1
|
Ning W, Yang J, Ni R, Yin Q, Zhang M, Zhang F, Yang Y, Zhang Y, Cao M, Jin L, Pan Y. Hypoxia induced cellular and exosomal RPPH1 promotes breast cancer angiogenesis and metastasis through stabilizing the IGF2BP2/FGFR2 axis. Oncogene 2024:10.1038/s41388-024-03213-y. [PMID: 39496940 DOI: 10.1038/s41388-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
Metastasis is the major cause of breast cancer mortality, with angiogenesis and tumor-released exosomes playing key roles. However, the communication between breast cancer cells and endothelial cells and its role in tumor metastasis remains unclear. Here, we characterize a long noncoding RNA, RPPH1, which is upregulated in breast cancer tissues and positively associated with poor prognosis. Hypoxia microenvironment upregulates the expression of RPPH1 in breast cancer cells, and promotes its packaging into exosomes through hnRNPA1, leading to the maintenance of stemness and aggressive traits in cancer cells and angiogenesis in endothelial cells. The function of cellular and exosomal RPPH1 was confirmed in the MMTV-PyMT mouse model, in which ASO-RPPH1 therapy effectively inhibited tumor progression and metastasis. Mechanistically, RPPH1 protects IGF2BP2 from ubiquitination-induced degradation, stabilizes N6-methyladenosine (m6A)-modified FGFR2 mRNA, and activates the PI3K/AKT pathway. Our research unveils the role of RPPH1 in breast cancer metastasis and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wentao Ning
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingyan Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiqi Ni
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianqian Yin
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Manqi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Zhang J, Wu L, Ding R, Deng X, Chen Z. Role of miRNA‑122 in cancer (Review). Int J Oncol 2024; 65:83. [PMID: 39027994 PMCID: PMC11299766 DOI: 10.3892/ijo.2024.5671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs that serve key roles in cell proliferation, migration, invasion and apoptosis by regulating gene expression. In malignant tumors, miRNA‑122 serves either as a tumor suppressor or oncogene, influencing tumor progression via downstream gene targeting. However, the precise role of miRNA‑122 in cancer remains unclear. miRNA‑122 is a potential biomarker and modulator of radiotherapy and chemotherapy. The present review aimed to summarize the roles of miRNA‑122 in cancer, its potential as a biomarker for diagnosis and prognosis and its implications in cancer therapy, including radiotherapy and chemotherapy, alongside strategies for systemic delivery.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Medicine, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Linghua Wu
- Department of Traditional Chinese Medicine, Taizhou Fifth People's Hospital, Taizhou, Jiangsu 225766, P.R. China
| | - Rong Ding
- Department of Respiratory Medicine, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xin Deng
- School of Basic Medical Sciences, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530200, P.R. China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| |
Collapse
|
3
|
Myhrer DMM, Frøystad M, Paasche Roland MC, Ueland T, Lekva T. The long non-coding RPPH1 is decreased in leukocytes and increased in plasma from women developing pre-eclampsia†. Biol Reprod 2024; 111:427-435. [PMID: 38685609 PMCID: PMC11327315 DOI: 10.1093/biolre/ioae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Previous studies show differentially expressed long non-coding RNA present in the placenta from women with pre-eclampsia, potentially playing a vital role in the pathogenesis of the complication. In a published microarray study, Ribonuclease P RNA component H1 was decreased in leukocytes from women that later developed pre-eclampsia. We hypothesized that Ribonuclease P RNA component H1 decreased during pregnancy in women developing pre-eclampsia and important for the development of the complication. We isolated RNA from extracellular vesicles, leukocytes and plasma using blood samples taken at weeks 22-24 and 36-38 in women who subsequently developed pre-eclampsia and from healthy pregnancy. The expression of Ribonuclease P RNA component H1 was quantified using qPCR. Expression of Ribonuclease P RNA component H1 at 22-24 weeks was further examined to investigate its discriminatory potential of subsequent pre-eclampsia and association with clinical markers. We found lower expression of Ribonuclease P RNA component H1 in leukocytes at 22-24 and 36-38 weeks amongst women who subsequent developed pre-eclampsia compared with those who did not, while increased Ribonuclease P RNA component H1 expression was found in plasma at 36-38 weeks. Pre-eclampsia risk factors could not account for this difference in the Ribonuclease P RNA component H1 expression. Prediction of pre-eclampsia at 22-24 weeks using Ribonuclease P RNA component H1 expression in leukocytes in addition to the screening algorithm used today had a significantly better performance. In conclusion, Ribonuclease P RNA component H1 expression in leukocytes was significantly decreased in women with pre-eclampsia, and the expression at 22-24 weeks associated with the subsequent development of pre-eclampsia. Ribonuclease P RNA component H1 in leukocytes may be a useful biomarker for prediction and/or early detection of pre-eclampsia and an unknown regulator of the signaling affecting immune cells.
Collapse
Affiliation(s)
| | - Monica Frøystad
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Wang P, Lin J, Zheng X, Xu X. RNase P: Beyond Precursor tRNA Processing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae016. [PMID: 38862431 DOI: 10.1093/gpbjnl/qzae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Juntao Lin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangyang Zheng
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine, Dehua Hospital, Dehua 362500, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Sabaghi F, Sadat SY, Mirsaeedi Z, Salahi A, Vazifehshenas S, Kesh NZ, Balavar M, Ghoraeian P. The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location. Microrna 2024; 13:14-32. [PMID: 38275047 DOI: 10.2174/0122115366265540231201065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 01/27/2024]
Abstract
Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Yousefi Sadat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirsaeedi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aref Salahi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Vazifehshenas
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Zahmat Kesh
- Department of Genetics, Zanjan Branch Islamic Azad University, Zanjan, Iran
| | - Mahdieh Balavar
- Department of Genetics, Falavarjan Branch Islamic Azad University, Falavarjan, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Lin YH, Chen CW, Cheng HC, Liu CJ, Chung ST, Hsieh MC, Tseng PL, Tsai WH, Wu TS, Lai MD, Shih CL, Yen MC, Fang WK, Chang WT. Inhibition of lncRNA RPPH1 activity decreases tumor proliferation and metastasis through down-regulation of inflammation-related oncogenes. Am J Transl Res 2023; 15:6701-6717. [PMID: 38186977 PMCID: PMC10767529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Ribonuclease P RNA component H1 (RPPH1) is a long non-coding RNA (lncRNA) associated with cancer progression. Higher RPPH1 expression in breast and cervical cancer samples than that in normal tissues were observed through the lncRNASNP2 database; therefore, silencing RPPH1 expression might be a potential strategy for cancer treatments, even though RPPH1 is also an RNA subunit of ribonuclease P involved in processing transfer RNA (tRNA) precursors and the effect of RPPH1 knockdown is not yet fully understood. METHODS Differentially expressed genes (DEGs) were identified through RNA sequencing in each shRNA-transfected RPPH1 knockdown MDA-MB-231, RPPH1 knockdown HeLa cell, and respective control cells, then the gene ontology enrichment analysis was performed by IPA and MetaCore database according to these DEGs, with further in vitro experiments validating the effect of RPPH1 silencing in MDA-MB-231 and HeLa cells. RESULTS Hundreds of down-regulated DEGs were identified in RPPH1 knockdown MDA-MB-231 and HeLa cells while bioinformatics analysis revealed that these genes were involved in pathways related to immune response and cancerogenesis. Compared to mock- and vector-transfected cells, the production of mature tRNAs, cell proliferation and migration capacity were inhibited in RPPH1-silenced HeLa and MDA-MB-231 cells. Additionally, RPPH1 knockdown promoted G1 cell cycle arrest mainly through the down-regulation of cyclin D1, although glycolytic pathways were only affected in RPPH1 knockdown HeLa cells but not MDA-MB-231 cells. CONCLUSION This study demonstrated that knockdown RPPH1 affected tRNA production, cell proliferation and metabolism. Our findings might provide insight into the role of RPPH1 in tumor development.
Collapse
Affiliation(s)
- Yuan-Ho Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Chih-Wei Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Surgery, Chi Mei Medical CenterTainan 710, Taiwan
- Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and ScienceTainan 717, Taiwan
| | - Hung-Chi Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Chun-Jhih Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Sheng-Ting Chung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Meng-Che Hsieh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Po-Lin Tseng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan 302, Taiwan
| | - Wen-Hui Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Pediatrics, Chi Mei Foundation Medical CenterTainan 710, Taiwan
- Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian UniversityTainan 711, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Wen-Kuei Fang
- Department of Neurosurgery, Ditmanson Medical Foundation Chia-Yi Christian HospitalChiayi 600, Taiwan
| | - Wen-Tsan Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| |
Collapse
|
7
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
McKellar DW, Mantri M, Hinchman MM, Parker JSL, Sethupathy P, Cosgrove BD, De Vlaminck I. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat Biotechnol 2023; 41:513-520. [PMID: 36329320 PMCID: PMC10110464 DOI: 10.1038/s41587-022-01517-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Spatial transcriptomics reveals the spatial context of gene expression, but current methods are limited to assaying polyadenylated (A-tailed) RNA transcripts. Here we demonstrate that enzymatic in situ polyadenylation of RNA enables detection of the full spectrum of RNAs, expanding the scope of sequencing-based spatial transcriptomics to the total transcriptome. We demonstrate that our spatial total RNA-sequencing (STRS) approach captures coding RNAs, noncoding RNAs and viral RNAs. We apply STRS to study skeletal muscle regeneration and viral-induced myocarditis. Our analyses reveal the spatial patterns of noncoding RNA expression with near-cellular resolution, identify spatially defined expression of noncoding transcripts in skeletal muscle regeneration and highlight host transcriptional responses associated with local viral RNA abundance. STRS requires adding only one step to the widely used Visium spatial total RNA-sequencing protocol from 10x Genomics, and thus could be easily adopted to enable new insights into spatial gene regulation and biology.
Collapse
Affiliation(s)
- David W McKellar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madhav Mantri
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Meleana M Hinchman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John S L Parker
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
MicroRNA-122 in human cancers: from mechanistic to clinical perspectives. Cancer Cell Int 2023; 23:29. [PMID: 36803831 PMCID: PMC9940444 DOI: 10.1186/s12935-023-02868-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate the expression of target genes post-transcriptionally and interact with mRNA-coding genes. MiRNAs play vital roles in many biological functions, and abnormal miRNA expression has been linked to various illnesses, including cancer. Among the miRNAs, miR-122, miR-206, miR-21, miR-210, miR-223, and miR-424 have been extensively studied in various cancers. Although research in miRNAs has grown considerably over the last decade, much is yet to be discovered, especially regarding their role in cancer therapies. Several kinds of cancer have been linked to dysregulation and abnormal expression of miR-122, indicating that miR-122 may serve as a diagnostic and/or prognostic biomarker for human cancer. Consequently, in this review literature, miR-122 has been analyzed in numerous cancer types to sort out the function of cancer cells miR-122 and enhance patient response to standard therapy.
Collapse
|
11
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
12
|
Zhou J, Shi K, Huang W, Zhang Y, Chen Q, Mou T, Wu Z, Wei X. LncRNA RPPH1 acts as a molecular sponge for miR-122 to regulate Wnt1/β-catenin signaling in hepatocellular carcinoma. Int J Med Sci 2023; 20:23-34. [PMID: 36619232 PMCID: PMC9812802 DOI: 10.7150/ijms.68778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/06/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to explore the role of lncRNA RPPH1 in hepatocellular carcinoma. The expression of RPPH1 and miR-122 was determined by Real-time PCR. Cell proliferation and colony formation assays were employed to monitor cell growth in vitro. Wound healing and Transwell assays were applied to detect cell migration and invasion. A dual-luciferase reporter assay was used to verify the interaction between RPPH1 and miR-122. The in vivo function of RPPH1 was illustrated by xenograft tumor models. The results showed that the expression of RPPH1 was markedly upregulated in human HCC specimens and cell lines compared to normal controls. However, the trend of miR-122 was the opposite. RPPH1 facilitates the proliferation, migration, and invasion of HCC cells and synchronously suppresses cell apoptosis. The dual-luciferase assay confirmed the relationship between RPPH1 and miR-122. Rescue experiments showed that RPPH1 acted as a competing endogenous RNA (ceRNA) by sponging miR-122 in HCC cells. Moreover, RPPH1 positively regulated the expression of Wnt1 and its downstream targets through miR-122. Our study demonstrates for the first time that RPPH1 promotes HCC progression via the miR-122/Wnt1/β-catenin axis, which may represent a valuable therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Hepatobiliary Surgery, The People's Hospital of Rongchang District, Chongqing, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weifeng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuke Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingsong Chen
- Department of Traumatology, Chongqing University Central Hospital, Chongqing, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Abedi-Gaballu F, Kamal Kazemi E, Salehzadeh SA, Mansoori B, Eslami F, Emami A, Dehghan G, Baradaran B, Mansoori B, Cho WC. Metabolic Pathways in Breast Cancer Reprograming: An Insight to Non-Coding RNAs. Cells 2022; 11:cells11192973. [PMID: 36230935 PMCID: PMC9563138 DOI: 10.3390/cells11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells reprogram their metabolisms to achieve high energetic requirements and produce precursors that facilitate uncontrolled cell proliferation. Metabolic reprograming involves not only the dysregulation in glucose-metabolizing regulatory enzymes, but also the enzymes engaging in the lipid and amino acid metabolisms. Nevertheless, the underlying regulatory mechanisms of reprograming are not fully understood. Non-coding RNAs (ncRNAs) as functional RNA molecules cannot translate into proteins, but they do play a regulatory role in gene expression. Moreover, ncRNAs have been demonstrated to be implicated in the metabolic modulations in breast cancer (BC) by regulating the metabolic-related enzymes. Here, we will focus on the regulatory involvement of ncRNAs (microRNA, circular RNA and long ncRNA) in BC metabolism, including glucose, lipid and glutamine metabolism. Investigation of this aspect may not only alter the approaches of BC diagnosis and prognosis, but may also open a new avenue in using ncRNA-based therapeutics for BC treatment by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Elham Kamal Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Seyed Ahmad Salehzadeh
- Department of Medicinal Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Farhad Eslami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Ali Emami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (B.M.); (W.C.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
- Correspondence: (B.M.); (W.C.C.)
