1
|
Liu J, Zhang X, Yu Z, Zhang T. Circ_0026218 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell dysfunction by regulating miR-188-3p/TLR4/NF-κB pathway. Cardiovasc Drugs Ther 2024; 38:263-277. [PMID: 36585554 DOI: 10.1007/s10557-022-07416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have shown important regulatory roles in cardiovascular diseases, including atherosclerosis (AS). However, the role and mechanism of circ_0026218 in AS remain unclear. METHODS The cell model of AS in vitro was established by stimulating human umbilical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL). In addition, circ_0026218, microRNA-188-3p (miR-188-3p), and toll-like receptor 4 (TLR4) expression was determined via real-time quantitative polymerase chain reaction (RT-qPCR) in serum samples from AS patients and healthy volunteers. Cell proliferation was assessed using Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was measured using flow cytometry. The inflammatory response was assessed using enzyme-linked immunosorbent assay (ELISA). Oxidative stress level was assessed using corresponding kits. Nitric oxide (NO) level was examined using NO detection assay. The interaction between miR-188-3p and circ_0026218 or TLR4 was determined via dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. Exosomes were observed using transmission electron microscopy (TEM). The size distribution of exosomes was analyzed using nanoparticle tracking analysis (NTA). RESULTS Ox-LDL treatment caused HUVEC dysfunction by inhibiting cell proliferation and promoting apoptosis, inflammation, and oxidative stress. Circ_0026218 was upregulated in AS serum samples and ox-LDL-treated HUVECs. Knockdown of circ_0026218 attenuated ox-LDL-induced dysfunction in HUVECs. MiR-188-3p acted as a target of circ_0026218, and miR-188-3p downregulation reversed the suppression role of circ_0026218 knockdown on ox-LDL-induced HUVEC disorder. TLR4 was a target of miR-188-3p, and miR-188-3p overexpression alleviated ox-LDL-induced dysfunction in HUVECs by targeting TLR4. Circ_0026218 could deregulate the TLR4/NF-κB pathway by sponging the miR-188-3p. Importantly, circ_0026218 was overexpressed in exosomes from ox-LDL-treated HUVECs and could be delivered via exosomes. CONCLUSION Circ_0026218 knockdown attenuated ox-LDL-induced dysfunction in HUVECs via regulating miR-188-3p/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Liu
- Departments of coronary heart disease, First Affiliated Hospital of Xinjiang Medical University, Urumqi City, China
| | - Xiangyang Zhang
- Departments of coronary heart disease, Xinjiang Medical University, Urumqi City, China
| | - Zhaoxia Yu
- Critical Care Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi City, China
| | - Tieliang Zhang
- Image Center, First Affiliated Hospital of Xinjiang Medical University, 137 Liushan South Road, Urumqi City, 830000, Xinjiang Province, China.
| |
Collapse
|
2
|
Sun C, Zhang Y, Wang Z, Chen J, Zhang J, Gu Y. TMED2 promotes glioma tumorigenesis by being involved in EGFR recycling transport. Int J Biol Macromol 2024; 262:130055. [PMID: 38354922 DOI: 10.1016/j.ijbiomac.2024.130055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Aberrant epidermal growth factor receptor (EGFR) signaling is the core signaling commonly activated in glioma. The transmembrane emp24 protein transport domain protein 2 (TMED2) interacts with cargo proteins involved in protein sorting and transport between endoplasmic reticulum (ER) and Golgi apparatus. In this study, we found the correlation between TMED2 with glioma progression and EGFR signaling through database analysis. Moreover, we demonstrated that TMED2 is essential for glioma cell proliferation, migration, and invasion at the cellular levels, as well as tumor formation in mouse models, underscoring its significance in the pathobiology of gliomas. Mechanistically, TMED2 was found to enhance EGFR-AKT signaling by facilitating EGFR recycling, thereby providing the initial evidence of TMED2's involvement in the membrane protein recycling process. In summary, our findings shed light on the roles and underlying mechanisms of TMED2 in the regulation of glioma tumorigenesis and EGFR signaling, suggesting that targeting TMED2 could emerge as a promising therapeutic strategy for gliomas and other tumors associated with aberrant EGFR signaling.
Collapse
Affiliation(s)
- Changning Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Yihan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Zhuangzhi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junhua Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266200, China.
| |
Collapse
|
3
|
Li Z, Luo Y, Wang C, Han D, Sun W. Circular RNA circBLNK promotes osteosarcoma progression and inhibits ferroptosis in osteosarcoma cells by sponging miR‑188‑3p and regulating GPX4 expression. Oncol Rep 2023; 50:192. [PMID: 37711054 PMCID: PMC10535026 DOI: 10.3892/or.2023.8629] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/04/2023] [Indexed: 09/16/2023] Open
Abstract
As a newly identified circular RNA (circRNA), the role of circBLNK in cancer progression has not been probed. The objective of the present study was to functionally dissect the role of circBLNK in osteosarcoma (OS) tumorigenesis and progression. With regards of the experimental procedure, the levels of mRNAs and proteins were assessed using reverse transcription‑quantitative PCR and western blot analysis, respectively. The subcellular location of circBLNK in OS cells was determined by cell cytosolic/nuclear fractionation assay. Cell ferroptosis ability was assessed through MTT assay. Cell proliferative abilities were assessed by clonogenic and Cell Counting Kit‑8 assays, and cell apoptosis was measured using flow cytometry. The relationships among circBLNK, miR‑188‑3p, and glutathione peroxidase 4 (GPX4) were validated by luciferase reporter and RNA pull‑down assays, as well as RNA immunoprecipitation. The stability of circBLNK and linear BLNK was confirmed using RNase R treatment assay. The association between circBLNK expression and overall survival rate was assessed by Kaplan‑Meier plot. The correlation between the expression levels of circBLNK, miR‑188‑3p, and GPX4 in OS tissues was assessed by Pearson's χ2 test. The results revealed that CircBLNK and GPX4 were significantly upregulated in OS tissues, which predicted the poor prognosis. CircBLNK knockdown led to suppressed cell proliferation and enhanced cell apoptosis, an effect that could be reversed by the inhibition of miR‑188‑3p. In an in vivo circBLNK deficiency model, tumor growth was observed to be markedly suppressed. Moreover, circBLNK deficiency elevated levels of intracellular free iron (Fe2+), malondialdehyde, lipid reactive oxygen species and mitochondrial superoxide, while diminishing mitochondrial membrane potential in Erastin‑treated OS cells, which were eliminated by overexpressing GPX4. Furthermore, mechanistic investigations revealed that circBLNK sponged miR‑188‑3p to regulate the expression of GPX4, thereby affecting OS progression. In conclusion, the present study delineated a new regulatory axis involving circBLNK/miR‑188‑3p/GPX4 in OS progression, adding to the growing evidence that circRNAs are critical gene regulators in cancer progression.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Orthopaedics, Weihai Medical District of The 970th Hospital of The PLA Joint Logistic Support Force, Weihai, Shandong 264200, P.R. China
| | - Yi Luo
- Department of Orthopaedics, The 970th Hospital of The PLA Joint Logistic Support Force, Yantai, Shandong 264002, P.R. China
| | - Chunbo Wang
- Department of Orthopaedics, Weihai Medical District of The 970th Hospital of The PLA Joint Logistic Support Force, Weihai, Shandong 264200, P.R. China
| | - Dunxin Han
- Department of Orthopaedics, Weihai Medical District of The 970th Hospital of The PLA Joint Logistic Support Force, Weihai, Shandong 264200, P.R. China
| | - Weiping Sun
- Department of Orthopaedics, Weihai Medical District of The 970th Hospital of The PLA Joint Logistic Support Force, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
4
|
Zhou L, Li H, Yao H, Dai X, Gao P, Cheng H. TMED family genes and their roles in human diseases. Int J Med Sci 2023; 20:1732-1743. [PMID: 37928880 PMCID: PMC10620864 DOI: 10.7150/ijms.87272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), β (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.
