: 10.1016/j.biortech.2021.124937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
With the increasing popularity of waste to energy conversion, demand for large-scale operation of anaerobic digestors has emerged in the market. However, the process instabilities in anaerobic digestors limit the expansion of facilities to high loading rates. The irregularities in the process can be addressed directly by altering the feedstock characteristics provided an on-hand, robust, and sensitive monitoring device is available. In this context, the bioelectrochemical system has emerged as an excellent tool for monitoring and optimizing the anaerobic process within the reactor. This article reviews the gradual evolution in techniques and approaches for monitoring of anaerobic digestion (AD) process. An analysis of the recently popular biosensing techniques has been done with a focus on the bioelectrochemical monitoring system and its operation mode. A brief attempt to highlight the current challenges in the field of bioelectrochemical process monitoring for AD has also been made, which can be supportive of future research.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
17
|
Chuenchart W, Karki R, Shitanaka T, Marcelino KR, Lu H, Khanal SK. Nanobubble technology in anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2021; 329:124916. [PMID: 33730622 DOI: 10.1016/j.biortech.2021.124916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Nanobubble technology has significant potential to improve the anaerobic digestion (AD) process by ameliorating the rate-limiting steps of hydrolysis and methanogenesis, as well as providing process stability by reducing sulfide and volatile fatty acid (VFA) levels. Nanobubbles (NB) can enhance substrate accessibility, digestibility, and enzymatic activity due to their minuscule size, high electrostatic interaction, and ability to generate reactive oxygen species. Air- and O2-NB can create a microaerobic environment for higher efficiency of the electron transport system, thereby reducing VFAs through enhanced facultative bacterial activity. Additionally, H2- and CO2-NB can improve hydrogenotrophic methanogenesis. Recently, several studies have employed NB technology in the AD process. There is, however, a lack of concise, synthesized information on NB applications to the AD process. This review provides an in-depth discussion on the NB-integrated AD process and the putative mechanisms involved. General discussions on other potential applications and future research directions are also provided.
Collapse
Affiliation(s)
- Wachiranon Chuenchart
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, United States
| | - Renisha Karki
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Kyle Rafael Marcelino
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, United States
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Samir Kumar Khanal
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, 2540 Dole Street, Honolulu, HI 96822, United States; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, United States.
| |
Collapse
|
18
|
Schlembach I, Grünberger A, Rosenbaum MA, Regestein L. Measurement Techniques to Resolve and Control Population Dynamics of Mixed-Culture Processes. Trends Biotechnol 2021; 39:1093-1109. [PMID: 33573846 PMCID: PMC7612867 DOI: 10.1016/j.tibtech.2021.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Microbial mixed cultures are gaining increasing attention as biotechnological production systems, since they offer a large but untapped potential for future bioprocesses. Effects of secondary metabolite induction and advantages of labor division for the degradation of complex substrates offer new possibilities for process intensification. However, mixed cultures are highly complex, and, consequently, many biotic and abiotic parameters are required to be identified, characterized, and ideally controlled to establish a stable bioprocess. In this review, we discuss the advantages and disadvantages of existing measurement techniques for identifying, characterizing, monitoring, and controlling mixed cultures and highlight promising examples. Moreover, existing challenges and emerging technologies are discussed, which lay the foundation for novel analytical workflows to monitor mixed-culture bioprocesses.
Collapse
Affiliation(s)
- Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
| |
Collapse
|
19
|
Bacterial mock communities as standards for reproducible cytometric microbiome analysis. Nat Protoc 2020; 15:2788-2812. [PMID: 32770154 DOI: 10.1038/s41596-020-0362-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
Flow cytometry has recently established itself as a tool to track short-term dynamics in microbial community assembly and link those dynamics with ecological parameters. However, instrumental configurations of commercial cytometers and variability introduced through differential handling of the cells and instruments frequently cause data set variability at the single-cell level. This is especially pronounced with microorganisms, which are in the lower range of optical resolution. Although alignment beads are valuable to generally minimize instrumental noise and align overall machine settings, an artificial microbial cytometric mock community (mCMC) is mandatory for validating lab workflows and enabling comparison of data between experiments, thus representing a necessary reference standard for the reproducible cytometric characterization of microbial communities, especially in long-term studies. In this study, the mock community consisted of two Gram-positive and two Gram-negative bacterial strains, which can be assembled with respective subsets of cells, including spores, in any selected ratio or concentration. The preparation of the four strains takes a maximum of 5 d, and the stains are storable with either PFA/ethanol fixation at -20 °C or drying at 4 °C for at least 6 months. Starting from this stock, an mCMC can be assembled within 1 h. Fluorescence staining methods are presented and representatively applied with two high-resolution cell sorters and three benchtop flow cytometers. Benchmarked data sets allow the use of bioinformatic evaluation procedures to decode community behavior or convey qualified cell sorting decisions for subsequent high-resolution sequencing or proteomic routines.
Collapse
|
20
|
Korth B, Kuchenbuch A, Harnisch F. Availability of Hydrogen Shapes the Microbial Abundance in Biofilm Anodes based on
Geobacter
Enrichment. ChemElectroChem 2020. [DOI: 10.1002/celc.202000731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin Korth
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research GmbH – UFZ Permoser Str. 15 04318 Leipzig Germany
| | - Anne Kuchenbuch
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research GmbH – UFZ Permoser Str. 15 04318 Leipzig Germany
| | - Falk Harnisch
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research GmbH – UFZ Permoser Str. 15 04318 Leipzig Germany
| |
Collapse
|
21
|
De Vrieze J. The next frontier of the anaerobic digestion microbiome: From ecology to process control. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100032. [PMID: 36159602 PMCID: PMC9488066 DOI: 10.1016/j.ese.2020.100032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 05/11/2023]
Abstract
The anaerobic digestion process has been one of the key processes for renewable energy recovery from organic waste streams for over a century. The anaerobic digestion microbiome is, through the continuous development of novel techniques, evolving from a black box to a well-defined consortium, but we are not there yet. In this perspective, I provide my view on the current status and challenges of the anaerobic digestion microbiome, as well as the opportunities and solutions to exploit it. I consider identification and fingerprinting of the anaerobic digestion microbiome as complementary tools to monitor the anaerobic digestion microbiome. However, data availability, method-inherent biases and correct taxa identification hamper the accuracy and reproducibility of anaerobic digestion microbiome characterization. Standardisation of microbiome research in anaerobic digestion and other engineered systems will be essential in the coming decades, for which I proposed some targeted solutions. These will bring anaerobic digestion from a single-purpose energy-recovery technology to a versatile process for integrated resource recovery. It is my opinion that the exploitation of the microbiome will be a driver of innovation, and that it has a key role to play in the bio-based economy of the decades to come.
Collapse
|
22
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
23
|
Syntrophy via Interspecies H 2 Transfer between Christensenella and Methanobrevibacter Underlies Their Global Cooccurrence in the Human Gut. mBio 2020; 11:mBio.03235-19. [PMID: 32019803 PMCID: PMC7002349 DOI: 10.1128/mbio.03235-19] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Across human populations, 16S rRNA gene-based surveys of gut microbiomes have revealed that the bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae cooccur and are enriched in individuals with a lean, compared to an obese, body mass index (BMI). Whether these association patterns reflect interactions between metabolic partners, as well as whether these associations play a role in the lean host phenotype with which they associate, remains to be ascertained. Here, we validated previously reported cooccurrence patterns of the two families and their association with a lean BMI with a meta-analysis of 1,821 metagenomes derived from 10 independent studies. Furthermore, we report positive associations at the genus and species levels between Christensenella spp. and Methanobrevibacter smithii, the most abundant methanogen of the human gut. By coculturing three Christensenella spp. with M. smithii, we show that Christensenella spp. efficiently support the metabolism of M. smithii via H2 production far better than Bacteroides thetaiotaomicron does. Christensenella minuta forms flocs colonized by M. smithii even when H2 is in excess. In culture with C. minuta, H2 consumption by M. smithii shifts the metabolic output of C. minuta's fermentation toward acetate rather than butyrate. Together, these results indicate that the widespread cooccurrence of these microorganisms is underpinned by both physical and metabolic interactions. Their combined metabolic activity may provide insights into their association with a lean host BMI.IMPORTANCE The human gut microbiome is made of trillions of microbial cells, most of which are Bacteria, with a subset of Archaea The bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae are widespread in human guts. They correlate with each other and with a lean body type. Whether species of these two families interact and how they affect the body type are unanswered questions. Here, we show that species within these families correlate with each other across people. We also demonstrate that particular species of these two families grow together in dense flocs, wherein the bacteria provide hydrogen gas to the archaea, which then make methane. When the archaea are present, the ratio of bacterial products (which are nutrients for humans) is changed. These observations indicate that when these species grow together, their products have the potential to affect the physiology of their human host.