| |
Collapse
|
14
|
Wang M, Xia H, Yan Q, Liu W, Liu M, Wang X. Identification of Pyroptosis-Related Gene Signatures and Construction of the Risk Model to Predict BCR in Prostate Cancer. Front Mol Biosci 2022; 9:850758. [PMID: 35813821 PMCID: PMC9259891 DOI: 10.3389/fmolb.2022.850758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Pyroptosis is related to tumor immune infiltration and tumor microenvironment (TME) and has been confirmed to be related to the progression of a variety of tumors. However, the relationship between prostate cancer and pyroptosis, as well as TME and tumor immune infiltration, has not been discussed yet. We obtained and combined the RNA-seq data of prostate cancer from TCGA and GEO databases, analyzed the differential expression of pyroptosis-related genes (PRGs), and divided them into two groups according to the PRG expression level. The relationship between pyroptosis subtypes and the TME of prostate cancer was further verified, and the differential expression genes (DEGs) in the two subtypes were identified. The relationship between the DEGs and clinicopathology was explored and KEGG and GO enrichment analysis was conducted; it was found that most DEGs were enriched in immune-related pathways. Then, we randomly divided datasets into training and testing sets, performed the LASSO and multicox progression analysis, selected eight genes as prognostic signatures and used the eight genes, calculated the risk score, and then separated the entire cohort into high- and low-risk groups. The prognosis between two groups and the 1-, 3-, and 5-year ROC curves of biochemical relapse (BCR) were verified in training, testing, and the entire cohort, respectively. The TME, CSC index, mutation, and drug susceptibility were also discussed.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiuxia Yan
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Wen Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xuan Wang,
| |
Collapse
|
15
|
Yang F, Duan H, Ye N, Zeng Y, Yang P, Shao B, Wang C, Lin G. β-Asarone Protects PC12 Cells Against Hypoxia-Induced Injury Via Negatively Regulating RPPH1/MiR-542-3p/DEDD2 Axis. Cell Transplant 2022; 31:9636897221079336. [PMID: 35416722 PMCID: PMC9014715 DOI: 10.1177/09636897221079336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoxic injury to the brain is very intricate under the control of biochemical reactions induced by various factors and mechanisms. Long non-coding RNAs (lncRNAs) have already been revealed to affect pathological processes in the nervous system of different degrees. This research aimed to investigate the mechanisms implicated in hypoxic brain injury. β-Asarone mitigated the decrease of cell viability, superoxide dismutase activity, and mitochondrial membrane potential, as well as the increase of cell apoptosis, lactate dehydrogenase release, malondialdehyde content, and reactive oxidative species production by cobalt chloride. LncRNA ribonuclease P RNA component H1 (RPPH1) was discovered to be highly expressed in hypoxia-induced PC12 cells, and β-Asarone addition led to a decline in RPPH1 expression. RPPH1 overexpression reversed the effect of β-Asarone on hypoxia-induced injury in PC12 cells. Furthermore, we proved that RPPH1 could sponge miR-542-3p. Subsequently, death effector domain containing 2 (DEDD2) was proven as the downstream gene of RPPH1/miR-542-3p axis. Eventually, the whole regulation mechanism of RPPH1/miR-542-3p/DEDD2 axis was testified through rescue assays. The impacts of β-Asarone on hypoxia-induced PC12 cells could be countervailed by RPPH1 augment, which was also discovered to be neutralized in response to miR-542-3p overexpression or DEDD2 depletion. These findings offered a novel perspective for understanding neuroprotection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| | - Hongyu Duan
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| | - Nannan Ye
- Department of Anesthesiology, The First People’s Hospital of Wenling, Wenling, China
| | - Yu Zeng
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| | - Pengxiang Yang
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| | - Bo Shao
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| | - Chunyu Wang
- Department of Neurology, The First People’s Hospital of Shangqiu, Shangqiu, China
- Chunyu Wang, Department of Neurology, The First People’s Hospital of Shangqiu, No. 292, Kaixuan South Road, Shangqiu 476100, Henan, China.
| | - Gaojun Lin
- Department of Neurosurgery, The First People’s Hospital of Wenling, Wenling, China
| |
Collapse
|
16
|
Zou H, Lu C, Qiu J. Long non-coding RNA LINC00265 promotes proliferation, apoptosis, and inflammation of chondrocytes in osteoarthritis by sponging miR-101-3p. Autoimmunity 2021; 54:526-538. [PMID: 34633248 DOI: 10.1080/08916934.2021.1978432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a part in a wide variety of diseases, including osteoarthritis (OA). This study was designed to investigate the biological role of lncRNA LINC00265 in OA and its underlying mechanisms. We examined the levels of LINC00265 and miR-101-3p using RT-qPCR, inflammatory factors using ELISA, and caspase-3, c-caspase-3, Bcl-2, Bax, and MMP-13 levels using Western blot in normal and OA chondrocytes, analysed the relationship between LINC00265 and miR-101-3p using bioinformatics analysis and luciferase reporter assays, performed loss- and gain-of-function analyses. The results showed that (1) LINC00265 expression was increased in OA chondrocytes, (2) si-LINC00265 inhibited OA chondrocyte apoptosis and inflammation, and (3) LINC00265 overexpression promoted normal and OA chondrocyte apoptosis and inflammation. Furthermore, we predicted and confirmed that miR-101-3p was a target of LINC00265. LINC00265 negatively regulated miR-101-3p in OA chondrocytes and LINC00265 promoted OA and normal chondrocyte apoptosis via miR-101-3p. Overall, lncRNA LINC00265 regulates chondrocyte apoptosis by acting as a sponge of miR-101-3p in OA.
Collapse
Affiliation(s)
- Hanlin Zou
- Department of Orthopedics, Shanghai Putuo District Central Hospital, Shanghai City, P. R. China
| | - Chunde Lu
- Department of Orthopedics, Shanghai Jiangong Hospital, Shanghai City, P. R. China
| | - Jianjun Qiu
- Department of Orthopedics, Shanghai Putuo District Central Hospital, Shanghai City, P. R. China
| |
Collapse
|
17
|
Yin H, Yu S, Xie Y, Dai X, Dong M, Sheng C, Hu J. Cancer-associated fibroblasts-derived exosomes upregulate microRNA-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein. Cell Signal 2021; 84:110029. [PMID: 33932496 DOI: 10.1016/j.cellsig.2021.110029] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The role of exosomes in human cancers has been identified, while the effect of cancer-associated fibroblasts (CAFs)-derived exosomes (CAF-exos) transmitting microRNAs (miRNAs) on colorectal cancer (CRC) remains largely unknown. We aim to explore the impact of CAF-derived exosomal miR-135b-5p on CRC progression by targeting thioredoxin-interacting protein (TXNIP). METHODS CRC tissues were collected to obtain CAF-exos, which were used to co-culture with LoVo and HT29 cells. The effect of miR-135b-5p and TXNIP on the in vivo growth, in vitro proliferation, apoptosis, migration, invasion and angiogenesis of CRC cells. miR-135b-5p and TXNIP expression in exosomes and CRC cells were detected and their targeting relationship was confirmed. RESULTS MiR-135b-5p was upregulated whereas TXNIP was downregulated in CRC tissues and cells. The CAF-exos and CAF-exos upregulating miR-135b-5p promoted in vivo growth, in vitro proliferation, migration and invasion, and suppressed apoptosis of CRC cells, and also promoted the HUVEC angiogenesis. TXNIP was confirmed as a target of miR-135b-5p and overexpression of TXNIP could weaken the pro-CRC effect of exosomal miR-135b-5p, CONCLUSION: CAF-exos upregulate miR-135b-5p to promote CRC cell growth and angiogenesis by inhibiting TXNIP.
Collapse
Affiliation(s)
- Hua Yin
- Ultrasonic diagnosis center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, Zhejiang, China
| | - Shanshan Yu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China
| | - Yangyang Xie
- Endoscopy center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China
| | - Xiaoyu Dai
- Department of Anus & Intestine Sugery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China
| | - Mingjun Dong
- Department of Anus & Intestine Sugery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China
| | - Changrui Sheng
- Ultrasonic diagnosis center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China
| | - Jingjing Hu
- Ultrasonic diagnosis center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
18
|
Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, Beyrampour-Basmenj H, Ebrahimi A, Ebrahimi-Kalan A. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021; 287:119726. [PMID: 34144058 DOI: 10.1016/j.lfs.2021.119726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments. Autophagy plays a crucial role in controlling immune homeostasis by eliminating intracellular pathogens and presenting antigens to immune cognition. MicroRNAs are commonly known as endogenous non-coding small RNAs, which span 18-25 nt and take part in the gene expression at the post-transcriptional level regulation. miRNAs play important roles in different processes like, cell differentiation, duplicating, and apoptosis. Moreover, miRNAs are the critical molecules for the regular function of the immune system by modulating immune tolerance mechanisms and autoimmunity. Recent findings support the role of dysregulated miRNAs in the pathogenesis of ADs and in the regulation of autophagy. In this review, we will focus on the role of the miRNAs in the regulation of autophagy and then will explain the role of dysregulated miRNAs in the initiation of the ADs by modulating autophagy.
Collapse
Affiliation(s)
- Sina Khodakarimi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadhassan Omrani
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Gu R, Liu R, Wang L, Tang M, Li SR, Hu X. LncRNA RPPH1 attenuates Aβ 25-35-induced endoplasmic reticulum stress and apoptosis in SH-SY5Y cells via miR-326/PKM2. Int J Neurosci 2021; 131:425-432. [PMID: 32336203 DOI: 10.1080/00207454.2020.1746307] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The durative endoplasmic reticulum stress (ERS) and subsequent apoptosis contributes to the development and progression of Alzheimer's disease (AD). MiR-326 can reduce pyruvate kinase M2 (PKM2) expression, leading to ERS. Whereas, lncRNA RPPH1 is able to increase dendritic spine density and protect hippocampal pyramidal neurons through targeting miR-326. Our study aims to investigate the regulation of lncRNA RPPH1 and miR-326/PKM2 on ERS and related apoptosis in AD. METHODS SH-SY5Y cells treated with Aβ25-35 were selected as an in vitro AD model. RPPH1 and miR-326 overexpression and silencing cells were established by transforming vectors. The expression of RPPH1 and miR-326 were detected by qRT-PCR. MTT, flow cytometric, intracellular calcium assay and Western blot were used to test the functions of RPPH1 and miR-326 in SH-SY5Y cell proliferation, apoptosis and ERS. Dual-luciferase assay was used to detect the interaction among RPPH1, miR-326 and PKM2. RESULTS RPPH1 overexpression enhanced the viability of SH-SY5Y cells, and attenuated the apoptosis of of SH-SY5Y cells. Moreover, RPPH1 overexpression down-regulated ER stress related proteins such as GRP78, CHOP and cleaved caspase-12. Mechanistically, RPPH1 directly targeted miR-326, thereby counteracting its inhibitory effect on PKM2 expression, contributing to attenuation of apoptosis and ERS induced by Aβ25-35. CONCLUSION Aβ25-35-induced ERS and apoptosis in SH-SY5Y cells can be attenuated by lncRNA RPPH1 through regulating miR-326/PKM2 axis. This study provided therapeutic options for AD patients.
Collapse
Affiliation(s)
- Ran Gu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Rui Liu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Man Tang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Shi-Rong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, P.R. China
| |
Collapse
|
20
|
Determination of the key ccRCC-related molecules from monolayer network to three-layer network. Cancer Genet 2021; 256-257:40-47. [PMID: 33887693 DOI: 10.1016/j.cancergen.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC), with an increasing incidence rate, is one of the ubiquitous cancers. Its pathogenic factors are complicated and the molecular mechanism is not clear. It is essential to analyze the potential key genes related to ccRCC carcinogenesis. In this study, the differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) of ccRCC were screened from TCGA database. Then the miRNA-mRNA network, lncRNA-miRNA network and lncRNA-mRNA network were constructed by online database or WGCNA algorithm. Topology attributes of these monolayer networks showed that hsa-mir-155, hsa-mir-200c, hsa-mir-122, hsa-mir-506, hsa-mir-216b, hsa-mir-141, lncRNA AC137723.1 and AC021074.3 are the crucial genes related with the regulatory effects on the proliferation, metastasis and invasion of ccRCC cells. Subsequently, these three monolayer networks were integrated into a lncRNA-miRNA-mRNA multilayer network. Considering node degree, closeness centrality and betweenness centrality, we found hsa-mir-122 is screened out as the only crucial gene in three-layer network. In order to better illustrate the effect of hsa-mir-122 on ccRCC, the lncRNA-hsa-mir-122-mRNA network was constructed with hsa-mir-122 as the center. Pathway analysis of the unique target gene GALNT3 linked to hsa-mir-122 showed that GALNT3 influenced the metabolic process of mucin type O-Glycan biosynthesis. LncRNA AC090377.1 is the unique gene that has target genes among lncRNAs with clinical significance that linked to hsa-mir-122 in the lncRNA-hsa-mir-122-mRNA network. Pathway analysis of AC090377.1 suggested that GUCY2F enriched in phototransduction pathway associated with retina. From monolayer network to three-layer network, hsa-mir-122 is identified as an important molecule in the oncogenesis and progression of ccRCC, offering new strategies to further study of the carcinogenic mechanism of ccRCC.
Collapse
|
21
|
Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett 2021; 503:240-248. [PMID: 33246091 DOI: 10.1016/j.canlet.2020.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme of glycolysis, is a critical regulator in tumor metabolism. PKM2 has been demonstrated to overexpressed in various cancers and promoted proliferation and metastasis of tumor cells. The errant expression of PKM2 has inspired people to investigate the function of PKM2 and the therapeutic potential in cancer. In addition, some studies have shown that the upregulation of PKM2 in tumor tissues is associated with the altered expression of lncRNAs and the poor survival. Therefore, researchers have begun to unravel the specific molecular mechanisms of lncRNA-mediated PKM2 expression in cancer metabolism. As the tumor microenvironment (TME) is essential in tumor development, it is necessary to identify the role of PKM2 in TME. In this review, we will introduce the role of PKM2 in different cancers as well as TME, and summarize the molecular mechanism of PKM2-related lncRNAs in cancer metabolism. We expect that this work will lead to a better understanding of the molecular mechanisms of PKM2 that may help in developing therapeutic strategies in clinic for researchers.
Collapse
Affiliation(s)
- Susi Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yeye Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China; Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Murillo Carrasco A, Acosta O, Ponce J, Cotrina J, Aguilar A, Araujo J, Rebaza P, Pinto JA, Fujita R, Buleje J. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. J Clin Lab Anal 2021; 35:e23720. [PMID: 33522650 PMCID: PMC8059717 DOI: 10.1002/jcla.23720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) is used in clinical research to identify biomarkers for diagnosis of and follow-up on cancer. Here, we propose a fast and innovative approach using traditional housekeeping genes as cfDNA targets in a copy number analysis. We focus on the application of highly sensitive technology such as digital PCR (dPCR) to differentiate breast cancer (BC) patients and controls by quantifying regions of PUM1 and RPPH1 (RNase P) in plasma samples. METHODS We conducted a case-control study with 82 BC patients and 82 healthy women. cfDNA was isolated from plasma using magnetic beads and quantified by spectrophotometry to estimate total cfDNA. Then, both PUM1 and RPPH1 genes were specifically quantified by dPCR. Data analysis was calibrated using a reference genomic DNA in different concentrations. RESULTS We found RNase P and PUM1 values were correlated in the patient group (intraclass correlation coefficient [ICC] = 0.842), but they did not have any correlation in healthy women (ICC = 0.519). In dPCR quantification, PUM1 showed the capacity to distinguish early-stage patients and controls with good specificity (98.67%) and sensitivity (100%). Conversely, RNase P had lower cfDNA levels in triple-negative BC patients than luminal subtypes (p < 0.025 for both), confirming their utility for patient classification. CONCLUSION We propose the PUM1 gene as a cfDNA marker for early diagnosis of BC and RNase P as a cfDNA marker related to hormonal status and subtype classification in BC. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Alexis Murillo Carrasco
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - Oscar Acosta
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú.,Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jaime Ponce
- Oncosalud-AUNA, Unidad de la Mama, Lima, Perú
| | - José Cotrina
- Departamento de Cirugía de Mamas, Instituto Nacional de Enfermedades Neoplásicas-INEN, Lima, Perú
| | - Alfredo Aguilar
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Jhajaira Araujo
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | | | - Joseph A Pinto
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Ricardo Fujita
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - José Buleje
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| |
Collapse
|
24
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
25
|
Lang M, Ou D, Liu Z, Li Y, Zhang X, Zhang F. LncRNA MHRT Promotes Cardiac Fibrosis via miR-3185 Pathway Following Myocardial Infarction. Int Heart J 2021; 62:891-899. [PMID: 34334583 DOI: 10.1536/ihj.20-298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-chain noncoding RNA (lncRNA) is a new class of molecular regulators in heart development and disease. However, the role of specific lncRNA in cardiac fibrosis remains to be fully explored. This study aimed to investigate the role and potential mechanism of lncRNA MHRT in myocardial fibrosis after myocardial infarction (MI).Cardiac fibroblasts (CFs) were isolated from a mouse model of MI. The expression levels of MHRT and miR-3185 in the hearts of MI and CFs mice treated with transforming growth factor beta 1 (TGF-β1) were analyzed by qRT-PCR. The collagen expression was assessed using qRT-PCR and Western blot. Cell proliferation was assessed by performing MTT and EdU assays. The direct interaction between lncRNA and miRNA was analyzed by luciferase assay, RNA-binding protein immunoprecipitation (RIP) assay, and RNA pull-down assay.The expression levels of MHRT were raised in MI and CFs mice treated with TGF-β1. Overexpression of MHRT promoted collagen production and CF proliferation, while silencing of MHRT showed the opposite effect. MiR-3185 was a target gene of MHRT. In addition, overexpression of MHRT reduced the expression levels of miR-3185, and siMHRT reversed the inhibitory effect of TGF-β1 on the expression of miR-3185. Overexpression of miR-3185 inhibited the upregulation of Col I and Col III induced by TGF-β1.MHRT promoted cardiac fibrosis after MI through miR-3185 and increased myocardial collagen deposition and promoted myocardial fibrosis.
Collapse
Affiliation(s)
- Mingjian Lang
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital
| | - Dengke Ou
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital
| | - Zhaohui Liu
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital
| | - Yong Li
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital
| | - Xiaohua Zhang
- Department of Cardiovascular Medicine, Chengdu Fifth People's Hospital
| | - Fuping Zhang
- Department of Day Surgery Ward, Chengdu Fifth People's Hospital
| |
Collapse
|
26
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Böckers M, Paul NW, Efferth T. Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor α. Toxicol Appl Pharmacol 2020; 399:115030. [DOI: 10.1016/j.taap.2020.115030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
28
|
Li ZY, Li HF, Zhang YY, Zhang XL, Wang B, Liu JT. Value of long non-coding RNA Rpph1 in esophageal cancer and its effect on cancer cell sensitivity to radiotherapy. World J Gastroenterol 2020; 26:1775-1791. [PMID: 32351293 PMCID: PMC7183868 DOI: 10.3748/wjg.v26.i15.1775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is a common digestive tract tumor that is generally treated with radiotherapy. Poor responses to radiotherapy in most patients generally result in local radiotherapy failure, so it is essential to find new radiosensitizers that can enhance the response of cancer cells to radiotherapy and improve the survival of esophageal cancer patients with radiation resistance. The long non-coding RNA (lncRNA) Rpph1 is highly expressed in human gastric cancer tissues, and represses breast cancer cell proliferation and tumorigenesis. However, the expression of lncRNA Rpph1 in esophageal cancer and its relationship with radio-sensitivity has not been studied.
AIM To explore the value of lncRNA Rpph1 in esophageal cancer and its effect on cancer cell sensitivity to radiotherapy.