Collapse
Affiliation(s)
| | | | | | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| |
Collapse
|
5
|
Lin JJ, Luo BH, Su T, Yang Q, Zhang QF, Dai WY, Liu Y, Xiang L. Antitumor activity of miR-188-3p in gastric cancer is achieved by targeting CBL expression and inactivating the AKT/mTOR signaling. World J Gastrointest Oncol 2023; 15:1384-1399. [PMID: 37663941 PMCID: PMC10473938 DOI: 10.4251/wjgo.v15.i8.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Altered miR-188-3p expression has been observed in various human cancers. AIM To investigate the miR-188-3p expression, its roles, and underlying molecular events in gastric cancer. METHODS Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression. Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays. The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay. A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival. A nude mouse tumor cell xenograft assay was used to confirm the in vitro data. RESULTS MiR-188-3p was found to be lower in the plasma of gastric cancer patients, tissues, and cell lines compared to their healthy counterparts. It was associated with overall survival of gastric cancer patients (P < 0.001), tumor differentiation (P < 0.001), lymph node metastasis (P = 0.033), tumor node metastasis stage (I/II vs III/IV, P = 0.024), and American Joint Committee on Cancer stage (I/II vs III/IV, P = 0.03). Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy. CBL was identified as a direct target of miR-188-3p, with its expression antagonizing the effects of miR-188-3p on gastric cancer (GC) cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway. The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer. CONCLUSION The current data provides ex vivo, in vitro, and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC.
Collapse
Affiliation(s)
- Jian-Jiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Bao-Hua Luo
- Department of Urology, Hospital of Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Tao Su
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Qiong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, China
| | - Qin-Fei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Wei-Yu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| |
Collapse
|
6
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Li Z, Li Q, Chen Z. Hsa_Circ_0104206 is An Oncogenic circRNA in Colon Cancer by Targeting Mir-188-3p/CCNA2 Axis. Horm Metab Res 2023. [PMID: 37276868 DOI: 10.1055/a-2051-8693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The identification of specific biomarkers is essential to improve cancer therapy, and circular RNAs (circRNAs) have great potency to be biomarkers. We harbor the goal to unveil the role of circ_0104206 in colon cancer (CC). The relative expressions of circ_0104206, miR-188-3p and CCNA2 in different groups were studied using real-time quantitative PCR (qPCR) or western blotting. The proliferative and migratory capacity of cancer cells were monitored via CCK-8, colony formation and Transwell assays. The transplanted tumor models were generated to analyze circ_0104206's role in vivo. The putative relationship between miR-188-3p and circ_0104206 or CCNA2 by bioinformatics tools was testified through dual-luciferase or RIP assay. The abnormal elevation of circ_0104206 expression was observed in CC. Circ_0104206 silencing repressed CC cell proliferative and migratory behaviors, and also decelerated tumor development in animal models. MiR-188-3p was directly targeted by circ_0104206, and its inhibitor had the ability to reverse the anticancer effects of circ_0104206 silencing on CC cells. CCNA2 was a target downstream of circ_0104206/miR-188-3p network. Moreover, the repressive effects of CCNA2 absence on cell proliferation and migration were attenuated by miR-188-3p inhibitor. In conclusion, Circ_0104206 plays oncogenic roles in CC via the implication of miR-188-3p/CCNA2 network, which further discloses CC pathogenesis and supplies potential markers for CC.
Collapse
Affiliation(s)
- Zhong Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Quanfu Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Othoum G, Maher CA. CrypticProteinDB: an integrated database of proteome and immunopeptidome derived non-canonical cancer proteins. NAR Cancer 2023; 5:zcad024. [PMID: 37275273 PMCID: PMC10233886 DOI: 10.1093/narcan/zcad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Translated non-canonical proteins derived from noncoding regions or alternative open reading frames (ORFs) can contribute to critical and diverse cellular processes. In the context of cancer, they also represent an under-appreciated source of targets for cancer immunotherapy through their tumor-enriched expression or by harboring somatic mutations that produce neoantigens. Here, we introduce the largest integration and proteogenomic analysis of novel peptides to assess the prevalence of non-canonical ORFs (ncORFs) in more than 900 patient proteomes and 26 immunopeptidome datasets across 14 cancer types. The integrative proteogenomic analysis of whole-cell proteomes and immunopeptidomes revealed peptide support for a nonredundant set of 9760 upstream, downstream, and out-of-frame ncORFs in protein coding genes and 12811 in noncoding RNAs. Notably, 6486 ncORFs were derived from differentially expressed genes and 340 were ubiquitously translated across eight or more cancers. The analysis also led to the discovery of thirty-four epitopes and eight neoantigens from non-canonical proteins in two cohorts as novel cancer immunotargets. Collectively, our analysis integrated both bottom-up proteogenomic and targeted peptide validation to illustrate the prevalence of translated non-canonical proteins in cancer and to provide a resource for the prioritization of novel proteins supported by proteomic, immunopeptidomic, genomic and transcriptomic data, available at https://www.maherlab.com/crypticproteindb.
Collapse
Affiliation(s)
- Ghofran Othoum
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
9
|
Wang W, Luo H, Chang J, Yang X, Zhang X, Zhang Q, Li Y, Zhao Y, Liu J, Zou B, Hao M. Circular RNA circ0001955 promotes cervical cancer tumorigenesis and metastasis via the miR-188-3p/NCAPG2 axis. J Transl Med 2023; 21:356. [PMID: 37248471 DOI: 10.1186/s12967-023-04194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are known to play a crucial role in a variety of malignancies. However, the precise role of circRNAs in cervical squamous cell carcinoma (CSCC) remains largely unknown. METHODS The expression of circ0001955 was determined by real-time quantitative PCR and fluorescence in situ hybridization. To examine the effects of circ0001955 on CSCC metastasis and growth, functional experiments were conducted in vitro and in vivo. Mechanistically, nucleocytoplasmic separation, dual luciferase reporter assay, RNA antisense purification experiments, and rescue experiments were performed to confirm the interaction between circ0001955, miR-188-3p, and NCAPG2 in CSCC. RESULTS Here, we demonstrated that a circRNA derived from the CSNK1G1 gene (circ0001955) is significantly upregulated in CSCC. The overexpression of circ0001955 promotes tumor proliferation and metastasis, whereas the knockdown of circ0001955 exerts the opposite effects. Mechanistically, circ0001955 competitively binds miR-188-3p and prevents miR-188-3p from reducing the levels of NCAPG2, activating the AKT/mTOR signaling pathway to induce epithelial mesenchymal transformation. Notably, the application of an inhibitor of mTOR significantly antagonized circ0001955-mediated CSCC tumorigenesis. CONCLUSION circ0001955 promotes CSCC tumorigenesis and metastasis via the miR-188-3p/NCAPG2 axis which would provide an opportunity to search new therapeutic targets for CSCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Haixia Luo
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingjing Chang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Yang
- Pathology Department, School of Medicine, Stanford University, 300 Pasteur Drive, Lane 235, Stanford, CA, 94305, USA
| | - Xiu Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qingmei Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Yuanxing Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yueyang Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
10
|
Yang C, Wang M, Huang R, Ou L, Li M, Wu W, Lei R. Circ_0108942 Regulates the Progression of Breast Cancer by Regulating the MiR-1178-3p/TMED3 Axis. Clin Breast Cancer 2023; 23:291-301. [PMID: 36764873 DOI: 10.1016/j.clbc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer (BC) has posed a fatal threat to women's lives and the search for new methods of diagnosis and treatment is an important way to break the bottleneck of high mortality in BC. Circular RNAs (circRNAs) have been confirmed to be aberrantly expressed in several types of cancers, and this study is intended to elucidate the role and mechanism of circ_0108942 in BC. MATERIALS AND METHODS The levels of circ_0108942, microRNA-1178-3p (miR-1178-3p), and transmembrane p24 trafficking protein 3 (TMED3) were measured using real-time quantitative polymerase chain reaction (RT-qPCR) or western blot. Meanwhile, the cell proliferation, migration, invasion, angiopoiesis, and apoptosis were analyzed using 5-ethynyl-2'-deoxyuridine (EdU), transwell, tubule formation, and flow cytometry assays. Protein levels were determined by western blot. In addition, we used dual-luciferase reporter and RNA pull-down assays to identify the interplay between miR-1178-3p and circ_0108942 or TMED3. Lastly, the impact of circ_0108942 on the growth of BC tumors in vivo was analyzed by xenograft models. RESULTS Circ_0108942 and TMED3 were notably upregulated in BC, and the miR-1178-3p was downregulated. Functionally, silencing circ_0108942 suppressed cell proliferation, migration, invasion and promoted apoptosis in BC cells. In mechanism, circ_0108942 regulated TMED3 expression by sponging miR-1178-3p. Meanwhile, circ_0108942 knockdown also greatly constrained tumor growth in vivo. CONCLUSION Circ_0108942 boosted BC progression by regulating miR-1178-3p and thus upregulating TMED3.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Meijiao Wang
- Operation room, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Renfeng Huang
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Linyang Ou
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Min Li
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Wanming Wu
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China
| | - Ruiwen Lei
- Department of Head-Neck and Breast Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, Guangdong, China.
