1
|
Leaković E, Siems K, Feussi Tala M, Habazin A, Findrik Blažević Z, Vrsalović Presečki A. Optimization of Biocatalytic Rhododendrol Production from Biogenic Rhododendrol Glycosides. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:16329-16339. [PMID: 39512595 PMCID: PMC11539071 DOI: 10.1021/acssuschemeng.4c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
An enzyme-catalyzed synthesis of rhododendrol, an intermediate in the production of raspberry ketone, was investigated. The approach involves the enzymatic hydrolysis of rhododendrol glycosides into rhododendrol and a glycosidic residue. Rhododendrol glycosides, which are naturally derived from the inner bark of birch trees-a renewable resource-vary considerably in composition depending on the origin of the plants. In this study, mixtures of betuloside and apiosylrhododendrin from natural resources were used in different proportions. An in-depth study was conducted to assess the feasibility of the process. A mathematical model was developed based on studies of the kinetics and operational stability of the enzyme. The model for betuloside hydrolysis catalyzed by β-glucosidase was validated in batch, repetitive batch, and ultrafiltration membrane reactors. The highest productivity, ranging from 83.9 to 94.5 g L-1 day-1, was achieved in the latter. After screening nearly 50 enzymes, RAPIDASE emerged as a solution for the hydrolysis of apiosylrhododendrin, and the model was validated in a batch reactor. Model-based optimization enabled the prediction of input parameters for different compositions of biogenic rhododendrol glycosides to obtain consistent process output metrics.
Collapse
Affiliation(s)
- Emerik Leaković
- University
of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
| | - Karsten Siems
- AnalytiCon
Discovery GmbH, Hermannswerder 17, 14473 Potsdam, Germany
| | | | - Antonia Habazin
- University
of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
| | - Zvjezdana Findrik Blažević
- University
of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
| | - Ana Vrsalović Presečki
- University
of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Xiong X, Liu Z, Che X, Zhang X, Li X, Gao W. Chemical composition, pharmacological activity and development strategies of Rubus chingii: A review. CHINESE HERBAL MEDICINES 2024; 16:313-326. [PMID: 39072206 PMCID: PMC11283228 DOI: 10.1016/j.chmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Raspberries are used for both food and medicine, but it has not yet attracted widespread attention. In this paper, the chemical constituen of the original plant raspberry. R. chingii is one of the new "Zhe Bawei" medicinal materials selected in 2017. "Zhe Bawei" refers to eight kinds of genuine medicinal materials in Zhejiang Province. The chemical constituents, pharmacological effects, processing, and application of Rubus chingii Hu were reviewed to provide a reference for its further development. Relevant literature in recent years was collected in databases such as China Knowledge Network, Web of Science, Elsevier, PubMed, and X-Mol, using "raspberry", "Rubus chingii", "traditional use", "chemical composition", "pharmacology", etc. as keywords individually or in combination. The summary of pharmacological activities shows that the relationship between the pharmacological activities of raspberry is still not deep enough. More in-depth research should be carried out in this direction to explore the mechanism of action of its active ingredients and provide effective reference for the further development of the raspberry industry. In the future, with the participation of more researchers, it is expected to develop innovative drugs based on raspberry for the treatment of diseases.
Collapse
Affiliation(s)
- Xiangmei Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Zheng Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Xiance Che
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xuemin Zhang
- Key Laboratory of Advanced Chinese Medicine Resources Research Enterprises, Tianjin 300402, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Wenyuan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| |
Collapse
|
3
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
4
|
Peng H, Chen R, Shaw WM, Hapeta P, Jiang W, Bell DJ, Ellis T, Ledesma-Amaro R. Modular Metabolic Engineering and Synthetic Coculture Strategies for the Production of Aromatic Compounds in Yeast. ACS Synth Biol 2023; 12:1739-1749. [PMID: 37218844 PMCID: PMC10278174 DOI: 10.1021/acssynbio.3c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 05/24/2023]
Abstract
Microbial-derived aromatics provide a sustainable and renewable alternative to petroleum-derived chemicals. In this study, we used the model yeast Saccharomyces cerevisiae to produce aromatic molecules by exploiting the concept of modularity in synthetic biology. Three different modular approaches were investigated for the production of the valuable fragrance raspberry ketone (RK), found in raspberry fruits and mostly produced from petrochemicals. The first strategy used was modular cloning, which enabled the generation of combinatorial libraries of promoters to optimize the expression level of the genes involved in the synthesis pathway of RK. The second strategy was modular pathway engineering and involved the creation of four modules, one for product formation: RK synthesis module (Mod. RK); and three for precursor synthesis: aromatic amino acid synthesis module (Mod. Aro), p-coumaric acid synthesis module (Mod. p-CA), and malonyl-CoA synthesis module (Mod. M-CoA). The production of RK by combinations of the expression of these modules was studied, and the best engineered strain produced 63.5 mg/L RK from glucose, which is the highest production described in yeast, and 2.1 mg RK/g glucose, which is the highest yield reported in any organism without p-coumaric acid supplementation. The third strategy was the use of modular cocultures to explore the effects of division of labor on RK production. Two two-member communities and one three-member community were created, and their production capacity was highly dependent on the structure of the synthetic community, the inoculation ratio, and the culture media. In certain conditions, the cocultures outperformed their monoculture controls for RK production, although this was not the norm. Interestingly, the cocultures showed up to 7.5-fold increase and 308.4 mg/L of 4-hydroxy benzalacetone, the direct precursor of RK, which can be used for the semi-synthesis of RK. This study illustrates the utility of modularity in synthetic biology tools and their applications to the synthesis of products of industrial interest.