METHODS Eighty-three patients with esophageal cancer admitted to Qilu Hospital of Shandong University and 90 healthy participants who received physical examinations were collected as research participants. The expression of Rpph1 was determined by qRT-PCR. siRNA-NC and siRNA-Rpph1 were transfected into esophageal cancer cell lines, and cells without transfection were designated as the blank control group. Cell survival was tested by colony formation assays, and the levels of proteins related to apoptosis and epithelial-mesenchymal transitions were determined by Western blot assays. Cell proliferation was assessed by MTT assays, cell apoptosis by flow cytometry, and cell migration by wound-healing assays. Changes in cell cycle distribution were monitored.
RESULTS Rpph1 was highly expressed in esophageal carcinoma, making it a promising marker for the diagnosis of esophageal cancer. Rpph1 could also be used to distinguish different short-term responses, T stages, N stages, and clinical stages of esophageal cancer patients. The results of 3-year overall survival favored patients with lower Rpph1 expression over patients with higher Rpph1 expression (P < 0.05). In vitro and in vivo experiments showed that silencing Rpph1 expression led to higher sensitivity of esophageal cancer cells to radiotherapy, stronger apoptosis in esophageal cancer cells induced by radiotherapy, higher expression of Bax and caspase-3, and lower expression of Bcl-2 (Bax, caspase-3, and Bcl-2 are apoptosis-related proteins). Additionally, silencing Rpph1 attenuated radiation-induced G2/M phase arrest, and significantly inhibited the expression of proteins involved in cell proliferation, migration, and epithelial-mesenchymal transition regulation in esophageal cancer cells.
CONCLUSION Rpph1 is highly expressed in esophageal cancer. Silencing Rpph1 expression can promote cell apoptosis, inhibit cell proliferation and migration, and increase radio-sensitivity.
Collapse
Affiliation(s)
- Zhen-Yang Li
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Hui-Fen Li
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Ying-Ying Zhang
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Xue-Lan Zhang
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| | - Bing Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jiang-Ting Liu
- Department of Scientific Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, China
| |
Collapse
|
29
|
Gu R, Wang L, Tang M, Li SR, Liu R, Hu X. LncRNA Rpph1 protects amyloid-β induced neuronal injury in SK-N-SH cells via miR-122/Wnt1 axis. Int J Neurosci 2019; 130:443-453. [PMID: 31718352 DOI: 10.1080/00207454.2019.1692834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To investigate the role of lncRNA Rpph1 on amyloid-β induced neuronal injury in SK-N-SH cells and underlying mechanism.Methods: In vitro Alzheimer's disease (AD) model was established using the SK-N-SH cells treated with Aβ25-35 peptide. APPswe/PS1ΔE9 double transgenic mice were used as AD animal model. Rpph1 was over-expressed and miR-122 was inhibited or overexpressed in SK-N-SH cells via transfection with pcDNA3.1-oe Rpph1 vector, miR-122 inhibitor or miR-122 mimic, respectively. Cell viabilities and apoptosis were evaluated using MTT or flow cytometry assay, respectively. Quantitative real-time PCR (RT-qPCR) was used to determine expression of Rpph1 and miR-122. Western blotting was used to determine the expression of apoptosis related proteins as well as Wnt/β-catenin signaling related proteins. Dual luciferase reporter assay was conducted to confirm the binding of miR-122 with predictive binding site in 3' UTR of Rpph1 and Wnt1.Results: Both lncRNA Rpph1 and miR-122 were up-regulated in AD mouse. Either over-expression of Rpph1 or inhibition of miR-122 restored the cell viability or decreased cell apoptosis rate in Aβ induced SK-N-SH cells. Overexpression of miR-122 inhibited the cell viability while did not influence the Aβ level in SK-N-SH cells. Furthermore, over-expression of Rpph1, as well as inhibition of miR-122, elevated Bcl-2, c-myc, Survivin and decreased Bax expression via activating Wnt/β-catenin signaling. Dual luciferase reporter assay showed that miR-122 could directly target to 3'UTR of Rpph1 and Wnt1.Conclusion: Both lncRNA Rpph1 and miR-122 were up-regulated in AD mouse and Rpph1 activated Wnt/β-catenin signaling to ameliorate amyloid-β induced neuronal apoptosis in SK-N-SH cells via direct targeting miR-122.
Collapse
Affiliation(s)
- Ran Gu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lu Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Man Tang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shi-Rong Li
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rui Liu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
30
|
Liang ZX, Liu HS, Wang FW, Xiong L, Zhou C, Hu T, He XW, Wu XJ, Xie D, Wu XR, Lan P. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis 2019; 10:829. [PMID: 31685807 PMCID: PMC6828701 DOI: 10.1038/s41419-019-2077-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Metastasis is a well-known poor prognostic factor in cancer. However, the mechanisms how long non-coding RNAs (lncRNAs) regulate metastasis in colorectal cancer (CRC) remain largely unknown. Besides, tumor-associated macrophages (TAMs) play an important role in tumor progression, yet the contribution of lncRNA-mediated crosstalk between TAMs and CRC cells to tumor progression is not well understood. In this study, we report that lncRNA RPPH1 was significantly upregulated in CRC tissues, and the RPPH1 overexpression was associated with advanced TNM stages and poor prognosis. RPPH1 was found to promote CRC metastasis in vitro and in vivo. Mechanistically, RPPH1 induced epithelial–mesenchymal transition (EMT) of CRC cells via interacting with β-III tubulin (TUBB3) to prevent its ubiquitination. Furthermore, CRC cell-derived exosomes transported RPPH1 into macrophages which mediate macrophage M2 polarization, thereby in turn promoting metastasis and proliferation of CRC cells. In addition, exosomal RPPH1 levels in blood plasma turned out to be higher in treatment-naive CRC patients but lower after tumor resection. Compared to CEA and CA199, exosomal RPPH1 in CRC plasma displayed a better diagnostic value (AUC = 0.86). Collectively, RPPH1 serves as a potential therapeutic and diagnostic target in CRC.