| |
Collapse
|
11
|
Gao X, Qu H, Zhang Y. Circ_0001326 suppresses trophoblast cell proliferation, invasion, migration and epithelial-mesenchymal transition progression in preeclampsia by miR-188-3p/HtrA serine peptidase 1 axis. J Hypertens 2023; 41:587-596. [PMID: 36651169 DOI: 10.1097/hjh.0000000000003373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND It has been reported that the alteration of circular RNAs (circRNAs) during preeclampsia (PE) can be associated with the pathogenesis of this disease. Herein, this work investigated the potential functions and mechanism of circ_0001326 in PE process. METHODS The levels of genes and proteins were evaluated by quantitative real-time PCR (qRT-PCR) and western blotting. The functional experiments were conducted using cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays, respectively. The binding between miR-188-3p and circ_0001326 or HtrA serine peptidase 1 (HTRA1) was verified by bioinformatics analysis and dual-luciferase reporter assays. RESULTS Circ_0001326 and HTRA1 expression was increased, while miR-188-3p expression was decreased in the placental tissues of preeclamptic singleton pregnant women compared with the normal pregnant women. Functionally, up-regulation of circ_0001326 or HTRA1, or down-regulation of miR-188-3p led to the arrest of cell growth, invasion, migration and epithelial-mesenchymal transition (EMT) process in trophoblast cells. Mechanistically, circ_0001326 acted as a sponge for miR-188-3p, which directly targeted HTRA1. Moreover, circ_0001326 could regulate HTRA1 through sequestering miR-188-3p. A series of rescue experiments showed that miR-188-3p reversed the inhibitory effects of circ_0001326 knockdown on above behaviors of trophoblast cells. Besides that, HTRA1 silencing attenuated the action of miR-188-3p inhibitor on trophoblast cell phenotype alteration. CONCLUSION Our study demonstrated that circ_0001326 could promote trophoblast cell proliferation, invasion, migration and EMT in PE by miR-188-3p/HTRA1 axis, indicating a novel insight into the pathogenesis of PE.
Collapse
Affiliation(s)
- Xue Gao
- Department of Gynecology and Obstetrics, Xi'an People's Hospital (Xi'an Fourth Hospital), xi'an, Shaanxi, China
| | | | | |
Collapse
|
12
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Guo X, Yin X, Xu Y, Li L, Yuan M, Zhao H, Jiang Y, Shi X, Bi H, Liu Y, Chen Y, Xu Q. TMED3 promotes the development of malignant melanoma by targeting CDCA8 and regulating PI3K/Akt pathway. Cell Biosci 2023; 13:65. [PMID: 36991473 DOI: 10.1186/s13578-023-01006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Transmembrane emp24 domain containing (TMED) proteins are known to play pivotal roles in normal development, but have been reported to be implicated in pancreatic disease, immune system disorders, and cancers. As far as TMED3 is concerned, its roles in cancers are controversial. However, evidence describing TMED3 in the context of malignant melanoma (MM) is scarce. RESULTS In this study, we characterized the functional significance of TMED3 in MM and identified TMED3 as a tumor-promoting factor in MM development. Depletion of TMED3 arrested the development of MM in vitro and in vivo. Mechanistically, we found that TMED3 could interact with Cell division cycle associated 8 (CDCA8). Knocking down CDCA8 suppressed cell events associated with MM development. On the contrary, elevating CDCA8 augmented cell viability and motility and even reversed the inhibitory effects of TMED3 knockdown on MM development. On the other hand, we found that the levels of P-Akt and P-PI3K were decreased in response to TMED3 downregulation, which was partially abolished following SC79 treatment. Thus, our suspicion was that TMED3 exacerbates MM progression via PI3K/Akt pathway. More notably, previously decreased P-Akt and P-PI3K in TMED3-depleted cells were rescued after overexpressing CDCA8. Also, previously impaired cell events due to CDCA8 depletion were ameliorated after SC79 addition, implying that TMED3 regulates PI3K-AKT pathway via CDCA8, thereby promoting MM development. CONCLUSIONS Collectively, this study established the link between TMED3 and MM, and provides a potential therapeutic intervention for patients with MM harboring abundant TMED3.
Collapse
Affiliation(s)
- Xianling Guo
- Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, 200092, China
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China
- Tongji University Cancer Center, Shanghai, 200072, China
| | - Xiaolan Yin
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liang Li
- Department of Dermatologic Surgery, Dermatology Hospital, Tongji University, Shanghai, 200092, China
| | - Min Yuan
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China
| | - Huaxin Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China
| | - Yuxiong Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiujuan Shi
- Tongji University School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongda Bi
- Department of Plastic Surgery Changhai Hospital, 168# Changhai Road, Shanghai, 200433, China.
| | - Yeqiang Liu
- Department of Pathology, Dermatology Hospital, Tongji University, Shanghai, 200092, China.
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Qing Xu
- Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, 200092, China.
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China.
- Tongji University Cancer Center, Shanghai, 200072, China.
| |
Collapse
|
14
|
Fang Z, Song YX, Wo GQ, Zhou HL, Li L, Yang SY, Chen X, Zhang J, Tang JH. Screening of the novel immune-suppressive biomarkers of TMED family and whether knockdown of TMED2/3/4/9 inhibits cell migration and invasion in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1280. [PMID: 36618780 PMCID: PMC9816852 DOI: 10.21037/atm-22-5444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Background Transmembrane p24 trafficking protein (TMED) family members are implicated in several solid tumors, but their clinical relevance for breast cancer (BC) remains unclear. This study aimed to probe their prognostic values and relations with tumor immunity in BC. Methods TMED family mRNA expression was assessed in five microarray datasets (GSE65212, GSE42568, GSE5364, GSE22820 and GSE45827) from Gene Expression Omnibus (GEO) database and invasive breast cancer (BRCA) cohort from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curve was performed to determine the predictive values of filtered members of the TMED family. The protein expressions of screen genes were validated by Clinical Proteomic Tumor Analysis Consortium (CPTAC) data from University of ALabama at Birmingham CANcer data analysis portal (UALCAN) and detected in the clinical specimens by western blot assay. Clinicopathologic variables were analyzed with bc-GenExMiner, and patient prognostic data were obtained with Kaplan-Meier Plotter. In vitro wound healing and invasion assays were performed on siRNA-transfected BC cell lines. TIMER 2.0, SangerBox, and ImmPort were used to evaluate tumor immune infiltration, immune checkpoints, and other immune-related genes. CbioPortal, Metascape, Expression2kinases, and LinkedOmics were used to explore gene regulatory network. Results BC tissues expressed TMED2/3/4/9 at a higher level than normal tissues, providing diagnostic potential. All the areas under the ROC curve for TMED2/3/4/9 were more than 0.7. TMED2/3/4/9 correlated with numerous clinical variables, including lymph node status, Scarff-Bloom-Richardson score (SBR), Nottingham Prognostic Index (NPI), estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), and triple-negative breast cancer (TNBC) status, and their high expression predicted the poor prognosis of BC patients. TMED2/3/4/9 knockdown drastically inhibited the migratory and invasive capacities of MDA-MB-231 and HCC1937 cells. TMED2/3/4/9 expressions correlated negatively with the infiltration of tumor-suppressive immune cells such as CD8+ T cells, dendritic cells, and natural killer cells, and was inversely related to a variety of immune checkpoint genes, including programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA4). A set of kinases, transcription factors, and microRNAs (miRNAs) may regulate TMED2/3/4/9 abnormalities at the genome level. Conclusions TMED2/3/4/9 may serve as diagnostic, prognostic, and immune-suppressive biomarkers in BC.
