1
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
2
|
Gong B, Li M, Wang Z, Hao G, Sun L, Zhang J, Yuan L. Integrated analysis of circRNA- related ceRNA network targeting neuroinflammation in medial temporal lobe epilepsy. Brain Res Bull 2024; 209:110908. [PMID: 38402995 DOI: 10.1016/j.brainresbull.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND medial temporal lobe epilepsy (mTLE) is among the most common types of temporal lobe epilepsy (TLE) ,it is generally resistant to drug treatment, which significantly impacts the quality of life and treatment. Research on novel therapeutic approaches for mTLE has become a current focus. Our study aims to construct and analyze a competing endogenous RNA (ceRNA) network that targets neuroinflammation using publicly available data, which may offer a novel therapeutic approach for mTLE. METHODS we utilized the R package to analyze GSE186334 downloaded from Gene Expression Omnibus database, subsequently constructing and identifying hub network within the ceRNA network using public databases. Lastly, we validated the expressions and interactions of some nodes within the hub ceRNA network in Sombati cell model. RESULTS our transcriptome analysis identified 649 differentially expressed (DE) mRNAs (273 up-regulated, 376 down-regulated) and 36 DE circRNAs (11 up-regulated, 25 down-regulated) among mTLE patients. A total of 23 candidate DE mRNAs associated with neuroinflammation were screened, and two ceRNA networks were constructed. A hub network was further screened which included 3 mRNAs, 22 miRNAs, and 11 circRNAs. Finally, we confirmed the hsa-miR-149-5p is crucial in the regulatory effect of hsa_circ_0005145 on IL - 1α in the hub network. CONCLUSIONS In summary, our study identified a hub ceRNA network and validated a potential circRNA-miRNA-mRNA axis targeting neuroinflammation. The results of our research may serve as a potential therapeutic target for mTLE.
Collapse
Affiliation(s)
- Bingzheng Gong
- The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Ziru Wang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Gulingyue Hao
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jingjun Zhang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Liangjie Yuan
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
3
|
Abdel Mageed SS, Rashad AA, Elshaer SS, Elballal MS, Mohammed OA, Darwish SF, Salama RM, Mangoura SA, Al-Noshokaty TM, Gomaa RM, Elesawy AE, El-Demerdash AA, Zaki MB, Abulsoud AI, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Moustafa YM, Gedawy EM, Doghish AS. The emerging role of miRNAs in epilepsy: From molecular signatures to diagnostic potential. Pathol Res Pract 2024; 254:155146. [PMID: 38266457 DOI: 10.1016/j.prp.2024.155146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
4
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
5
|
García-Gracia M, Moreno-Martinez L, Hernaiz A, Usón S, Moral J, Sanz-Rubio D, Zaragoza P, Palacio J, Rosado B, Osta R, García-Belenguer S, Martín Burriel I. Analysis of Plasma-Derived Exosomal MicroRNAs as Potential Biomarkers for Canine Idiopathic Epilepsy. Animals (Basel) 2024; 14:252. [PMID: 38254420 PMCID: PMC10812621 DOI: 10.3390/ani14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Epilepsy is one of the most prevalent complex neurological diseases in both the canine and human species, with the idiopathic form as its most common diagnosis. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a role in gene regulation processes and appear to be a promising biological target for convulsion control. These molecules have been reported as constituents of the internal content of exosomes, which are small extracellular vesicles released by cells. In this study, exosome samples were isolated from the plasma of 23 dogs, including 9 dogs with epilepsy responsive to treatment, 6 dogs with drug-resistant epilepsy, and 8 control dogs. Plasma exosomes were then characterized by electron transmission microscopy, nanoparticle tracking analysis, and dot blotting. Afterwards, the microRNA-enriched RNA content of exosomes was isolated, and miRNA quantification was performed by quantitative real-time PCR. Seven circulating miRNAs that have been previously described in the literature as potential diagnostic or prognostic biomarkers for epilepsy were evaluated. We observed significant differences in miR-16 (p < 0.001), miR-93-5p (p < 0.001), miR-142 (p < 0.001), miR-574 (p < 0.01), and miR-27 (p < 0.05) levels in dogs with refractory epilepsy compared to the control group. In drug-sensitive epileptic dogs, miR-142 (p < 0.01) showed significant differences compared to healthy dogs. Moreover, distinct levels of miR-16 (p < 0.05), miR-93-5p (p < 0.01), miR-132 (p < 0.05), and miR-574 (p < 0.05) were also found between drug-sensitive and drug-resistant epileptic dogs. Our results present plasma-circulating exosomes as an advantageous source of epileptic biomarkers, highlighting the potential of miRNAs as prognostic and diagnostic biomarkers of canine idiopathic epilepsy.
Collapse
Affiliation(s)
- Mireya García-Gracia
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
| | - Laura Moreno-Martinez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sebastián Usón
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
| | - Jon Moral
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - David Sanz-Rubio
- Precision Medicine in Respiratory Diseases (PRES) Group, Unidad de Investigación Traslacional, Instituto de Investigación Sanitaria de Aragón-IISA, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain;
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Inmaculada Martín Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Research Progress on Exosomes and MicroRNAs in the Microenvironment of Postoperative Neurocognitive Disorders. Neurochem Res 2022; 47:3583-3597. [DOI: 10.1007/s11064-022-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
|
9
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
10
|
Dabin R, Wei C, Liang S, Ke C, Zhihan W, Ping Z. Astrocytic IGF-1 and IGF-1R Orchestrate Mitophagy in Traumatic Brain Injury via Exosomal miR-let-7e. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3504279. [PMID: 36062186 PMCID: PMC9433209 DOI: 10.1155/2022/3504279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
Defective brain hormonal signaling and autophagy have been associated with neurodegeneration after brain insults, characterized by neuronal loss and cognitive dysfunction. However, few studies have linked them in the context of brain injury. Insulin-like growth factor-1 (IGF-1) is an important hormone that contributes to growth, cell proliferation, and autophagy and is also expressed in the brain. Here, we assessed the clinical data from TBI patients and performed both in vitro and in vivo experiments with proteomic and gene-chip analysis to assess the functions of IGF-1 in mitophagy following TBI. We show that reduced plasma IGF-1 is correlated with cognition in TBI patients. Overexpression of astrocytic IGF-1 improves cognitive dysfunction and mitophagy in TBI mice. Mechanically, proteomics data show that the IGF-1-related NF-κB pathway transcriptionally regulates decapping mRNA2 (Dcp2) and miR-let-7, together with IGF-1R to orchestrate mitophagy in TBI. Finally, we demonstrate that brain injury induces impaired mitophagy at the chronic stage and that IGF-1 treatment could facilitate the mitophagy markers via exosomal miR-let-7e. By showing that IGF-1 is an important mediator of the beneficial effect of the neural-endocrine network in TBI models, our findings place IGF-1/IGF-1R as a potential target capable of noncoding RNAs and opposing mitophagy failure and cognitive impairment in TBI.
Collapse
Affiliation(s)
- Ren Dabin
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Chen Wei
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shu Liang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Cao Ke
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Wang Zhihan
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zheng Ping
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
12
|
circHtra1/miR-3960/GRB10 Axis Promotes Neuronal Loss and Immune Deficiency in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3522492. [PMID: 35571247 PMCID: PMC9106453 DOI: 10.1155/2022/3522492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are abundant in the brain and contribute to central nervous system diseases; however, the exact roles of circRNAs in human traumatic brain injury (TBI) have not been established. In this study, we used a competing endogenous RNA (ceRNA) chipset as well as in vitro and in vivo assays to characterize differentially expressed circRNAs in TBI. We detected 3035 differentially expressed circRNAs in the severe TBI group, 2362 in the moderate group, and 433 in the mild group. A ceRNA network was constructed. The circRNA has_circ_0020269 (circHtra1) was significantly upregulated after brain insults and was correlated with the severity of injury. circHtra1 inhibited cell proliferation and promoted apoptosis, and its knockdown reversed these effects. Further analyses revealed that circHtra1 functions as a miR-3960 sponge and increases the expression of GRB10, which is involved in NK cell infiltration after TBI. circHtra1 was identified as a target of the IGF-1/ADAR1 axis. Reduced expression of ADAR1 (involved in A-to-I editing) after brain insults upregulated circHtra1. Our results show that circHtra1 promotes neuronal loss by sponging miR-3960 and regulating GRB10 and apoptosis during brain insults. In addition, A-to-I editing could regulate circRNA expression profiles after TBI, and circHtra1 is a potential therapeutic target.
Collapse
|
13
|
Wang Z, Ren D, Zheng P. The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 2022; 37:881-887. [PMID: 35119588 PMCID: PMC9042975 DOI: 10.1007/s11011-022-00909-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
Abstract
Epilepsy is one of the most severe neurological disorders characterized by spontaneous recurrent seizures. Although more than two-thirds of patients can be cured with anti-epileptic drugs (AEDs), the rest one-third of epilepsy patients are resistant to AEDs. A series of studies have demonstrated Rho/Rho-associated kinase (ROCK) pathway might be involved in the pathogenesis of epilepsy in the recent twenty years. Several related pathway inhibitors of Rho/ROCK have been used in the treatment of epilepsy. We searched PubMed from Jan 1, 2000 to Dec 31, 2020, using the terms "epilepsy AND Rho AND ROCK" and "seizure AND Rho AND ROCK". We selected articles that characterized Rho/ROCK in animal models of epilepsy and patients. We then chose the most relevant research studies including in-vitro, in-vivo and clinical trials. The expression of Rho/ROCK could be a potential non-invasive biomarker to apply in treatment for patients with epilepsy. RhoA and ROCK show significant upregulation in the acute and chronic stage of epilepsy. ROCK inhibitors can reduce the epilepsy, epileptic seizure-related neuronal death and comorbidities. These findings demonstrate the novel development for diagnosis and treatment for patients with epilepsy. Rho/ROCK signaling pathway inhibitors may show more promising effects in epilepsy and related neurological diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dabin Ren
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China
| | - Ping Zheng
- Department of Neurusurgery & Key Laboratory, Shanghai Pudong New area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
14
|
Zheng P, Bin H, Chen W. Correction to: Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int 2021. [PMCID: PMC8547111 DOI: 10.1186/s12935-021-02238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Sun D, Jiang Z, Chen Y, Shang D, Miao P, Gao J. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling. Bioengineered 2021; 12:12891-12904. [PMID: 34784837 PMCID: PMC8810187 DOI: 10.1080/21655979.2021.2006976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Umbilical cord mesenchymal stem cells (UCMSCs) are regarded as an ideal source for clinical use. Increasing evidence has suggested that microRNAs (miRNAs) work as a crucial regulator in the development of plentiful diseases, including intrauterine adhesions (IUA). Herein, we investigated the specific impacts of UCMSCs overexpressing miR-455-5p in IUA. UCMSCs were cocultured with endometrial stromal cells (ESCs). Thirty-two female mice were divided into four different treated groups: sham, model, model + UCMSC-miR-NC and model + UCMSC-miR-455-5p. Mice in model groups were induced by uterine curettage. MiR-455-5p overexpressed UCMSCs facilitated the proliferation and cell cycle progression of ESCs according to 5-ethynyl-2′-deoxyuridine assay and flow cytometry analysis. Hematoxylin-eosin and Masson staining revealed that miR-455-5p upregulation in UCMSCs increased the number of endometrial glands and suppressed endometrial fibrosis in murine uterine tissues. Western blotting displayed that miR-455-5p overexpressed UCMSCs promoted the activation of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling in ESCs and murine uterine tissues. Mechanistically, miR-455-5p targeted 3’ untranslated region of suppressor of cytokine signaling 3 (SOCS3), which was confirmed by luciferase reporter assay. Reverse transcription quantitative polymerase chain reaction demonstrated that miR-455-5p was lowly expressed and SOCS3 was highly expressed in murine uterine tissues of IUA model. Moreover, Pearson correlation analysis showed that their expression was inversely correlated. Rescue assays suggested that inhibiting JAK/STAT3 signaling reversed effects of miR-455-5p on the behaviors of ESCs. The results indicated that miR-455-5p overexpression in UCMSCs helps to attenuate endometrial injury and repair damaged endometrium by activating SOCS3-mediated JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, Wuhan 430000, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
17
|
Ai M, Li SS, Chen H, Wang XT, Sun JN, Hou B, Cai WW, Zhou YT, Qiu LY. 1,25(OH) 2 D 3 attenuates sleep disturbance in mouse models of Lewis lung cancer, in silico and in vivo. J Cell Physiol 2021; 236:7473-7490. [PMID: 34061988 DOI: 10.1002/jcp.30458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022]
Abstract
Many clinical studies have reported that patients diagnosed with cancer will suffer from sleep disturbance during their clinical process, especially among lung cancer patients, and this effect will not easily subside. 1,25-dihydroxy-vitamin-D3 [1,25(OH)2 D3 ], the activated form of vitamin D, can participate in neuronal differentiation and prevent damage to the nervous system. However, little is known about the potential therapeutic effects of cancer-related psychiatric symptoms. In light of this, we hypothesized that a low circulating level of vitamin D was related to sleep quality in the presence of a tumor, 1,25(OH)2 D3 may be an effective way to ameliorate sleep disturbance and neurochemical alterations along with the cancer progress. Male C57BL/6 mice were implanted with intracranial transmitters to monitor electroencephalogram and were subcutaneously inoculated with Lewis lung cancer cells. The results demonstrated that on Days 19-20, tumor-bearing mice displayed fragmented sleep, shortened wake phase, prolonged sleep in the non-rapid eye movement phase, and the levels of vitamin D-associated genes in the brain had changed a lot compared to control mice. Importantly, 1,25(OH)2 D3 treatment really effectively saved the sleep quality of tumor-bearing mice. We further explored and confirmed that 1,25(OH)2 D3 repressed tumor-induced neuroinflammation (IL-1β, TNF-α, IL-6, IL-10, IFN-γ, and IL-2), enhanced neurotrophic factors (brain-derived neurotrophic factor [BDNF], glialcellline-derived neurotrophic factor) and 5-HT system in the hippocampus, hypothalamus or cortex. A molecular docking approah manifested the ability of 1,25(OH)2 D3 to affect the activity of tryptophan hydroxylase 2 and BDNF. Together, our results suggested that 1,25(OH)2 D3 treatment may attenuate sleep disturbance in Lewis lung cancer-bearing mice, and become a promising strategy for treating cancer symptom clusters to ameliorate the quality of life of patients with cancer.
Collapse
Affiliation(s)
- Min Ai
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | | | - Hong Chen
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Xi-Ting Wang
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiang-Nan Sun
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Bao Hou
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Wei Cai
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue-Tao Zhou
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| | - Li-Ying Qiu
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Van der Auwera S, Ameling S, Nauck M, Völzke H, Völker U, Grabe HJ. Association between different dimensions of childhood traumatization and plasma micro-RNA levels in a clinical psychiatric sample. J Psychiatr Res 2021; 139:113-119. [PMID: 34058649 DOI: 10.1016/j.jpsychires.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 09/30/2022]
Abstract
As an epigenetic regulator micro-RNAs (miRNAs) have gained increasing attention in biomarker research for diseases. Many studies point towards an involvement of miRNAs in neuropsychiatric disorders such as Alzheimer's Disease, schizophrenia or depression. In a recent study we identified a possible relationship between childhood traumatization and miRNAs associated with Alzheimer's Disease in the general population as well as in a small psychiatric clinical sample. In this study we aimed to confirm this biological link in an independent psychiatric clinical sample (N = 104) and to also explore the impact of different childhood trauma dimensions (sum score, abuse dimension and neglect dimension). Analyses revealed their different impact on disease in the combined sample (N = 154; N = 50 from the recent study). We could confirm associations for all of the four recently identified miRNAs in the replication sample (N = 104) on a suggested significance level of p < 0.08 (two with p < 0.05). In the combined sample (N = 154) fifteen miRNAs were significantly associated with the childhood trauma sum score after correction for multiple testing. Most of them showed recently significant associations for Alzheimer's Disease. For the subscores of abuse and neglect only one miRNA was identified in addition, associated with childhood neglect. Bioinformatics analysis identified significant brain-related pathways regulated by the respective miRNAs. At the time of publication our study is the largest study of the association between childhood trauma and miRNAs in a clinical psychiatric sample. The confirmation of our previous results supports the relevance of the association between childhood traumatization and Alzheimer's Disease through miRNA regulation of brain-related pathways.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock, Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock, Greifswald, Germany
| |
Collapse
|
19
|
Wang L, Zhao Y, Gang S, Geng T, Li M, Xu L, Zhang X, Liu L, Xie Y, Ye R, Liu X. Inhibition of miR-103-3p Preserves Neurovascular Integrity Through Caveolin-1 in Experimental Subarachnoid Hemorrhage. Neuroscience 2021; 461:91-101. [PMID: 33722672 DOI: 10.1016/j.neuroscience.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Caveolin-1 (Cav-1) is a constitutive structural protein of caveolae in the plasma membrane. It plays an important role in maintaining blood brain barrier (BBB) integrity. In this study, we identified that miR-103-3p, a hypoxia-responsive miRNA, could interact with Cav-1. In endothelial cells, miR-103-3p mimic diminished the expression of Cav-1 and tight junction proteins, which were rescued by the inhibition of miR-103-3p. We found a substantial increase of miR-103-3p and decease of Cav-1 in the rat subarachnoid hemorrhage (SAH) model. Pre-SAH intracerebroventricularly injection of miR-103-3p antagomir relieved Cav-1 loss, sequentially reduced BBB permeability and improved neurological function. Finally, we demonstrated that the salutary effects of miR-103-3p antagomir were abolished in Cav-1 knock-out mice, suggesting that Cav-1 was required for the miR-103-3p inhibition-induced neurovascular protection. Taken together, our findings suggest that the inhibition of miR-103-3p could exert neuroprotective effects through preservation of Cav-1 and BBB integrity, making miR-103-3p a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Liumin Wang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shucheng Gang
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tongchao Geng
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingquan Li
- Department of Neurology, Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Wang J, Zhao J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front Mol Neurosci 2021; 14:650372. [PMID: 33776649 PMCID: PMC7994516 DOI: 10.3389/fnmol.2021.650372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is the result of a group of transient abnormalities in brain function caused by an abnormal, highly synchronized discharge of brain neurons. MicroRNA (miRNA) is a class of endogenous non-coding single-stranded RNA molecules that participate in a series of important biological processes. Recent studies demonstrated that miRNAs are involved in a variety of central nervous system diseases, including epilepsy. Although the exact mechanism underlying the role of miRNAs in epilepsy pathogenesis is still unclear, these miRNAs may be involved in the inflammatory response in the nervous system, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, glial cell proliferation, epileptic circuit formation, impairment of neurotransmitter and receptor function, and other processes. Here, we discuss miRNA metabolism and the roles of miRNA in epilepsy pathogenesis and evaluate miRNA as a potential new biomarker for the diagnosis of epilepsy, which enhances our understanding of disease processes.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña J, Vázquez-Santillán K, Leyva-García N, Ortega A, