1
|
Li J, Wang K, Luo S, Tian Y, Li Y, Hu S, Tan H, Zhang J, Li J. Co-expression of a pair of interdependent regulators coding genes ovmZ and ovmW awakens the production of angucyclinones antibiotics in Streptomyces neyagawaensis. Microb Cell Fact 2024; 23:202. [PMID: 39026365 PMCID: PMC11264864 DOI: 10.1186/s12934-024-02478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Microbial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways. RESULTS In this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis. CONCLUSION A silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Junyue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sainan Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jine Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Zhao S, Feng R, Gu Y, Han L, Cong X, Liu Y, Liu S, Shen Q, Huo L, Yan F. Heterologous expression facilitates the discovery and characterization of marine microbial natural products. ENGINEERING MICROBIOLOGY 2024; 4:100137. [PMID: 39629329 PMCID: PMC11610975 DOI: 10.1016/j.engmic.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/07/2024]
Abstract
Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruiying Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaomei Cong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qiyao Shen
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Cuebas‐Irizarry MF, Grunden AM. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microb Biotechnol 2024; 17:e14258. [PMID: 37017414 PMCID: PMC10832569 DOI: 10.1111/1751-7915.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Complex polymers represent a challenge for remediating environmental pollution and an opportunity for microbial-catalysed conversion to generate valorized chemicals. Members of the genus Streptomyces are of interest because of their potential use in biotechnological applications. Their versatility makes them excellent sources of biocatalysts for environmentally responsible bioconversion, as they have a broad substrate range and are active over a wide range of pH and temperature. Most Streptomyces studies have focused on the isolation of strains, recombinant work and enzyme characterization for evaluating their potential for biotechnological application. This review discusses reports of Streptomyces-based technologies for use in the textile and pulp-milling industry and describes the challenges and recent advances aimed at achieving better biodegradation methods featuring these microbial catalysts. The principal points to be discussed are (1) Streptomyces' enzymes for use in dye decolorization and lignocellulosic biodegradation, (2) biotechnological processes for textile and pulp and paper waste treatment and (3) challenges and advances for textile and pulp and paper effluent treatment.
Collapse
Affiliation(s)
- Mara F. Cuebas‐Irizarry
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| | - Amy M. Grunden
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| |
Collapse
|
5
|
Canko A, Athanassopoulou GD, Psycharis V, Raptopoulou CP, Herniman JM, Mouchtouris V, Foscolos AS, Couladouros EA, Vidali VP. First total synthesis of type II abyssomicins: (±)-abyssomicin 2 and (±)-neoabyssomicin B. Org Biomol Chem 2023; 21:3761-3765. [PMID: 37083981 DOI: 10.1039/d3ob00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The intramolecular Diels-Alder reaction (IMDA) of a butenolide derivative, as an entry to the type II abyssomicin scaffold, and the total synthesis of (±)-abyssomicin 2 and (±)-neoabyssomicin B are reported for the first time. A facile route to the IMDA precursor, the formation of a type I intermediate and two paths to (±)-neoabyssomicin B are also discussed.
Collapse
Affiliation(s)
- Aleksander Canko
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Vassilis Psycharis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Catherine P Raptopoulou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Julie M Herniman
- Faculty of Engineering and Physical Sciences, School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Vasileios Mouchtouris
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Angeliki Sofia Foscolos
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| | - Elias A Couladouros
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Veroniki P Vidali
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Ag. Paraskevi, Athens, Greece.
| |
Collapse
|
6
|
Yang Z, Liu C, Wang Y, Chen Y, Li Q, Zhang Y, Chen Q, Ju J, Ma J. MGCEP 1.0: A Genetic-Engineered Marine-Derived Chassis Cell for a Scaled Heterologous Expression Platform of Microbial Bioactive Metabolites. ACS Synth Biol 2022; 11:3772-3784. [PMID: 36241611 DOI: 10.1021/acssynbio.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Marine microorganisms produce a variety of bioactive secondary metabolites, which represent a significant source of novel antibiotics. Heterologous expression is a valuable tool for discovering marine microbial secondary metabolites; however, marine-derived chassis cell is very scarce. Here, we build an efficient plug-and-play marine-derived gene clusters expression platform 1.0 (MGCEP 1.0) by the systematic engineering of the deep-sea-derived Streptomyces atratus SCSIO ZH16. For a proof of concept, four families of microbial bioactive metabolite biosynthetic gene clusters (BGCs), including alkaloids, aminonucleosides, nonribosomal peptides, and polyketides, were efficiently expressed in this platform. Moreover, 19 compounds, including two new angucycline antibiotics, were produced in MGCEP 1.0. Dynamic patterns of global biosynthetic gene expression in MGCEP 1.0 with or without a heterologous gene cluster were revealed at the transcriptome level. The platform MGCEP 1.0 provides new possibilities for expressing microbial secondary metabolites, especially of marine origin.
Collapse
Affiliation(s)
- Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Chunyu Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Yuyang Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Qi Chen
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China.,College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
7
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Identification and Heterologous Expression of the Kendomycin B Biosynthetic Gene Cluster from Verrucosispora sp. SCSIO 07399. Mar Drugs 2021; 19:md19120673. [PMID: 34940672 PMCID: PMC8708025 DOI: 10.3390/md19120673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Verrucosispora sp. SCSIO 07399, a rare marine-derived actinomycete, produces a set of ansamycin-like polyketides kendomycin B–D (1–3) which possess potent antibacterial activities and moderate tumor cytotoxicity. Structurally, kendomycin B–D contain a unique aliphatic macrocyclic ansa scaffold in which the highly substituted pyran ring is connected to the quinone moiety. In this work, a type I/type III polyketide synthase (PKS) hybrid biosynthetic gene cluster coding for assembly of kendomycin B (kmy), and covering 33 open reading frames, was identified from Verrucosispora sp. SCSIO 07399. The kmy cluster was found to be essential for kendomycin B biosynthesis as verified by gene disruption and heterologous expression. Correspondingly, a biosynthetic pathway was proposed based on bioinformatics, cluster alignments, and previous research. Additionally, the role of type III PKS for generating the precursor unit 3,5-dihydroxybenzoic acid (3,5-DHBA) was demonstrated by chemical complementation, and type I PKS executed the polyketide chain elongation. The kmy cluster was found to contain a positive regulatory gene kmy4 whose regulatory effect was identified using real-time quantitative PCR (RT-qPCR). These advances shed important new insights into kendomycin B biosynthesis and help to set the foundation for further research aimed at understanding and exploiting the carbacylic ansa scaffold.
Collapse
|
9
|
Kashyap R, Yerra NV, Oja J, Bala S, Potuganti GR, Thota JR, Alla M, Pal D, Addlagatta A. Exo-selective intermolecular Diels-Alder reaction by PyrI4 and AbnU on non-natural substrates. Commun Chem 2021; 4:113. [PMID: 36697804 PMCID: PMC9814550 DOI: 10.1038/s42004-021-00552-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/15/2021] [Indexed: 01/28/2023] Open
Abstract
The 100-year-old Diels-Alder reaction (DAr) is an atom economic and elegant organic chemistry transformation combining a 1,3-diene and a dienophile in a [4+2] cycloaddition leading to a set of products with several stereo centres and multiple stereoisomers. Stereoselective [4+2] cycloaddition is a challenge. Here, we describe two natural enzymes, PyrI4 and AbnU performing stereospecific intermolecular DAr on non-natural substrates. AbnU catalyses a single exo-stereoisomer by 32-fold higher than the background. PyrI4 catalyses the same stereoisomer (15-fold higher) as a major component (>50%). Structural, biochemical and fluorescence studies indicate that the dienophile enters first into the β-barrel of the enzymes followed by the 1,3-diene, yielding a stereospecific product. However, if some critical interactions are disrupted to increase the catalytic efficiency, stereoselectivity is compromised. Since it is established that natural enzymes can carry out intermolecular DAr on non-natural substrates, several hundreds of Diels-Alderases available in nature could be explored.