Collapse
Affiliation(s)
- Huadong Peng
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Ruiqi Chen
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
- College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - William M. Shaw
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Piotr Hapeta
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Wei Jiang
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - David J. Bell
- SynbiCITE
Innovation and Knowledge Centre, Imperial
College London, London SW7 2AZ, U.K.
| | - Tom Ellis
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Rodrigo Ledesma-Amaro
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
5
|
Liu C, Li S. Engineered biosynthesis of plant polyketides by type III polyketide synthases in microorganisms. Front Bioeng Biotechnol 2022; 10:1017190. [PMID: 36312548 PMCID: PMC9614166 DOI: 10.3389/fbioe.2022.1017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Plant specialized metabolites occupy unique therapeutic niches in human medicine. A large family of plant specialized metabolites, namely plant polyketides, exhibit diverse and remarkable pharmaceutical properties and thereby great biomanufacturing potential. A growing body of studies has focused on plant polyketide synthesis using plant type III polyketide synthases (PKSs), such as flavonoids, stilbenes, benzalacetones, curcuminoids, chromones, acridones, xanthones, and pyrones. Microbial expression of plant type III PKSs and related biosynthetic pathways in workhorse microorganisms, such as Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica, have led to the complete biosynthesis of multiple plant polyketides, such as flavonoids and stilbenes, from simple carbohydrates using different metabolic engineering approaches. Additionally, advanced biosynthesis techniques led to the biosynthesis of novel and complex plant polyketides synthesized by diversified type III PKSs. This review will summarize efforts in the past 10 years in type III PKS-catalyzed natural product biosynthesis in microorganisms, especially the complete biosynthesis strategies and achievements.
Collapse
Affiliation(s)
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Biosynthesis of 4-hydroxybenzylideneacetone by Whole-Cell Escherichia coli. Catalysts 2022. [DOI: 10.3390/catal12090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
4-Hydroxy benzylideneacetone (4-HBA) is an organic synthesis intermediate and can be used as a precursor for the synthesis of raspberry ketone. Herein, 2-deoxy-D-ribose 5-phosphate aldolase (DERA) was overexpressed in E. coli BL21 (DE3) as an attractive catalyst for enzymatic aldol reactions. The aldol reaction between 4-hydroxybenzaldehyde (4-HBD) and acetone to biosynthesize 4-HBA was catalyzed by whole-cell E. coli BL21 (DE3) (pRSF-Deoc). The yield and 4-HBA concentration were 92.8% and 111.35 mM, respectively, when using 120 mM 4-HBD and acetone as substrates. When the concentration of 4-HBD was increased to 480 mM, 376.4 mM 4-HBA was obtained by a fed-batch strategy with a yield of 78.4%, which was about a 28% improvement compared to the one-time addition strategy. E. coli BL21 (DE3) (pRSF-Deoc) cells were further immobilized with K-carrageenan, and the immobilized cells still maintained a residual activity of above 90% after 10 repeated uses. Our study provides a promising method of biosynthesizing 4-HBA.