Collapse
Affiliation(s)
- Zheng Fang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Xin Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guan-Qun Wo
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Lei Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Yuan Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu Chen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
HAN GWANHEE, YUN HEE, CHUNG JOONYONG, KIM JAEHOON, CHO HANBYOUL. TMED9 Expression Level as a Biomarker of Epithelial Ovarian Cancer Progression and Prognosis. Cancer Genomics Proteomics 2022; 19:692-702. [PMID: 36316042 PMCID: PMC9620446 DOI: 10.21873/cgp.20352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transmembrane emp24 domain-containing protein 9 (TMED9) belongs to the TMED/p24 family that transports, modifies, and packs proteins and lipids into vesicles for delivery to specific locations and is important in innate immune signaling via the endoplasmic reticulum-Golgi cargo pathway. TMED9 has been implicated in various cancer types; however, its role in epithelial ovarian cancer (EOC) is unclear. In this study, we aimed to elucidate the role and clinical significance of TMED9 in EOC. MATERIALS AND METHODS mRNA and protein levels of TMED9 and their associations with clinicopathological features in EOCs were evaluated using RNA-sequencing and immunohistochemistry data. Functional studies assessing the tumorigenic role of TMED9 in EOC cell lines were also performed. RESULTS The mRNA expression of TMED9 was up-regulated in EOC compared to that in normal ovarian epithelium. TMED9 protein expression increased in progression from normal ovarian epithelium to EOC (p<0.001). Moreover, high expression of TMED9 was associated with advanced stage, serous cell type and poor histological grade in EOC and demonstrated independent prognostic significance for both disease-free and overall survival. Further functional studies showed that TMED9 knockdown reduced migration, invasion, cell proliferation, and colony formation of EOC cells. CONCLUSION Overall, our results support the use of TMED9 as a valuable prognostic biomarker and provide evidence for targeting of TMED9 as a novel strategy for EOC treatment.
Collapse
Affiliation(s)
- GWAN HEE HAN
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - HEE YUN
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JOON-YONG CHUNG
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - JAE-HOON KIM
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - HANBYOUL CHO
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhang J, Qi Y. Depleting TMED3 alleviates the development of endometrial carcinoma. Cancer Cell Int 2022; 22:231. [PMID: 35854294 PMCID: PMC9295347 DOI: 10.1186/s12935-022-02649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background As one of gynecologic tumors, endometrial carcinoma (EC) has been characterized by high incidence rate, but its molecular pathogenesis has remained unclear. TMED3 is a membrane protein and has been indicated to implicate several tumor-related diseases. In the current study, we aimed to explore the physiological function of TMED3 in EC progression. Methods Through bioinformatic analysis using The Cancer Genome Atlas database and immunohistochemistry assay on tissue microarray, we examined whether TMED3 was upregulated in EC tissues. After constructing TMED3-knockdown cell models via lentiviral transfection, qPCR and western blot were employed to determine the expression levels of TMED3 mRNA and protein. Then, Celigo cell counting assay, CCK8 assay, flow cytometry, wound-healing assay and Transwell assay were used to detect cell proliferation, cell cycle, cell apoptosis and cell migration, respectively. Results As a result, it was found that TMED3 was upregulated in EC cells, which was also verified in clinical samples. We then found that downregulation of TMED3 considerably restrained cell cycle, cell growth and migration but promoted apoptosis of EC cells. The following in-vivo experiments also verified that tumor growth was inhibited after TMED3 knockdown. The exploration in molecular mechanisms showed that TMED3 deletion may weaken cellular viability through upregulating pro-apoptotic proteins and targeting PI3K/AKT signaling pathways. Conclusions This study suggested that knocking down TMED3 affected the malignant phenotype of EC cells and thus limited tumor progression, which provided insights to the development of targeted drugs for EC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02649-0.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, China
| | - Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Chen Z, Fu S, Shan Y, Li H, Wang H, Liu J, Wang W, Huang Y, Huang H, Wang J, Ding M. Hsa_circ_0102485 inhibits the growth of cancer cells by regulating the miR-188-3p/ARID5B/AR axis in prostate carcinoma. Pathol Res Pract 2022; 237:154052. [DOI: 10.1016/j.prp.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
|
18
|
Gao W, Zhang ZW, Wang HY, Li XD, Peng WT, Guan HY, Liao YX, Liu A. TMED2/9/10 Serve as Biomarkers for Poor Prognosis in Head and Neck Squamous Carcinoma. Front Genet 2022; 13:895281. [PMID: 35754792 PMCID: PMC9214264 DOI: 10.3389/fgene.2022.895281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Head and neck squamous carcinoma (HNSC) is one of the most common malignant tumors with high incidence and poor prognosis. Transmembrane emp24 structural domain (TMED) proteins are involved in protein transport and vesicle budding processes, which have implicated various malignancies’ progression. However, the roles of TMEDs in HNSC, especially in terms of development and prognosis, have not been fully elucidated. Methods: We applied TIMER 2.0, UALCAN, GEPIA 2, Kaplan-Meier plotter, GEO, The Human Protein Atlas (HPA), cBioPortal, Linkedomics, Metascape, GRNdb, STRING, and Cytoscape to investigate the roles of TMED family members in HNSC. Results: Compared with normal tissues, the mRNA expression levels of TMED1/2/4/5/7/8/9/10 were significantly increased in the TCGA HNSC dataset. And we combined GEPIA 2 and Kaplan-Meier Plotter to select TMED2/9/10 with prognostic value. Then we detected the levels of mRNA in the GEO HNSC database and the protein expression in HPA. It was found that the mRNA and protein expression levels of TMED2/9/10 were increased in HNSC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that TMED2/9/10 and their co-expressed genes promoted the malignant behavior of tumors by participating in biological processes such as intracellular transferase complex, protein transport, focal adhesion, intracellular protein processing. Single-cell analysis and immune infiltration analysis suggested that immune responses of cancer-associated fibroblasts and endothelial cells might be associated with prognosis. Finally, the transcription factors-genes network and protein-protein functional interaction network pointed to genes such as X-box binding protein 1 (XBP1) and TMED7, which might cooperate with TMED2/9/10 to change the progression of HNSC. Conclusions: Our study implied that TMED2/9/10 and related genes mightjointly affect the prognosis of HNSC, providing specific clues for further experimental research, personalized diagnosis strategies, and targeted clinical therapy for HNSC.
Collapse
Affiliation(s)
- Wen Gao
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhe-Wen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hong-Yi Wang
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Di Li
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei-Ting Peng
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao-Yu Guan
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu-Xuan Liao
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - An Liu
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Yang Y, Liu S, Xie C, Li Q, Gao T, Liu M, Xi M, Zhao L. Trafficking Protein TMED3 Promotes Esophageal Squamous Cell Carcinoma. Biomed J 2022; 46:100528. [PMID: 35358714 DOI: 10.1016/j.bj.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The molecular mechanisms of esophageal squamous cell carcinoma (ESCC) remain poorly understood. Transmembrane emp24 trafficking protein 3 (TMED3) acts as an oncogene or tumor suppressor gene in different cancers. Our study was to explore the clinicopathological significance and functional roles of TMED3 in ESCC. METHODS Immunohistochemistry, qPCR, and western blotting were used to analyze the expression of TMED3 in ESCC tissues and cells. Statistical analysis was performed to analyze the relationship between TMED3 expression and tumor characteristics in patients with ESCC. The role of TMED3 in vitro and in vivo was investigated by performing functional verification experiments and using a xenograft mouse model. Proteins that are functionally related to TMED3 were recognized by Affymetrix microarray and Ingenuity Pathway Analysis (IPA). Functional verification experiments were performed to analyze the role of FAM60A (a protein functionally related to TMED3) in vitro. RESULTS We confirmed the overexpression of TMED3 was correlated with poor prognosis in ESCC patients. When TMED3 was knocked down, ESCC cell proliferation, migration, and invasion were inhibited whereas cell apoptosis was promoted in vitro, and tumorigenicity was inhibited in vivo. We further revealed significant changes in gene expression profile in TMED3 knockdown cells. Among these differentially expressed genes, FAM60A was overexpressed in ESCC tissues. Furthermore, knocking down FAM60A significantly weakened the proliferation ability of ESCC cells and reversed TMED3's tumorigenicity of ESCC cells. CONCLUSION Our study revealed an oncogenic role of TMED3 in ESCC.
Collapse
Affiliation(s)
- Yuxian Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunxia Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiaoqiao Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tiantian Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mengzhong Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Mendes LFS, Costa-Filho AJ. A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Lett 2022; 596:973-990. [PMID: 35099811 DOI: 10.1002/1873-3468.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/06/2022]
Abstract
The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is "Golgi Dynamics" (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the Transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, Human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the β-sandwich-like fold map and give exciting new directions for forthcoming studies.
Collapse
Affiliation(s)
- Luis Felipe S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
21
|
Zhang D, Sun L, Zhang J. TMED3 exerts a protumor function in non-small cell lung cancer by enhancing the Wnt/β-catenin pathway via regulation of AKT. Toxicol Appl Pharmacol 2021; 433:115793. [PMID: 34758370 DOI: 10.1016/j.taap.2021.115793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
Transmembrane emp24 protein transport domain containing 3 (TMED3) is a newly identified cancer-related protein in several malignancies. However, its role in carcinogenesis is still controversial. The project was performed to explore the possible function of TMED3 in the carcinogenesis of non-small cell lung cancer (NSCLC). TMED3 were abundantly expressed in NSCLC tissue, and high TMED3 levels predicted reduced survival in NSCLC patients. NSCLC cells with TMED3 silencing proliferated and invaded more slowly, and were more sensitive to the chemotherapy drug cisplatin than control NSCLC cells. TMED3 silencing reduced the activity of Wnt/β-catenin pathway, associated with the repression of AKT. Restraint of AKT blocked TMED3-overexpression-evoked enhancing effects on Wnt/β-catenin pathway. Moreover, down-regulating Wnt/β-catenin activity reversed TMED3-overexpression-evoked enhancing effects on the proliferation and invasion of NSCLC cells. Additionally, inhibition of TMED3 also displayed antitumor effects in vivo in nude mice. Taken together, our data demonstrate that TMED3 exerts a protumor function in NSCLC by enhancing Wnt/β-catenin signaling by modulating AKT. Our findings demonstrate that TMED3 inhibition displayed outstanding antitumor effects in vitro and in vivo, and may be a candidate target for future exploiting targeted therapies for NSCLC management.
Collapse
Affiliation(s)
- Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| | - Liangzhang Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China
| | - Jin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, China.
| |
Collapse
|
22
|
Xu W, Li Y, Ye X, Ji Y, Chen Y, Zhang X, Li Z. TMED3/RPS15A Axis promotes the development and progression of osteosarcoma. Cancer Cell Int 2021; 21:630. [PMID: 34838013 PMCID: PMC8626936 DOI: 10.1186/s12935-021-02340-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Osteosarcoma is a primary malignant tumor that mainly affects children and young adults. Transmembrane emp24 trafficking protein 3 (TMED3) may be involved in the regulation of malignant cancer behaviors. However, the role of TMED3 in osteosarcoma remains mysterious. In this study, the potential biological function and underlying mechanism of TMED3 in progression of osteosarcoma was elaborated. Methods The expression of TMED3 in osteosarcoma was analyzed by immunohistochemical staining. The biological function of TMED3 in osteosarcoma was determined through loss-of-function assays in vitro. The effect of TMED3 downregulation on osteosarcoma was further explored by xenograft tumor model. The molecular mechanism of the regulation of TMED3 on osteosarcoma was determined by gene expression profile analysis. Results The expression of TMED3 in osteosarcoma tissues was significantly greater than that in matched adjacent normal tissues. Knockdown of TMED3 inhibited the progression of osteosarcoma by suppressing proliferation, impeding migration and enhancing apoptosis in vitro. We further validated that knockdown of TMED3 inhibited osteosarcoma generation in vivo. Additionally, ribosomal protein S15A (RPS15A) was determined as a potential downstream target for TMED3 involved in the progression of osteosarcoma. Further investigations elucidated that the simultaneous knockdown of RPS15A and TMED3 intensified the inhibitory effects on osteosarcoma cells. Importantly, knockdown of RPS15A alleviated the promotion effects of TMED3 overexpression in osteosarcoma cells. Conclusions In summary, these findings emphasized the importance of TMED3/RPS15A axis in promoting tumor progression, which may be a promising candidate for molecular therapy of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02340-w.
Collapse
Affiliation(s)
- Wei Xu
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yifan Li
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Xiaojian Ye
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yunhan Ji
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Yu Chen
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Xiangyang Zhang
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China
| | - Zhikun Li
- Department of orthopedic, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, 200336, Shanghai, People's Republic of China.
| |
Collapse
|
23
|
Xie A, Xu X, Kuang P, Zhang L, Yu F. TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR. Cell Death Dis 2021; 12:804. [PMID: 34429402 PMCID: PMC8385054 DOI: 10.1038/s41419-021-04086-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.
Collapse
Affiliation(s)
- An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
24
|
Rastgar Rezaei Y, Zarezadeh R, Nikanfar S, Oghbaei H, Nazdikbin N, Bahrami-Asl Z, Zarghami N, Ahmadi Y, Fattahi A, Nouri M, Dittrich R. microRNAs in the pathogenesis of non-obstructive azoospermia: the underlying mechanisms and therapeutic potentials. Syst Biol Reprod Med 2021; 67:337-353. [PMID: 34355990 DOI: 10.1080/19396368.2021.1951890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
miRNAs are involved in different biological processes, including proliferation, differentiation, and apoptosis. Interestingly, 38% of the X chromosome-linked miRNAs are testis-specific and have crucial roles in regulating the renewal and cell cycle of spermatogonial stem cells. Previous studies demonstrated that abnormal expression of spermatogenesis-related miRNAs could lead to nonobstructive azoospermia (NOA). Moreover, differential miRNAs expression in seminal plasma of NOA patients has been reported compared to normozoospermic men. However, the role of miRNAs in NOA pathogenesis and the underlying mechanisms have not been comprehensively studied. Therefore, the aim of this review is to mechanistically describe the role of miRNAs in the pathogenesis of NOA and discuss the possibility of using the miRNAs as therapeutic targets.Abbreviations: AMO: anti-miRNA antisense oligonucleotide; AZF: azoospermia factor region; CDK: cyclin-dependent kinase; DAZ: deleted in azoospermia; ESCs: embryonic stem cells; FSH: follicle-stimulating hormone; ICSI: intracytoplasmic sperm injection; JAK/STAT: Janus kinase/signal transducers and activators of transcription; miRNA: micro-RNA; MLH1: Human mutL homolog l; NF-κB: Nuclear factor-kappa B; NOA: nonobstructive azoospermia; OA: obstructive azoospermia; PGCs: primordial germ cells; PI3K/AKT: Phosphatidylinositol 3-kinase/protein kinase B; Rb: retinoblastoma tumor suppressor; ROS: Reactive Oxygen Species; SCOS: Sertoli cell-only syndrome; SIRT: sirtuin; SNPs: single nucleotide polymorphisms; SSCs: spermatogonial stem cells; TESE: testicular sperm extraction; TGF-β: transforming growth factor-beta.
Collapse
Affiliation(s)
- Yeganeh Rastgar Rezaei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Bahrami-Asl
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Ahmadi
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Pei J, Zhang S, Yang X, Han C, Pan Y, Li J, Wang Z, Sun C, Zhang J. Long non-coding RNA RP11-283G6.5 confines breast cancer development through modulating miR-188-3p/TMED3/Wnt/β-catenin signalling. RNA Biol 2021; 18:287-302. [PMID: 34130584 DOI: 10.1080/15476286.2021.1941608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The contributions of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) to breast cancer are critical areas of investigation. In this study, we identified a novel lncRNA RP11-283G6.5 which was lowly expressed in breast cancer and whose low expression was correlated with poor overall survival and disease-free survival of breast cancer patients. Functional experiments revealed that ectopic expression of RP11-283G6.5 confined breast cancer cellular growth, migration, and invasion, and promoted cellular apoptosis. Conversely, RP11-283G6.5 silencing facilitated breast cancer cellular growth, migration, and invasion, and repressed cellular apoptosis. Moreover, RP11-283G6.5 was found to confine breast cancer tumour growth and metastasis in vivo. Mechanistically, RP11-283G6.5 competitively bound to ILF3, reduced the binding of ILF3to primary miR-188 (pri-miR-188), abolished the suppressive effect of ILF3 on pri-miR-188 processing, and therefore promoted pri-miR-188 processing, leading to the reduction of pri-miR-188 and the upregulation of mature miR-188-3p. The expression of RP11-283G6.5 was significantly positively correlated with that of miR-188-3p in breast cancer tissues. Through increasing miR-188-3p, RP11-283G6.5 decreased TMED3, a target of miR-188-3p. RP11-283G6.5 further suppressed Wnt/β-catenin signalling via decreasing TMED3. Rescue assays revealed that inhibition of miR-188-3p, overexpression of TMED3 or blocking Wnt/β-catenin signalling all attenuated the roles of RP11-283G6.5 in breast cancer. Collectively, these findings demonstrated that RP11-283G6.5 is a tumour suppressive lncRNA in breast cancer via modulating miR-188-3p/TMED3/Wnt/β-catenin signalling. This study indicated that RP11-283G6.5 might be a promising prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jing Pei
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, China
| | - Xiaowei Yang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunguang Han
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yubo Pan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhaorui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenyu Sun
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, Illinois, USA
| | - Jing Zhang
- Department of Breast Surgery, The Tumor Hospital of Xuzhou, Xuzhou, China
| |
Collapse
|
26
|
Lu Q, Wang L, Gao Y, Zhu P, Li L, Wang X, Jin Y, Zhi X, Yu J, Li X, Qin X, Zhou P. lncRNA APOC1P1-3 promoting anoikis-resistance of breast cancer cells. Cancer Cell Int 2021; 21:232. [PMID: 33902604 PMCID: PMC8074441 DOI: 10.1186/s12935-021-01916-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anoikis resistance plays a critical role in the tumor metastasis by allowing survival of cancer cells in the systemic circulation. We previously showed that long non-coding RNAs APOC1P1-3 (lncRNA APOC1P1-3) inhibit apoptosis of breast cancer cells. In this study, we explored its role in anoikis resistance. METHODS We induced anoikis resistance in two breast cancer cell lines (MCF-7 and MDA-MB-231) under anchorage-independent culture conditions and studied lncRNA APOC1P1-3 effects on apoptosis. Using Dual-Luciferase activity assay, we determined whether it specifically binds to miRNA-188-3P. We further explored its role in lung metastasis by injecting MDA-MB-231 and MDA-MB-231-APOC1P1-3-knock-down cells in female BALB/c nude mice. RESULTS We found that lncRNA APOC1P1-3 suppressed early apoptosis of these cells (demonstrated by gain or loss of their function, respectively) and promoted anoikis resistance via reducing activated- Caspase 3, 8, 9 and PARP. Moreover, it specifically binds to the target miRNA-188-3p acting as a "sponge" to block the inhibition of Bcl-2 (an anti-apoptosis protein). CONCLUSIONS Our study supports a theory that lncRNA APOC1P1-3 can promote development of breast cancer metastasis via anoikis resistance by specifically binding to miRNA-188-3p to block the inhibition of Bcl-2.
Collapse
Affiliation(s)
- Qi Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Li Wang
- Institutes of Biomedical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yabiao Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Ping Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Luying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Youping Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China
| | - Jerry Yu
- Department of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - Xin Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Xingjun Qin
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, No. 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Yang YC, Chien MH, Lai TC, Tung MC, Jan YH, Chang WM, Jung SM, Chen MH, Yeh CN, Hsiao M. Proteomics-based identification of TMED9 is linked to vascular invasion and poor prognoses in patients with hepatocellular carcinoma. J Biomed Sci 2021; 28:29. [PMID: 33888099 PMCID: PMC8063382 DOI: 10.1186/s12929-021-00727-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients. METHODS Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses. Expression levels and functional roles of candidate biomarkers were respectively evaluated by immunohistochemical staining in N/T paired tissue (n = 120) and MTS, colony formation, and transwell migration/invasion assays in HCC cell lines. Associations of clinicopathological features and prognoses with candidate biomarkers in HCC patients were analyzed from GEO and TCGA datasets and our recruited cohort. RESULTS We found that the transmembrane P24 trafficking protein 9 (TMED9) protein was elevated in HCC tissues according to a global proteomic analysis. Higher messenger (m)RNA and protein levels of TMED9 were observed in HCC tissues compared to normal liver tissues or pre-neoplastic lesions. The TMED9 mRNA expression level was significantly associated with an advanced stage and a poor prognosis of overall survival (OS, p = 0.00084) in HCC patients. Moreover, the TMED9 protein expression level was positively correlated with vascular invasion (p = 0.026), OS (p = 0.044), and disease-free survival (p = 0.015) in our recruited Taiwanese cohort. In vitro, manipulation of TMED9 expression in HCC cells significantly affected cell migratory, invasive, proliferative, and colony-forming abilities. CONCLUSIONS Ours is the first work to identify an oncogenic role of TMED9 in HCC cells and may provide insights into the application of TMED9 as a novel predictor of clinical outcomes and a potential therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Che Tung
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Linkou Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan. .,Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Yang J, Huang H, Xiao D, Duan Y, Zheng Y, Chen Z. Knockdown of TMED3 inhibits cell viability and migration and increases apoptosis in human chordoma cells. Int J Oncol 2021; 58:15. [PMID: 33760171 PMCID: PMC7949631 DOI: 10.3892/ijo.2021.5195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/28/2021] [Indexed: 01/06/2023] Open
Abstract
Chordoma is a rare low‑grade tumor of the axial skeleton. Over previous decades, a range of targeted drugs have been used for treating chordoma, with more specific and effective therapies under investigation. Transmembrane Emp24 protein transport domain containing 3 (TMED3) is a novel gene reported to be a regulator of oncogenesis, cancer development and metastasis; however, its role in chordoma remains unclear. In the present study, the expression of TMED3 was investigated in chordoma cells, and the effect of TMED3 knockdown on chordoma development was examined in vitro and in vivo, followed by exploration of differentially expressed proteins in TMED3‑silenced chordoma cells via an apoptosis antibody array. Reverse transcription‑quantitative PCR and western blot assays were performed to determine the expression levels. It was revealed that TMED3 was highly expressed in chordoma, and that knockdown of TMED3 inhibited cell viability and migration, and enhanced the apoptosis of chordoma cells. Additionally, knockdown of TMED3 inhibited the expression of Bcl‑2, heat shock protein 27, insulin‑like growth factor (IGF)‑I, IGF‑II, IGF binding protein‑2, Livin, Akt, CDK6 and cyclin D1 proteins, whereas MAPK9 was upregulated. Furthermore, a xenograft nude mice model demonstrated that TMED3 expression promoted tumor growth. Collectively, the present findings suggested that knockdown of TMED3 inhibited cell viability and migration, and enhanced apoptosis in chordoma cells, and that TMED3 may be a novel target for chordoma therapy.
Collapse
Affiliation(s)
- Jinxing Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Hanwen Huang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Dan Xiao
- Department of Spine Surgery, Orthopedics Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Duan
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yanfang Zheng
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zhong Chen
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
29
|
Mi S, Wang P, Lin L. miR-188-3p Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Targeting Fibroblast Growth Factor 1 (FGF1). Med Sci Monit 2020; 26:e924394. [PMID: 33020467 PMCID: PMC7547530 DOI: 10.12659/msm.924394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background As one of the crucial causes leading to cardiovascular disease, atherosclerosis (AS) develops in association with the dysfunction of vascular smooth muscle cells (VSMCs). However, the associated mechanism of the proliferation and migration in VSMCs requires further elucidation. Material/Methods Human VSMCs and ApoE-knockout (ApoE−/−) mice were used to establish AS cell and animal models, respectively. Expression levels of miR-188-3p and fibroblast growth factor 1 (FGF1) mRNA were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was used to assess FGF1 protein expression. The proliferation, migration, and apoptosis of the cells were determined using MTT, BrdU, and Transwell assays, as well as flow cytometry analysis. The interaction between miR-188-3p and FGF1 was validated using dual-luciferase reporter gene assay, qRT-PCR, and Western blot analysis. Results MiR-188-3p was found to be significantly decreased in the serum of AS patients and ApoE−/− mice as well as VSMCs of ApoE−/− mice and human VSMCs treated with oxidized low-density lipoprotein. MiR-188-3p repressed the proliferation and migration of VSMCs but promoted apoptosis of VSMCs. The binding site between miR-188-3p and 3′ untranslated region (3′-UTR) of FGF1 was identified, and FGF1 was verified as a target gene of miR-188-3p. Restoration of FGF1 reversed the effects of miR-188-3p on VSMCs. Conclusions MiR-188-3p suppresses the proliferation and migration of VSMCs and induces their apoptosis through targeting FGF1.
Collapse
Affiliation(s)
- Shaohua Mi
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| | - Pengfei Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Laishan Branch, Yantai, Shandong, China (mainland)
| | - Lejun Lin
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| |
Collapse
|
30
|
Di Palo A, Siniscalchi C, Salerno M, Russo A, Gravholt CH, Potenza N. What microRNAs could tell us about the human X chromosome. Cell Mol Life Sci 2020; 77:4069-4080. [PMID: 32356180 PMCID: PMC7854456 DOI: 10.1007/s00018-020-03526-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNA) are small-non coding RNAs endowed with great regulatory power, thus playing key roles not only in almost all physiological pathways, but also in the pathogenesis of several diseases. Surprisingly, genomic distribution analysis revealed the highest density of miRNA sequences on the X chromosome; this evolutionary conserved mammalian feature equips females with a larger miRNA machinery than males. However, miRNAs contribution to some X-related conditions, properties or functions is still poorly explored. With the aim to support and focus research in the field, this review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer. A fine map of miRNA sequences on the X chromosome is reported, and their known functions are discussed; in addition, bioinformatics functional analyses of the whole X-linked miRNA targetome (predicted and validated) were performed. The emerging scenario points to different gaps in the knowledge that should be filled with future experimental investigations, also in terms of possible implications and pathological perspectives for X chromosome aneuploidy syndromes, such as Turner and Klinefelter syndromes.
Collapse
Affiliation(s)
- Armando Di Palo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Chiara Siniscalchi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mariacarolina Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Claus Højbjerg Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
31
|
Gao F, Han J, Wang Y, Jia L, Luo W, Zeng Y. Circ_0109291 Promotes the Cisplatin Resistance of Oral Squamous Cell Carcinoma by Sponging miR-188-3p to Increase ABCB1 Expression. Cancer Biother Radiopharm 2020; 37:233-245. [PMID: 32758011 DOI: 10.1089/cbr.2020.3928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Fei Gao
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Yun Wang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Wenjuan Luo
- Department of Oncology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Yan Zeng
- Department of Radiology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| |
Collapse
|
32
|
Ji F, Zhu L, Pan J, Shen Z, Yang Z, Wang J, Bai X, Lin Y, Tao J. hsa_circ_0026827 Promotes Osteoblast Differentiation of Human Dental Pulp Stem Cells Through the Beclin1 and RUNX1 Signaling Pathways by Sponging miR-188-3p. Front Cell Dev Biol 2020; 8:470. [PMID: 32671065 PMCID: PMC7332693 DOI: 10.3389/fcell.2020.00470] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies have found that circular RNA (circRNA) hsa_circ_0026827 plays a role during osteoblast differentiation, but the mechanism is unclear. The aim of this study was to illuminate the role of hsa_circ_0026827 in human dental pulp stem cells (DPSCs) during osteoblast differentiation. The results show that hsa_circ_0026827 expression significantly increased during osteoblast differentiation, while knockdown of hsa_circ_0026827 suppressed DPSC-derived osteoblast differentiation. microRNA (miRNA) expression profile analysis showed that downregulation of hsa_circ_0026827 promoted miR-188-3p expression. miR-188-3p downregulation restored osteogenic differentiation of DPSCs after hsa_circ_0026827 was silenced. Luciferase reporter assays verified that miR-188-3p was the target of hsa_circ_0026827 and also demonstrated that Beclin1 and RUNX1 were miR-188-3p downstream targets. miR-188-3p overexpression suppressed DPSC osteogenic differentiation by targeting Beclin-1-mediated autophagy and runt-related transcription factor 1 (RUNX1). In vivo studies using a heterotopic bone model also found that hsa_circ_0026827 overexpression plays an important role in promoting heterotopic bone formation. In conclusion, our research indicates that hsa_circ_0026827 promotes osteoblast differentiation of DPSCs via Beclin1 and the RUNX1 signaling pathways by sponging miR-188-3p, which suggests novel therapeutics for osteoporosis treatment.
Collapse
Affiliation(s)
- Fang Ji
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lanying Zhu
- Department of Stomatology, Jining Traditional Chinese Medicine Hospital, Shandong, China
| | - Jing Pan
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhecheng Shen
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhao Yang
- Department of Orthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jian Wang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuebing Bai
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueting Lin
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Tao
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of General Dentistry, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Zhang X, Luo Y, Li Q. TMED3 Promotes Proliferation and Migration in Breast Cancer Cells by Activating Wnt/β-Catenin Signaling. Onco Targets Ther 2020; 13:5819-5830. [PMID: 32606792 PMCID: PMC7311187 DOI: 10.2147/ott.s250766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Evidence describing TMED3 in the context of breast cancer is scarce, and the effect of TMED3 on Wnt/β-catenin signaling in breast cancer has not been reported. The objective of this study was to determine the potential physiological functions and molecular mechanisms of TMED3 in breast cancer. Materials and Methods Quantitative real-time PCR and Western blot analysis were used to analyze the expression of TMED3 mRNA and protein in 182 paraffin-embedded primary breast cancer tissues and 60 paired noncancerous tissues and 25 fresh primary breast cancer tissues and surrounding adjacent noncancerous tissues. Associations between TMED3 expression and clinicopathologic factors or overall survival were determined. The effects of overexpression or knockdown of TMED3 on proliferation, migration, invasion, and cell cycle progression in breast cancer cell lines were investigated with the Cell Counting Kit-8, clone formation assay, transwell assay, wound healing assay, and flow cytometry, respectively. Immunofluorescence and Western blot analysis were used to detect the expression of cell cycle, migration-related, and Wnt/β-catenin signaling proteins. Results The expression of TMED3 mRNA and protein were significantly increased in breast cancer tissues and cell lines compared to normal controls. TMED3 upregulation was significantly correlated with clinicopathologic characteristics and predicted poor prognosis in patients with breast cancer. TMED3 overexpression promoted proliferation, migration, invasion, and cell cycle progression compared to controls in breast cancer cell lines. TMED3 knockdown suppressed proliferation, migration, invasion, and cell cycle progression compared to controls in breast cancer cell lines. TMED3 promoted proliferation and migration of breast cancer cells by a mechanism that involved Wnt/β-catenin signaling. Conclusion TMED3 behaves as an oncogene that promotes the proliferation and migration of breast cancer cells by a mechanism that involved Wnt/β-catenin signaling. Strategies targeting TMED3 have potential therapeutic implications for patients with breast cancer.
Collapse
Affiliation(s)
- Xiumei Zhang
- College of Basic Medical Sciences, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Pathology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yalan Luo
- Department of Abdominal Emergency Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Qingchang Li
- College of Basic Medical Sciences, China Medical University and Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
34
|
Yang M, Huang W. Circular RNAs in nasopharyngeal carcinoma. Clin Chim Acta 2020; 508:240-248. [PMID: 32417214 DOI: 10.1016/j.cca.2020.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a geographical distributed epithelial tumor of head and neck, which is prevalent in east Africa and Asia, especially southern China. Moreover, NPC has an unfavorable clinical effect and is prone to metastasis at an advanced stage. Although the recovery rate of patients has been improved due to concurrent chemoradiotherapy, poor curative effects and low overall survival remain key issues. The precise mechanisms and pivotal regulators of NPC remain still unclear. To improve the therapeutic efficacy, we focused on related-NPC circular RNAs (circRNAs). CircRNAs are a unique type of endogenous non-coding RNAs (ncRNAs) with a covalent closed-loop structure. Their expression is rich, stable and conservative. Different circRNA have specific tissue and developmental stages and can be detected in body fluids. In addition, circRNAs are involved in multiple pathological processes, especially in cancers. In recent years, using high-throughput indicator technology and bioinformatics technology, a large number of circRNAs have been identified in NPC cells and verified to have biological functions and mechanisms of action. This article aims to provide a retrospective review of the latest research on the proliferation and migration of related-NPC circRNA. Specifically, we focused on the roles and mechanisms of circRNAs in the development and progression of NPC. CONCLUSION CircRNA can act as an oncogene or tumor suppressor gene and participate in NPC progression (e.g., proliferation, apoptosis, migration, and invasion). In short, circRNAs have potential as biomarkers for the diagnosis, prognosis and treatment of NPC.
Collapse
Affiliation(s)
- Mingxiu Yang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang, Hunan Province, People's Republic of China.
| |
Collapse
|
35
|
Li M, Li Y, Yu M. CircRNA ZNF609 Knockdown Suppresses Cell Growth via Modulating miR-188/ELF2 Axis in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:2399-2409. [PMID: 32273713 PMCID: PMC7107005 DOI: 10.2147/ott.s234230] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Background Circular RNAs (circRNAs) and microRNAs (miRNAs) have been reported to act as the important regulators in nasopharyngeal carcinoma (NPC). CircRNA ZNF609 (circ-ANF609) and miR-188 have been, respectively, reported to play a pro-cancer and anti-cancer role in NPC. The purpose of this study is to reveal the functional relation of circ-ZNF609 and miR-188 in NPC development. Methods The transcription level and protein level of genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assay, respectively. Cell proliferation was analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Furthermore, flow cytometry analysis was used to assess cell cycle transition and cell apoptosis rate. Besides, the interaction between miR-188 and circ-ZNF609 or E74-like factor 2 (ELF2) was predicted by starbase or microT-CDS, and then confirmed by the dual luciferase reporter assay and RIP assay. Results Circ-ZNF609 and ELF2 levels were increased and miR-188 level was decreased in NPC. Circ-ZNF609 knockdown significantly inhibited cell proliferation and cell cycle transition, as well as accelerated apoptosis in NPC cells. Interestingly, circ-ZNF609 directly bound to miR-188. Circ-ZNF609 regulated NPC cell growth through modulating miR-188 expression. In addition, miR-188 suppressed NPC cell growth via directly targeting ELF2. Finally, we confirmed that circ-ZNF609 mediated miR-188 level to modulate ELF2 expression. Conclusion Our findings demonstrated that circ-ZNF609 depletion-repressed proliferation and cell cycle transition, and induced apoptosis of NPC cells via modulation of miR-188/ELF2 axis, providing potential targets for the therapy of NPC.
Collapse
Affiliation(s)
- Mingyan Li
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yujie Li
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Min Yu
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
36
|
Cui H, Zhang C, Zhao Z, Zhang C, Fu Y, Li J, Chen G, Lai M, Li Z, Dong S, Chen L, Li Z, Wang C, Liu J, Gao Y, Guo Z. Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity. Virol J 2020; 17:12. [PMID: 32000791 PMCID: PMC6993346 DOI: 10.1186/s12985-020-1283-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Influenza A virus (IAV) continues to pose serious threats to public health. The current prophylaxis and therapeutic interventions for IAV requires frequent changes due to the continuous antigenic drift and antigenic shift of IAV. Emerging evidence indicates that the host microRNAs (miRNAs) play critical roles in intricate host-pathogen interaction networks. Cellular miRNAs may directly target virus to inhibit its infection and be developed as potential anti-virus drugs. METHODS In this study, we established a broad-spectrum anti-IAV miRNA screening method using miRanda software. The screened miRNAs were further verified by luciferase assay, viral protein expression assay and virus replication assay. RESULTS Five cellular miRNAs (miR-188-3p, miR-345-5p, miR-3183, miR-15-3p and miR-769-3p), targeting 99.96, 95.31, 92.9, 94.58 and 97.24% of human IAV strains recorded in NCBI, respectively, were chosen for further experimental verification. Finally, we found that miR-188-3p downregulated PB2 expression at both mRNA and protein levels by directly targeted the predicted sites on PB2 and effectively inhibited the replication of IAV (H1N1, H5N6 and H7N9) in A549 cells. CONCLUSIONS This is the first report screening cellular miRNAs that broad-spectrum inhibiting IAV infection. These findings suggested that cellular miR-188-3p could be used for RNAi-mediated anti-IAV therapeutic strategies.
Collapse
Affiliation(s)
- Huan Cui
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Chunmao Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
| | - Zongzheng Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
| | - Cheng Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Yingying Fu
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
| | - Jiaming Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
| | - Guanxi Chen
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Mengxi Lai
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhixiang Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Zhaoyang Li
- Department of Emergency, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Chengyu Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China.
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China.
| | - Zhendong Guo
- Institute of Military Veterinary, Academy of Military Medical Sciences, 666 West Liuying Road, Changchun, 130122, Jilin, China.
| |
Collapse
|
37
|
Yao J, Xu G, Zhu L, Zheng H. circGFRA1 Enhances NSCLC Progression by Sponging miR-188-3p. Onco Targets Ther 2020; 13:549-558. [PMID: 32021297 PMCID: PMC6980840 DOI: 10.2147/ott.s230795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer continues to be one of the most dangerous tumors around the world. It is an urgency to explore the molecular mechanism of non-small cell lung cancer (NSCLC) progression for developing novel therapeutic approaches. Circular RNA (circRNA) is a novel type of non-coding RNA with a stable closed loop structure. Abnormally expressed circRNAs have been found in many kinds of cancer including NSCLC. Methods and Results The expression of circGFRA1 and miR-188-3p was detected in NSCLC tissues by RT-qPCR and it was found that circGFRA1 was highly expressed and miR-183-3p was lowly expressed in NSCLC tissues. In NSCLC cell lines, we confirmed that circGFRA1 acted as an miR-188-3p sponge using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) analysis. Overexpression of cirGFRA1 enhanced NSCLC progression while miR-188-3p overexpression inhibited it by CCK8 and colony formation analysis. In vivo tumor xenograft model, circGFRA1 and miR-188-3p synergistically regulated the proliferation of NSCLC tumors. Mechanistic study indicated that circGFRA1 and miR-188-3p regulated the proliferation of NSCLC cells at least through PI3K/AKT signaling pathway. Conclusion Our study elaborated a novel circGFRA-miR-188-3p-PI3K/AKT regulatory pathway, providing a potential diagnostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jie Yao
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, People's Republic of China
| | - Guanxin Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, People's Republic of China
| | - Ling Zhu
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, People's Republic of China
| | - Heqing Zheng
- Department of Thoracic Surgery, Yueqing People's Hospital, Wenzhou, People's Republic of China
| |
Collapse
|
38
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
39
|
Bhatti MZ, Pan L, Wang T, Shi P, Li L. REGγ potentiates TGF-β/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 2019; 64:109412. [PMID: 31491459 DOI: 10.1016/j.cellsig.2019.109412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common endocrine cancer with an increasing incidence and mortality. Epithelial-mesenchymal transition (EMT) is a biological process contributing to tumor progression, metastasis, and the acquisition of chemotherapy resistance. The impact of the REGγ proteasome activator on EMT in human thyroid cancer cells and the molecular mechanism is still unclear. Here, we found silencing REGγ in thyroid cancer cells inhibited cell migration and invasion, with concurrent upregulation of E-cadherin and Smurf2 expression. Mechanistically, REGγ dependent regulation of Smurf2, an E3 ligase for Smad3, contributed to alteration of Zeb1/2, Snail, Slug, and Twist. Consistently, TGF-β mediated suppression of E-cadherin was attenuated in REGγ deficient cells, coupled with changes in cell morphology, migration and invasion. Furthermore, xenograft metastasis mouse model showed a reduced E-cadherin expression at both mRNA and protein levels, and decreased cell migration. Taken together, our findings provided an important evidence for the role of REGγ in tumor suppression, thereby implicating REGγ as a potential anti-cancer strategy in thyroid cancer therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Tianzhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|