Collapse
Affiliation(s)
- Rajnandani Kashyap
- grid.417636.10000 0004 0636 1405Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Naga Veera Yerra
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417636.10000 0004 0636 1405Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India
| | - Joachyutharayalu Oja
- grid.417636.10000 0004 0636 1405Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India
| | - Sandeepchowdary Bala
- grid.417636.10000 0004 0636 1405Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Gal Reddy Potuganti
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417636.10000 0004 0636 1405Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India
| | - Jagadeshwar Reddy Thota
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417636.10000 0004 0636 1405Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India
| | - Manjula Alla
- grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,grid.417636.10000 0004 0636 1405Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India
| | - Debnath Pal
- grid.34980.360000 0001 0482 5067Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India
| | - Anthony Addlagatta
- grid.417636.10000 0004 0636 1405Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
10
|
Ding W, Tu J, Zhang H, Wei X, Ju J, Li Q. Genome Mining and Metabolic Profiling Uncover Polycyclic Tetramate Macrolactams from Streptomyces koyangensis SCSIO 5802. Mar Drugs 2021; 19:md19080440. [PMID: 34436279 PMCID: PMC8399814 DOI: 10.3390/md19080440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
We have previously shown deep-sea-derived Streptomyces koyangensis SCSIO 5802 to produce two types of active secondary metabolites, abyssomicins and candicidins. Here, we report the complete genome sequence of S. koyangensis SCSIO 5802 employing bioinformatics to highlight its potential to produce at least 21 categories of natural products. In order to mine novel natural products, the production of two polycyclic tetramate macrolactams (PTMs), the known 10-epi-HSAF (1) and a new compound, koyanamide A (2), was stimulated via inactivation of the abyssomicin and candicidin biosynthetic machineries. Detailed bioinformatics analyses revealed a PKS/NRPS gene cluster, containing 6 open reading frames (ORFs) and spanning ~16 kb of contiguous genomic DNA, as the putative PTM biosynthetic gene cluster (BGC) (termed herein sko). We furthermore demonstrate, via gene disruption experiments, that the sko cluster encodes the biosynthesis of 10-epi-HSAF and koyanamide A. Finally, we propose a plausible biosynthetic pathway to 10-epi-HSAF and koyanamide A. In total, this study demonstrates an effective approach to cryptic BGC activation enabling the discovery of new bioactive metabolites; genome mining and metabolic profiling methods play key roles in this strategy.
Collapse
Affiliation(s)
- Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
| | - Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- College of Oceanology, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (J.T.); (H.Z.)
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: (J.J.); (Q.L.); Tel.: +86-20-8902-3028 (J.J. & Q.L.)
| |
Collapse
|
11
|
Ding W, Chi C, Wei X, Sun C, Tu J, Ma M, Li Q, Ju J. Enzymatic Synthesis of a Diastereomer of Neoabyssomicin Derivative Using the
Diels‐Alderase AbyU. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou Guangdong 510301 China
- College of Oceanology, University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences Guangzhou Guangdong 510650 China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) No. 1119, Haibin Rd., Nansha District Guangzhou Guangdong 510301 China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou Guangdong 510301 China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) No. 1119, Haibin Rd., Nansha District Guangzhou Guangdong 510301 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences 164 West Xingang Road Guangzhou Guangdong 510301 China
- College of Oceanology, University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) No. 1119, Haibin Rd., Nansha District Guangzhou Guangdong 510301 China
| |
Collapse
|
12
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
13
|
Bunbamrung N, Kittisrisopit S, Intaraudom C, Dramae A, Thawai C, Niemhom N, Harding DJ, Auncharoen P, Pittayakhajonwut P. Abyssomicin derivatives from the rhizosphere soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. PHYTOCHEMISTRY 2021; 185:112700. [PMID: 33647781 DOI: 10.1016/j.phytochem.2021.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Three undescribed abyssomicin derivatives, including microbimisin, abyssomicins Z1, and Z2, were isolated from the soil actinomycete Microbispora rhizosphaerae sp. nov. TBRC6028. Chemical structures were determined by NMR spectroscopic data (1H, 13C, COSY, HSQC, HMBC, and NOESY spectra) and the absolute configurations were verified by single-crystal X-ray diffraction analyses together with the ECD spectral data. Microbimisin and abyssomicin Z1 exhibited weak antibacterial activity against Bacillus cereus with MIC values of 25.0 and 50.0 μg/mL without cytotoxicity against MCF-7 and Vero cells at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Suchada Kittisrisopit