Collapse
|
24
|
Ludwig J, Zu Siederdissen CH, Liu Z, Stadler PF, Müller S. flowEMMi: an automated model-based clustering tool for microbial cytometric data. BMC Bioinformatics 2019; 20:643. [PMID: 31815609 PMCID: PMC6902487 DOI: 10.1186/s12859-019-3152-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Flow cytometry (FCM) is a powerful single-cell based measurement method to ascertain multidimensional optical properties of millions of cells. FCM is widely used in medical diagnostics and health research. There is also a broad range of applications in the analysis of complex microbial communities. The main concern in microbial community analyses is to track the dynamics of microbial subcommunities. So far, this can be achieved with the help of time-consuming manual clustering procedures that require extensive user-dependent input. In addition, several tools have recently been developed by using different approaches which, however, focus mainly on the clustering of medical FCM data or of microbial samples with a well-known background, while much less work has been done on high-throughput, online algorithms for two-channel FCM. Results We bridge this gap with flowEMMi, a model-based clustering tool based on multivariate Gaussian mixture models with subsampling and foreground/background separation. These extensions provide a fast and accurate identification of cell clusters in FCM data, in particular for microbial community FCM data that are often affected by irrelevant information like technical noise, beads or cell debris. flowEMMi outperforms other available tools with regard to running time and information content of the clustering results and provides near-online results and optional heuristics to reduce the running-time further. Conclusions flowEMMi is a useful tool for the automated cluster analysis of microbial FCM data. It overcomes the user-dependent and time-consuming manual clustering procedure and provides consistent results with ancillary information and statistical proof.
Collapse
Affiliation(s)
- Joachim Ludwig
- Department of Environmental Microbiology, Research Group Flow Cytometry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig, 04318, Germany
| | | | - Zishu Liu
- Department of Environmental Microbiology, Research Group Flow Cytometry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig, 04318, Germany
| | - Peter F Stadler
- Department of Computer Science, University Leipzig, Härtelstr. 16-18, Leipzig, 04107, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Research Group Flow Cytometry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig, 04318, Germany
| |
Collapse
|
25
|
Santoro AE, Kellom M, Laperriere SM. Contributions of single-cell genomics to our understanding of planktonic marine archaea. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190096. [PMID: 31587640 DOI: 10.1098/rstb.2019.0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Single-cell genomics has transformed many fields of biology, marine microbiology included. Here, we consider the impact of single-cell genomics on a specific group of marine microbes-the planktonic marine archaea. Despite single-cell enabled discoveries of novel metabolic function in the marine thaumarchaea, population-level investigations are hindered by an overall lower than expected recovery of thaumarchaea in single-cell studies. Metagenome-assembled genomes have so far been a more useful method for accessing genome-resolved insights into the Marine Group II euryarchaea. Future progress in the application of single-cell genomics to archaeal biology in the ocean would benefit from more targeted sorting approaches, and a more systematic investigation of potential biases against archaea in single-cell workflows including cell lysis, genome amplification and genome screening. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- A E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| | - M Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| | - S M Laperriere
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
26
|
Lambrecht J, Cichocki N, Schattenberg F, Kleinsteuber S, Harms H, Müller S, Sträuber H. Key sub-community dynamics of medium-chain carboxylate production. Microb Cell Fact 2019; 18:92. [PMID: 31138218 PMCID: PMC6537167 DOI: 10.1186/s12934-019-1143-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse β-oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. RESULTS Caproate and caprylate titres of up to 6.12 g L-1 and 1.83 g L-1, respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (rS > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella, two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. CONCLUSIONS High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria.