Collapse
|
7
|
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1651-1669. [PMID: 35638340 PMCID: PMC9398379 DOI: 10.1111/pbi.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yarin Livneh
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shani Agron
- Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
8
|
Heo KT, Park KW, Won J, Lee B, Jang JH, Ahn JO, Hwang BY, Hong YS. Construction of an Artificial Biosynthetic Pathway for Zingerone Production in Escherichia coli Using Benzalacetone Synthase from Piper methysticum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14620-14629. [PMID: 34812612 DOI: 10.1021/acs.jafc.1c05534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zingerone (vanillylacetone; 4-hydroxy-3-methoxyphenylethyl methyl ketone) is a key component responsible for the pungency of ginger (Zingiber officinale). In this study, it was confirmed that a type III polyketide synthase (PKS) gene (pmpks) from Piper methysticum exhibits feruloyl-CoA-preferred benzalacetone synthase (BAS) activity. Based on these results, we constructed an artificial biosynthetic pathway for zingerone production from supplemented ferulic acid with 4-coumarate CoA ligase (4CL), PmPKS, and benzalacetone reductase (BAR). Furthermore, a de novo pathway for the production of zingerone was assembled using six heterologous genes, encoding tyrosine ammonia-lyase (optal), cinnamate-4-hydroxlase (sam5), caffeic acid O-methyltransferase (com), 4CL (4cl2nt), BAS (pmpks), and BAR (rzs1), in Escherichia coli. Using the engineered l-tyrosine-overproducing E. coli ΔCOS4 strain as a host, a maximum yield of 24.03 ± 2.53 mg/L zingerone was achieved by complete de novo synthesis.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kyung Won Park
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhee Won
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Byeongsan Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jung-Oh Ahn
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Biotechnology Process Engineering Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, CheongJu-si, Chungbuk 28116, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Moore SJ, Hleba YB, Bischoff S, Bell D, Polizzi KM, Freemont PS. Refactoring of a synthetic raspberry ketone pathway with EcoFlex. Microb Cell Fact 2021; 20:116. [PMID: 34112158 PMCID: PMC8193874 DOI: 10.1186/s12934-021-01604-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~ £20,000 kg-1) fine chemical farmed from raspberry (Rubeus rubrum) fruit. RESULTS By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10β, as a routine cloning host. The use of E. coli DH10β facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. CONCLUSIONS Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli.
Collapse
Affiliation(s)
- Simon J Moore
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.,Department Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.,School of Biosciences, University of Kent, CT2 7NJ, Canterbury, England
| | - Yonek B Hleba
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.,Department Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Sarah Bischoff
- School of Biosciences, University of Kent, CT2 7NJ, Canterbury, England
| | - David Bell
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.,Department Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Karen M Polizzi
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK. .,Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK. .,Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK.
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK. .,Department Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK. .,The London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, 80 Wood Lane, London, W12 0BZ, UK. .,Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
10
|
Becker A, Böttcher D, Katzer W, Siems K, Müller-Kuhrt L, Bornscheuer UT. An ADH toolbox for raspberry ketone production from natural resources via a biocatalytic cascade. Appl Microbiol Biotechnol 2021; 105:4189-4197. [PMID: 33988735 PMCID: PMC8140976 DOI: 10.1007/s00253-021-11332-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Abstract Raspberry ketone is a widely used flavor compound in food and cosmetic industry. Several processes for its biocatalytic production have already been described, but either with the use of genetically modified organisms (GMOs) or incomplete conversion of the variety of precursors that are available in nature. Such natural precursors are rhododendrol glycosides with different proportions of (R)- and (S)-rhododendrol depending on the origin. After hydrolysis of these rhododendrol glycosides, the formed rhododendrol enantiomers have to be oxidized to obtain the final product raspberry ketone. To be able to achieve a high conversion with different starting material, we assembled an alcohol dehydrogenase toolbox that can be accessed depending on the optical purity of the intermediate rhododendrol. This is demonstrated by converting racemic rhododendrol using a combination of (R)- and (S)-selective alcohol dehydrogenases together with a universal cofactor recycling system. Furthermore, we conducted a biocatalytic cascade reaction starting from naturally derived rhododendrol glycosides by the use of a glucosidase and an alcohol dehydrogenase to produce raspberry ketone in high yield. Key points • LB-ADH, LK-ADH and LS-ADH oxidize (R)-rhododendrol • RR-ADH and ADH1E oxidize (S)-rhododendrol • Raspberry ketone production via glucosidase and alcohol dehydrogenases from a toolbox Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11332-9.
Collapse
Affiliation(s)
- Aileen Becker
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dominique Böttcher
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | | | | | | | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
11
|
Red Raspberry ( Rubus idaeus L.) Seed Oil: A Review. PLANTS 2021; 10:plants10050944. [PMID: 34065144 PMCID: PMC8151122 DOI: 10.3390/plants10050944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Raspberry (Rubus idaeus L.) seed oil (RSO) is considered as a source of high value bioactive compounds as fatty acids, tocopherols, tocotrienols, carotenoids, flavonoids, phytosterols, antioxidants, monoterpenes and many other chemical constituents. These compounds are appreciated as a source of nutrition for humans, as additives in cosmetic production, has immense therapeutic potential. Raspberry seed oil exerts many pharmacological effects included antimicrobial, antioxidant, anti-inflammatory activity and many other effects. The various databases like PubMed and Science Direct were used to identify, analyze and summarize the research literature on raspberries. This review will highlight recent developments of the chemical constituents and nutraceutical and cosmetical effects of RSO. Practical application: analyzed recent researches and international patents containing raspberry seed oil can help practitioners of various industries create new high-value products.
Collapse
|