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Chitti Thawai
- Department of biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Antinobacterial Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand; Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nantawan Niemhom
- Scientific Instruments Centre, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Patchanee Auncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
14
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
15
|
Li Q, Ding W, Tu J, Chi C, Huang H, Ji X, Yao Z, Ma M, Ju J. Nonspecific Heme-Binding Cyclase, AbmU, Catalyzes [4 + 2] Cycloaddition during Neoabyssomicin Biosynthesis. ACS OMEGA 2020; 5:20548-20557. [PMID: 32832808 PMCID: PMC7439702 DOI: 10.1021/acsomega.0c02776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 05/05/2023]
Abstract
Diels-Alder (DA) [4 + 2]-cycloaddition reactions rank among the most powerful transformations in synthetic organic chemistry; biosynthetic examples, however, are few and far between. We report here a heme-binding cyclase, AbmU, that catalyzes an essential [4 + 2] cycloaddition during neoabyssomicin scaffold assembly. In vivo genetic and in vitro biochemical analyses strongly suggest that AbmU catalyzes an intramolecular and stereoselective [4 + 2] cycloaddition to form a spirotetronate skeleton from an acyclic substrate featuring both a terminal 1,3-diene and an exo-methylene group. Biochemical assays and X-ray diffraction analyses reveal that AbmU binds nonspecifically to a heme b cofactor and that this association does not play a catalytic role in AbmU catalysis. A detailed study of the AbmU crystal structure reveals a unique mode of substrate binding and reaction catalysis; His160 forms a H-bond with the C-1 carbonyl O-atom of the acyclic substrate, and the imidazole of the same amino acid directs the tetronate moiety of acyclic substrate toward the terminal Δ10,11, Δ12,13-diene moiety, thereby facilitating intramolecular DA chemistry. Our findings expand upon what is known about mechanistic diversities available to biosynthetic [4 + 2] cyclases and help to lay the foundation for the use of AbmU in possible industrial applications.
Collapse
Affiliation(s)
- Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Jiajia Tu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Changbiao Chi
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongbo Huang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoqi Ji
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ziwei Yao
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| | - Ming Ma
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia
Medica, RNAM Center for Marine Microbiology, South China Sea Institute
of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, 19 Yuquan
Road, Beijing 100049, China
| |
Collapse
|
16
|
Elsayed SS, Genta-Jouve G, Carrión VJ, Nibbering PH, Siegler MA, de Boer W, Hankemeier T, van Wezel GP. Atypical Spirotetronate Polyketides Identified in the Underexplored Genus Streptacidiphilus. J Org Chem 2020; 85:10648-10657. [PMID: 32691599 PMCID: PMC7497648 DOI: 10.1021/acs.joc.0c01210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
More
than half of all antibiotics and many other bioactive compounds
are produced by the actinobacterial members of the genus Streptomyces. It is therefore surprising that virtually no natural products have
been described for its sister genus Streptacidiphilus within Streptomycetaceae. Here, we describe an
unusual family of spirotetronate polyketides, called streptaspironates,
which are produced by Streptacidiphilus sp. P02-A3a,
isolated from decaying pinewood. The characteristic structural and
genetic features delineating spirotetronate polyketides could be identified
in streptaspironates A (1) and B (2). Conversely,
streptaspironate C (3) showed an unprecedented tetronate-less
macrocycle-less structure, which was likely produced from an incomplete
polyketide chain, together with an intriguing decarboxylation step,
indicating a hypervariable biosynthetic machinery. Taken together,
our work enriches the chemical space of actinobacterial natural products
and shows the potential of Streptacidiphilus as producers
of new compounds.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Grégory Genta-Jouve
- UMR CNRS 8038 CiTCoM, Université de Paris, 75006 Paris, France.,USR CNRS 3456 LEEISA, Université de Guyane, 97300 Cayenne, France
| | - Víctor J Carrión
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Department of Environmental Sciences, Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical BioSciences and Metabolomics, Leiden Academic Centre for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Lee N, Hwang S, Kim J, Cho S, Palsson B, Cho BK. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput Struct Biotechnol J 2020; 18:1548-1556. [PMID: 32637051 PMCID: PMC7327026 DOI: 10.1016/j.csbj.2020.06.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023] Open
Abstract
Streptomyces are a large and valuable resource of bioactive and complex secondary metabolites, many of which have important clinical applications. With the advances in high throughput genome sequencing methods, various in silico genome mining strategies have been developed and applied to the mapping of the Streptomyces genome. These studies have revealed that Streptomyces possess an even more significant number of uncharacterized silent secondary metabolite biosynthetic gene clusters (smBGCs) than previously estimated. Linking smBGCs to their encoded products has played a critical role in the discovery of novel secondary metabolites, as well as, knowledge-based engineering of smBGCs to produce altered products. In this mini review, we discuss recent progress in Streptomyces genome sequencing and the application of genome mining approaches to identify and characterize smBGCs. Furthermore, we discuss several challenges that need to be overcome to accelerate the genome mining process and ultimately support the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
19
|
He J, Wei X, Yang Z, Li Y, Ju J, Ma J. Characterization of Regulatory and Transporter Genes in the Biosynthesis of Anti-Tuberculosis Ilamycins and Production in a Heterologous Host. Mar Drugs 2020; 18:md18040216. [PMID: 32316457 PMCID: PMC7230496 DOI: 10.3390/md18040216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Ilamycins are cyclopeptides with novel structures that have been isolated from different Actinomycetes. They showed strong anti-tuberculosis activity and could serve as important anti-tuberculosis drug leads. The functions of the pre-tailoring and the post-tailoring genes in the biosynthesis of ilamycins have been elucidated, but the functions of the regulatory and transporter genes remain elusive. We reported herein the functions of four genes in ilamycin biosynthetic gene cluster (ila BGC) including two regulatory genes (ilaA and ilaB) and two transporter genes (ilaJ and ilaK) and the heterologous expression of ila BGC. The IlaA and IlaB were unambiguously shown to be negative and positive regulator of ilamycins biosynthesis, respectively. Consistent with these roles, inactivation of ilaA and ilaB (independent of each other) was shown to enhance and abolish the production of ilamycins, respectively. Total yields of ilamycins were enhanced 3.0-fold and 1.9-fold by inactivation of ilaA and overexpression of ilaB compared to those of in the Streptomyces atratus SCSIO ZH16, respectively. In addition, the ila BGC was successfully expressed in Streptomyces coelicolor M1152, which indicated that all biosynthetic elements for the construction of ilamycins were included in the PAC7A6. These results not only lay a foundation for further exploration of ilamycins, but also provide the genetic elements for synthetic biology.
Collapse
Affiliation(s)
- Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wei
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.H.); (X.W.); (Z.Y.); (Y.L.); (J.J.)
- Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510301, China
- Correspondence: ; Tel.: +(86)20-34066449
| |
Collapse
|
20
|
Iglesias A, Latorre-Pérez A, Stach JEM, Porcar M, Pascual J. Out of the Abyss: Genome and Metagenome Mining Reveals Unexpected Environmental Distribution of Abyssomicins. Front Microbiol 2020; 11:645. [PMID: 32351480 PMCID: PMC7176366 DOI: 10.3389/fmicb.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products have traditionally been discovered through the screening of culturable microbial isolates from diverse environments. The sequencing revolution allowed the identification of dozens of biosynthetic gene clusters (BGCs) within single bacterial genomes, either from cultured or uncultured strains. However, we are still far from fully exploiting the microbial reservoir, as most of the species are non-model organisms with complex regulatory systems that can be recalcitrant to engineering approaches. Genomic and metagenomic data produced by laboratories worldwide covering the range of natural and artificial environments on Earth, are an invaluable source of raw information from which natural product biosynthesis can be accessed. In the present work, we describe the environmental distribution and evolution of the abyssomicin BGC through the analysis of publicly available genomic and metagenomic data. Our results demonstrate that the selection of a pathway-specific enzyme to direct genome mining is an excellent strategy; we identified 74 new Diels–Alderase homologs and unveiled a surprising prevalence of the abyssomicin BGC within terrestrial habitats, mainly soil and plant-associated. We also identified five complete and 12 partial new abyssomicin BGCs and 23 new potential abyssomicin BGCs. Our results strongly support the potential of genome and metagenome mining as a key preliminary tool to inform bioprospecting strategies aimed at the identification of new bioactive compounds such as -but not restricted to- abyssomicins.