Collapse
Affiliation(s)
- Zhen-Xing Liang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Wen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
31
|
Wang X, Wang X, Li W, Zhang Q, Chen J, Chen T. Up-Regulation of hsa_circ_0000517 Predicts Adverse Prognosis of Hepatocellular Carcinoma. Front Oncol 2019; 9:1105. [PMID: 31750237 PMCID: PMC6842961 DOI: 10.3389/fonc.2019.01105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Although huge progress has been made in therapeutics against hepatocellular carcinoma (HCC) over the decades, the prognosis of this lethal disease remains poor. To find out risk factors for HCC-related outcome and better predict the prognosis, there is an unmet need to identify novel biomarkers of HCC. Accumulating evidence suggests that circRNAs play pivotal roles in carcinogenesis of several malignancies. In this study, we analyzed two datasets (GSE 94508 and GSE 97332) to examine differentially expressed circRNAs markedly related to HCC pathogenesis. Using Limma package in R and WGCNA analysis, hsa_circ_0000517 was significantly up-regulated in HCC (adjusted P < 0.01). Thereafter, a hsa_circ_0000517-related regulatory network was built based on application of databases including CSCD, TargetScan, miRDB, and miRTarBase. We uncovered the potential function of hsa_circ_0000517 through bioinformatics approaches, such as PPI network, GO, and KEGG pathway analyses. Specifically, functional analysis unveiled that hsa_circ_0000517 was likely to regulate the MAPK and Ras pathway through sponging several miRNAs and having an impact on the expression of TP53, MYC, and AKT1. To verify our initial finding, the expression of hsa_circ_0000517 in 60 HCC patients was detected by qRT-PCR and the expression in cancer tissues was higher compared with the paracarcinoma tissues. Survival analysis suggests high hsa_circ_0000517 expression was associated with adverse prognosis in HCC patients. Furthermore, this circRNA was significantly up-regulated in worse TNM stage, consistent with the progressive-stage-specific characteristic of circRNAs. A prognostic nomogram built on AFP and has_circ_0000517 showed significant diagnostic value. In all, we concluded that hsa_circ_0000517, a promising molecular in underlying mechanism of HCC, is a potent valuable biomarker for prognosis prediction.
Collapse
Affiliation(s)
- Xicheng Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xining Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Internal Infection, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Lei B, He A, Chen Y, Cao X, Zhang P, Liu J, Ma X, Qian L, Zhang W. Long non-coding RNA RPPH1 promotes the proliferation, invasion and migration of human acute myeloid leukemia cells through down-regulating miR-330-5p expression. EXCLI JOURNAL 2019; 18:824-837. [PMID: 31645843 PMCID: PMC6806202 DOI: 10.17179/excli2019-1686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023]
Abstract
Multiple studies have revealed that the long non-coding RNA RPPH1 (Ribonuclease P RNA Component H1) is involved in disease progression of solid tumors and neurodegenerative diseases. We aimed to explore the functions of RPPH1 in the pathogenesis of acute myeloid leukemia (AML) and the underlying molecular mechanisms. The expression of RPPH1 was examined in blood samples of AML patients and human AML cell lines including THP-1 and HL-60. The microRNAs (miRNAs) targets of RPPH1 were predicted with online tools and validated with the dual luciferase reporter assay. The malignant behaviors of AML cells with lentivirus medicated knockdown of RPPH1 and/or administration of miR-330-5p inhibitor were assessed. Cell proliferation was determined by the CCK-8 and EdU incorporation methods, and cell invasion and migration were assayed with transwell experiments. The effects of RPPH1 knockdown on in vivo tumor growth were evaluated in nude mice with xenografted THP-1 cells. RPPH1 was expressed in the AML tissues and cell lines and its high expression predicted worse overall survival in AML patients. miR-330-5p was validated to be a direct target of RPPH1. Knockdown of RPPH1 suppressed the proliferation, invasion and migration ability of human AML cells, which was partially reversed by additional administration with miR-330-5p inhibitor. RPPH1 knockdown significantly inhibited the growth of xenografted THP-1 tumor in nude mice. Our work highlights the contributions of RPPH1 in promoting AML progression through targeting miR-330-5p, and suggests that the RPPH1/miR-330-5p axis is a potential target for AML treatments.
Collapse
Affiliation(s)
- Bo Lei
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Aili He
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Yinxia Chen
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Xingmei Cao
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Pengyu Zhang
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Jie Liu
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Xiaorong Ma
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Lu Qian
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| | - Wanggang Zhang
- Department of Hematology, second Affiliated Hospital of Xi'an Jiaotong University,157 Xiwu Road, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Cui K, Jin S, Du Y, Yu J, Feng H, Fan Q, Ma W. Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA. Cancer Cell Int 2019; 19:202. [PMID: 31384177 PMCID: PMC6668142 DOI: 10.1186/s12935-019-0922-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) has been implicated in numerous tumors, including pancreatic cancer (PC). However, the precise cellular roles and molecular mechanisms of lncRNA DIO3OS on PC development remains to be fully clarified. Methods We performed the meta-analysis on PC samples and non-tumor samples retrieved from the TCGA database, and measured the levels of DIO3OS in PC cell lines and a normal pancreatic duct epithelial cell line HPDE6-C7. Cell proliferation was evaluated via CCK-8 assay. Cell invasion in vitro was investigated by transwell assay. The RNA immunoprecipitation assay and luciferase reporter assay was utilized to confirm the putative miR-122-binding site in DIO3OS. The effects of DIO3OS on PC progression were tested using in vivo subcutaneous xenografts. Results Our results showed that DIO3OS was highly expressed in human PC tissues and PC cell lines. DIO3OS exhibited oncogenic properties in stimulating PC cell proliferation and invasion in vitro and promoting cancer growth in vivo. Through online predictive tools and functional experiments, we found that DIO3OS could bind directly to microRNA-122 (miR-122) and inhibited its expression, which functioned as a tumor suppressor in PC cells. We also verified that ALDOA was the direct target of miR-122, and the tumor suppressive effects caused by DIO3OS knockdown or miR-122 overexpression could be rescued by re-expression of ALDOA in PC cells. Conclusions Overall, our study suggested that lncRNA DIO3OS promotes PC cell growth and invasion by competing for miR-122 to modulate the expression of ALDOA. These findings yield a better understanding of the potential mechanisms by which gain of DIO3OS expression accelerates PC progression.
Collapse
Affiliation(s)
- Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Junlin Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Han Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No 1. Jianshe Road, Erqi District, Zhengzhou, Henan 450052 China
| |
Collapse
|
34
|
Zhang P, Sun Y, Peng R, Chen W, Fu X, Zhang L, Peng H, Zhang Z. Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3. Cell Death Dis 2019; 10:526. [PMID: 31285427 PMCID: PMC6614467 DOI: 10.1038/s41419-019-1765-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/02/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
Diabetic nephropathy (DN) is one of the most significant complications of diabetes and is the primary cause of end-stage kidney disease. Cumulating evidence has shown that renal inflammation plays a role in the development and progression of DN, but the exact cellular mechanisms are unclear. Irregular expression of long non-coding RNAs (lncRNAs) is present in many diseases, including DN. However, the relationship between lncRNAs and inflammation in DN is unclear. In this study, we identified differentially expressed lncRNAs in DN using RNA-sequencing. Among these lncRNAs, we identified seven DN-related lncRNAs in vivo and in vitro using quantitative real-time PCR. One lncRNA in particular, Rpph1 (ribonuclease P RNA component H1), exhibited significantly increased expression. Further, over-expression or knockdown of Rpph1 was found to regulate cell proliferation and the expression of inflammatory cytokines in mesangial cells (MCs). The results revealed that Rpph1 directly interacts with the DN-related factor galectin-3 (Gal-3). Further, over-expression of Rpph1 promoted inflammation and cell proliferation through the Gal-3/Mek/Erk signaling pathway in MCs under low glucose conditions, while knockdown of Rpph1 inhibited inflammation and cell proliferation through the Gal-3/Mek/Erk pathway in MCs under high glucose conditions. These results provide new insight into the association between Rpph1 and the Gal-3/Mek/Erk signaling pathway during DN progression.
Collapse
Affiliation(s)
- Panyang Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Sun
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, 400016, Chongqing, China
| | - Wenyun Chen
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Xia Fu
- People's Hospital of Fuling District, 408000, Chongqing, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Huimin Peng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China
| | - Zheng Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
35
|
Zhang K, Lv J, Peng X, Liu J, Li C, Li J, Yin N, Li H, Li Z. Down-regulation of DANCR acts as a potential biomarker for papillary thyroid cancer diagnosis. Biosci Rep 2019; 39:BSR20181616. [PMID: 30910839 PMCID: PMC6470405 DOI: 10.1042/bsr20181616] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be dysregulated and play a crucial role in the progression of cancer. LncRNA DANCR has recently been revealed to be involved in tumorigenesis of numerous types of cancer, including osteosarcoma, gastric cancer, breast cancer, hepatocellular carcinoma, and colorectal cancer. However, the expression profiles and biological relevance of DANCR in papillary thyroid cancer (PTC) have not yet been reported. In the present study, the expression level of DANCR in PTC tissues and adjacent normal tissues was detected by reverse transcription-quantitative PCR in PTC patients, and then we analyzed the association with clinical pathological characteristics of patients and DANCR expressions. These results demonstrated that the expression of DANCR was notably decreased in tumor tissues in comparison with adjacent normal tissues (P<0.001). Furthermore, the present study found that DANCR expression level was correlated to T grade (P<0.01) and TNM stage (P=0.017). The present study demonstrated that DANCR was associated with PTC aggressive clinical features and may serve as a diagnostic biomarker for detecting PTC patients.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xinagya Road, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics,110 Xiangya Road, Changsha 410078, P.R. China
| | - Jing Lv
- Department of Thyroid Surgery, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou 450007, P.R. China
| | - Xiaowei Peng
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P.R. China
| | - Jianqiu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xinagya Road, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics,110 Xiangya Road, Changsha 410078, P.R. China
| | - Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xinagya Road, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics,110 Xiangya Road, Changsha 410078, P.R. China
| | - Jing Li
- Department of Endocrinology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou 450007, P.R. China
| | - Ningwei Yin
- Department of Surgery, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou 450007, P.R. China
| | - Hui Li
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xinagya Road, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics,110 Xiangya Road, Changsha 410078, P.R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, P. R. China.
| |
Collapse
|
36
|
Li J, Zhao R, Fang R, Wang J. [miR-122-5p inhibits the proliferation of melanoma cells by targeting NOP14]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1360-1365. [PMID: 30514686 DOI: 10.12122/j.issn.1673-4254.2018.11.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the expression profile of miR-122-5p in melanoma tissues and the effect of miR-122-5p on the proliferation, cell cycle and apoptosis of human melanoma cell lines SK-MEL-110 and A375. METHODS The expression profiles of miR-122-5p in melanoma and pigmented nevus tissues were detected using real-time fluorescence quantitative PCR (qRT-PCR). SK-MEL-110 and A375 cells transfected with miR-122-5p inhibitor or negative control inhibitor (NC) I were examined for miR-122- 5p expression using qRT-PCR and changes in cell proliferation, cell cycle and apoptosis using MTT assay or flow cytometry. NOP14 mRNA and protein expressions in the cells were detected using qRT- PCR and Western blotting, respectively. Luciferase reporter assay was used to confirm the identity of NOP14 as the direct target of miR-122-5p. RESULTS The relative expression of miR-122-5p in human pigmented nevus tissues and melanoma tissues was 1.23±0.270 and 7.65 ± 1.37, respectively. The relative expression of miR-122-5p in SK-MEL-110 and A375 cells transfected with miR-122-5p inhibitor was 0.21 ± 0.08 and 0.17 ± 0.05, respectively. miR-122-5p inhibitor obviously inhibited the cell proliferation and increased the percentage of cells in G1 stage in both SK-MEL-110 and A-375 cells, but did not cause obvious changes in the apoptosis of the two cells. miR-122-5p inhibitor did not significantly affect the expression level of NOP14 mRNA, but obviously increased the expression level of NOP14 protein. Luciferase reporter assay revealed a significantly lower luciferase activity in cells co-transfected with miR-122-5p mimics and wild-type psi-CHECK2-3'UTR plasmid than in the cells cotransfected with NC and wild-type psi-CHECK2-3'UTR plasmid (0.21 ± 0.14 vs 0.56 ± 0.1, P < 0.01). CONCLUSIONS miR-122-5p expression is upregulated in melanoma tissues, indicating its involvement in the development of melanoma. miR-122-5p inhibits the proliferation of SK-MEL-110 and A-375 cells possibly by affecting the cycle through NOP14.
Collapse
Affiliation(s)
- Jingrong Li
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Rui Zhao
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Ruihua Fang
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Jianqin Wang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China
| |
Collapse
|
37
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
38
|
Li X, Qiao R, Ye J, Wang M, Zhang C, Lv G, Wang K, Li X, Han X. Integrated miRNA and mRNA transcriptomes of spleen profiles between Yorkshire and Queshan black pigs. Gene 2018; 688:204-214. [PMID: 30529098 DOI: 10.1016/j.gene.2018.11.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Disease causes large economic losses to the pig industry worldwidely, immunity plays an important role in the process of resistance to disease. In the present study, to elucidate the molecular mechanisms underlying different levels of disease resistance, we obtained the miRNA and mRNA expression profiles from the spleens of three groups of sows, including 180-day-old Queshan Black (Q-F), 3-day-old Yorkshire (Y-N) and 180-day-old Yorkshire (Y-F) pigs. The results showed that 85 miRNAs and 5093 genes were differentially expressed in Y-F vs Y-N, and 20 miRNAs and 1283 genes were differentially expressed in Q-F vs Y-F. Gene ontology analysis of these differentially expressed genes revealed their critical roles in response to immune response-related signaling pathways. To investigate the molecular mechanisms underlying immune diversity based on differentially expressed miRNAs and genes, the regulatory network between the node miRNAs and genes were established using Cytoscape. The results showed that the identified candidate miRNAs and genes were associated with immune response, and also indicated their potential roles in disease resistance variance between different pig breeds and stages. From the above, this research detected the key factors that were involved in disease resistance, and provide useful information for disease resistance breeding.
Collapse
Affiliation(s)
- Xinjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Ruimin Qiao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Jianwei Ye
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Mingyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Chen Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Gang Lv
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Kejun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xiuling Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China
| | - Xuelei Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002), China.
| |
Collapse
|
39
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
40
|
A novel circular RNA, hsa_circ_0046701, promotes carcinogenesis by increasing the expression of miR-142-3p target ITGB8 in glioma. Biochem Biophys Res Commun 2018; 498:254-261. [DOI: 10.1016/j.bbrc.2018.01.076] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/01/2023]
|