Collapse
Affiliation(s)
- Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
27
|
Liu Z, Cichocki N, Hübschmann T, Süring C, Ofiţeru ID, Sloan WT, Grimm V, Müller S. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ Microbiol 2018; 21:164-181. [PMID: 30289191 PMCID: PMC7379589 DOI: 10.1111/1462-2920.14437] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/03/2018] [Accepted: 09/30/2018] [Indexed: 12/22/2022]
Abstract
In completely insular microbial communities, evolution of community structure cannot be shaped by the immigration of new members. In addition, when those communities are run in steady state, the influence of environmental factors on their assembly is reduced. Therefore, one would expect similar community structures under steady‐state conditions. Yet, in parallel setups, variability does occur. To reveal ecological mechanisms behind this phenomenon, five parallel reactors were studied at the single‐cell level for about 100 generations and community structure variations were quantified by ecological measures. Whether community variability can be controlled was tested by implementing soft temperature stressors as potential synchronizers. The low slope of the lognormal rank‐order abundance curves indicated a predominance of neutral mechanisms, i.e., where species identity plays no role. Variations in abundance ranks of subcommunities and increase in inter‐community pairwise β‐diversity over time support this. Niche differentiation was also observed, as indicated by steeper geometric‐like rank‐order abundance curves and increased numbers of correlations between abiotic and biotic parameters during initial adaptation and after disturbances. Still, neutral forces dominated community assembly. Our findings suggest that complex microbial communities in insular steady‐state environments can be difficult to synchronize and maintained in their original or desired structure, as they are non‐equilibrium systems.
Collapse
Affiliation(s)
- Zishu Liu
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Christine Süring
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Irina Dana Ofiţeru
- School of Engineering, Environmental Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - William T Sloan
- Department of Civil Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Volker Grimm
- Helmholtz Centre for Environmental Research-UFZ, Department of Ecological Modeling, Permoserstraße 15, 04318, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
28
|
Bonk F, Popp D, Harms H, Centler F. PCR-based quantification of taxa-specific abundances in microbial communities: Quantifying and avoiding common pitfalls. J Microbiol Methods 2018; 153:139-147. [DOI: 10.1016/j.mimet.2018.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022]
|
29
|
Dhoble AS, Lahiri P, Bhalerao KD. Machine learning analysis of microbial flow cytometry data from nanoparticles, antibiotics and carbon sources perturbed anaerobic microbiomes. J Biol Eng 2018; 12:19. [PMID: 30220912 PMCID: PMC6134764 DOI: 10.1186/s13036-018-0112-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Flow cytometry, with its high throughput nature, combined with the ability to measure an increasing number of cell parameters at once can surpass the throughput of prevalent genomic and metagenomic approaches in the study of microbiomes. Novel computational approaches to analyze flow cytometry data will result in greater insights and actionability as compared to traditional tools used in the analysis of microbiomes. This paper is a demonstration of the fruitfulness of machine learning in analyzing microbial flow cytometry data generated in anaerobic microbiome perturbation experiments. RESULTS Autoencoders were found to be powerful in detecting anomalies in flow cytometry data from nanoparticles and carbon sources perturbed anaerobic microbiomes but was marginal in predicting perturbations due to antibiotics. A comparison between different algorithms based on predictive capabilities suggested that gradient boosting (GB) and deep learning, i.e. feed forward artificial neural network with three hidden layers (DL) were marginally better under tested conditions at predicting overall community structure while distributed random forests (DRF) worked better for predicting the most important putative microbial group(s) in the anaerobic digesters viz. methanogens, and it can be optimized with better parameter tuning. Predictive classification patterns with DL (feed forward artificial neural network with three hidden layers) were found to be comparable to previously demonstrated multivariate analysis. The potential applications of this approach have been demonstrated for monitoring the syntrophic resilience of the anaerobic microbiomes perturbed by synthetic nanoparticles as well as antibiotics. CONCLUSION Machine learning can benefit the microbial flow cytometry research community by providing rapid screening and characterization tools to discover patterns in the dynamic response of microbiomes to several stimuli.
Collapse
Affiliation(s)
- Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, 61801 USA
| | - Pratik Lahiri
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, 61801 USA
| | - Kaustubh D. Bhalerao
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, 61801 USA
| |
Collapse
|
30
|
Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME JOURNAL 2018; 13:250-262. [PMID: 30194429 DOI: 10.1038/s41396-018-0273-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022]
Abstract
Methane in the seabed is mostly oxidized to CO2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate-methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO2 by sulfate reduction. This previously unrecognized "cryptic" methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
Collapse
|
31
|
De Vrieze J, Boon N, Verstraete W. Taking the technical microbiome into the next decade. Environ Microbiol 2018; 20:1991-2000. [PMID: 29745026 DOI: 10.1111/1462-2920.14269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
The 'microbiome' has become a buzzword. Multiple new technologies allow to gather information about microbial communities as they evolve under stable and variable environmental conditions. The challenge of the next decade will be to develop strategies to compose and manage microbiomes. Here, key aspects are considered that will be of crucial importance for future microbial technological developments. First, the need to deal not only with genotypes but also particularly with phenotypes is addressed. Microbial technologies are often highly dependent on specific core organisms to obtain the desired process outcome. Hence, it is essential to combine omics data with phenotypic information to invoke and control specific phenotypes in the microbiome. Second, the development and application of synthetic microbiomes is evaluated. The central importance of the core species is a no-brainer, but the implementation of proper satellite species is an important route to explore. Overall, for the next decade, microbiome research should no longer almost exclusively focus on its capacity to degrade and dissipate but rather on its remarkable capability to capture disordered components and upgrade them into high-value microbial products. These products can become valuable commodities in the cyclic economy, as reflected in the case of 'reversed sanitation', which is introduced here.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium.,Avecom NV, Industrieweg 122P, Wondelgem 9032, Belgium
| |
Collapse
|
32
|
Lambrecht J, Schattenberg F, Harms H, Mueller S. Characterizing Microbiome Dynamics - Flow Cytometry Based Workflows from Pure Cultures to Natural Communities. J Vis Exp 2018. [PMID: 30059034 DOI: 10.3791/58033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The investigation of pure cultures and monitoring of microbial community dynamics is vital to understand and control natural ecosystems and technical applications driven by microorganisms. Next generation sequencing methods are widely utilized to resolve microbiomes, but they are generally resource and time intensive and deliver mostly qualitative information. Flow cytometric microbiome analysis does not suffer from those disadvantages and can provide relative subcommunity abundances and absolute cell numbers at-line. Although it does not deliver direct phylogenetic information, it can enhance the analysis depth and resolution of sequencing approaches. In sharp contrast to medical applications in both research and routine settings, flow cytometry is still not widely used for microbiome analysis. Missing information on sample preparation and data analysis pipelines may create an entry barrier for the researchers facing microbiome analysis challenges that would often be textbook flow cytometry applications. Here, we present three comprehensive workflows for pure cultures, complex communities in clear medium and complex communities in challenging matrices, respectively. We describe individual sampling and fixation procedures and optimized staining protocols for the respective sample sets. We elaborate the cytometric analysis with a complex research centered and an application focused bench top device, describe the cell sorting procedure and suggest data analysis packages. We furthermore propose important experimental controls and apply the presented workflows to the respective sample sets.
Collapse
Affiliation(s)
- Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ
| | - Susann Mueller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ;
| |
Collapse
|
33
|
Dinova N, Belouhova M, Schneider I, Rangelov J, Topalova Y. Control of biogas production process by enzymatic and fluorescent image analysis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1425637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Nora Dinova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Mihaela Belouhova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Irina Schneider
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | | | - Yana Topalova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|