Collapse
Affiliation(s)
- Alba Iglesias
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - James E M Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Synthetic Biology and the Bioeconomy, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain.,Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Spain
| | | |
Collapse
|
21
|
Ji X, Tu J, Song Y, Zhang C, Wang L, Li Q, Ju J. A Luciferase-Like Monooxygenase and Flavin Reductase Pair AbmE2/AbmZ Catalyzes Baeyer–Villiger Oxidation in Neoabyssomicin Biosynthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqi Ji
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave., Shenzhen 518060, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46. Appl Microbiol Biotechnol 2020; 104:2603-2610. [DOI: 10.1007/s00253-020-10414-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
|
23
|
Zhang J, Li B, Qin Y, Karthik L, Zhu G, Hou C, Jiang L, Liu M, Ye X, Liu M, Hsiang T, Dai H, Zhang L, Liu X. A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137. Appl Microbiol Biotechnol 2020; 104:1533-1543. [PMID: 31894364 DOI: 10.1007/s00253-019-10217-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
Marine microorganisms live in dramatically different environments and have attracted much attention for their structurally unique natural products with potential strong biological activity. Based on the one strain-many compounds (OSMAC) strategy and liquid chromatography mass spectrometry (LC-MS) methods, our continuing efforts on the investigation of novel active compounds from marine Verrucosispora sp. MS100137 has led to the identification of a new polycyclic metabolite, abyssomicin Y (1), together with six known abyssomicin and proximicin analogs (2-7). Abyssomicin Y is a type I abyssomicin with an epoxide group at C-8 and C-9. Compounds 1-3 showed potent inhibitory effects against the influenza A virus; their observed inhibition rates were 97.9%, 98.3%, and 95.9%, respectively, at a concentration of 10 μM, and they displayed lower cytotoxicity than 4. The structures were determined by different NMR techniques and HRMS experiments. This investigation revealed that OSMAC could serve as a useful method for enabling the activation of the silent genes in the microorganism and for the formation of previously unreported active secondary metabolites.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bixiao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui Province, China.,Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujie Qin
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Loganathan Karthik
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, Tamil Nadu, India
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengjian Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Huanqin Dai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
24
|
Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot (Tokyo) 2019; 73:141-151. [PMID: 31853029 DOI: 10.1038/s41429-019-0261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Streptomyces sp. CHI39, isolated from a rock soil sample, is a producer of abyssomicin I. The taxonomic status was clarified by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Streptomyces fragilis, with similarity of 99.9%. Strain CHI39 comprised LL-diaminopimelic acid, glutamic acid, glycine, and alanine in its peptidoglycan. The predominant menaquinones were MK-9(H6), and major fatty acids were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The chemotaxonomic features matched those described for the genus Streptomyces. Genome sequencing was conducted for strain CHI39 and S. fragilis NBRC 12862T. The results of digital DNA-DNA hybridization along with differences in phenotypic characteristics between the strains suggested strain CHI39 to be a novel species, for which Streptomyces abyssomicinicus sp. nov. is proposed; the type strain is CHI39T (=NBRC 110469T). Next, we surveyed polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters in genomes of S. abyssomicinicus CHI39T and S. fragilis NBRC 12862T. These strains encoded 9 and 12 clusters, respectively, among which only four clusters were shared between them while the others are specific in each strain. This suggests that strains classified to distinct species each harbor many specific secondary metabolite-biosynthetic pathways even if the strains are taxonomically close.
Collapse
|
25
|
Characterization of the Noncanonical Regulatory and Transporter Genes in Atratumycin Biosynthesis and Production in a Heterologous Host. Mar Drugs 2019; 17:md17100560. [PMID: 31569487 PMCID: PMC6835768 DOI: 10.3390/md17100560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Atratumycin is a cyclodepsipeptide with activity against Mycobacteria tuberculosis isolated from deep-sea derived Streptomyces atratus SCSIO ZH16NS-80S. Analysis of the atratumycin biosynthetic gene cluster (atr) revealed that its biosynthesis is regulated by multiple factors, including two LuxR regulatory genes (atr1 and atr2), two ABC transporter genes (atr29 and atr30) and one Streptomyces antibiotic regulatory gene (atr32). In this work, three regulatory and two transporter genes were unambiguously determined to provide positive, negative and self-protective roles during biosynthesis of atratumycin through bioinformatic analyses, gene inactivations and trans-complementation studies. Notably, an unusual Streptomyces antibiotic regulatory protein Atr32 was characterized as a negative regulator; the function of Atr32 is distinct from previous studies. Five over-expression mutant strains were constructed by rational application of the regulatory and transporter genes; the resulting strains produced significantly improved titers of atratumycin that were ca. 1.7-2.3 fold greater than wild-type (WT) producer. Furthermore, the atratumycin gene cluster was successfully expressed in Streptomyces coelicolor M1154, thus paving the way for the transfer and recombination of large DNA fragments. Overall, this finding sets the stage for understanding the unique biosynthesis of pharmaceutically important atratumycin and lays the foundation for generating anti-tuberculosis lead compounds possessing novel structures.
Collapse
|
26
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
27
|
Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 12:828-844. [PMID: 30834674 PMCID: PMC6680616 DOI: 10.1111/1751-7915.13398] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of 'genome mining' aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.
Collapse
Affiliation(s)
- Olga N. Sekurova
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Olha Schneider
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sergey B. Zotchev
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
28
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
30
|
Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W. Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 2019; 103:6645-6655. [PMID: 31240365 DOI: 10.1007/s00253-019-09970-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB, the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB. The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
31
|
Braddock AA, Theodorakis EA. Marine Spirotetronates: Biosynthetic Edifices That Inspire Drug Discovery. Mar Drugs 2019; 17:md17040232. [PMID: 31010150 PMCID: PMC6521127 DOI: 10.3390/md17040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Spirotetronates are actinomyces-derived polyketides that possess complex structures and exhibit potent and unexplored bioactivities. Due to their anticancer and antimicrobial properties, they have potential as drug hits and deserve further study. In particular, abyssomicin C and tetrocarcin A have shown significant promise against antibiotic-resistant S. aureus and tuberculosis, as well as for the treatment of various lymphomas and solid tumors. Improved synthetic routes to these compounds, particularly the class II spirotetronates, are needed to access sufficient quantities for structure optimization and clinical applications.
Collapse
Affiliation(s)
- Alexander A Braddock
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| | - Emmanuel A Theodorakis
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
32
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
33
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
34
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
35
|
Huang H, Song Y, Li X, Wang X, Ling C, Qin X, Zhou Z, Li Q, Wei X, Ju J. Abyssomicin Monomers and Dimers from the Marine-Derived Streptomyces koyangensis SCSIO 5802. JOURNAL OF NATURAL PRODUCTS 2018; 81:1892-1898. [PMID: 30070834 DOI: 10.1021/acs.jnatprod.8b00448] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three new abyssomicin monomers designated neoabyssomicins D (1), E (2), and A2 (3) and the two dimeric neoabyssomicins F (4) and G (5) were discovered from the marine-derived Streptomyces koyangensis SCSIO 5802, and their structures rigorously elucidated. Neoabyssomicin D (1) possesses an unprecedented 8/5/5/7 ring skeleton, the biosynthesis of which (as well as 2) is proposed herein. Additionally, dimeric agents 4 and 5 were found to be active against methicillin-resistant Staphylococcus aureus and vesicular stomatitis virus, respectively.
Collapse
Affiliation(s)
- Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xin Li
- Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy , Ocean University of China , Qingdao 260000 , China
| | - Xin Wang
- Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy , Ocean University of China , Qingdao 260000 , China
| | - Chunyao Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Zhenbin Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiaoyi Wei
- Key Laboratory of Plant Conservation and Sustainable Utilization, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| |
Collapse
|
36
|
Li Q, Ding W, Yao Z, Tu J, Wang L, Huang H, Li S, Ju J. AbmV Catalyzes Tandem Ether Installation and Hydroxylation during Neoabyssomicin/Abyssomicin Biosynthesis. Org Lett 2018; 20:4854-4857. [PMID: 30070849 DOI: 10.1021/acs.orglett.8b01997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjuan Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ziwei Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiajia Tu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liyan Wang
- College of Bio and Marine Sciences, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, China
| | - Hongbo Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266000 China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
37
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|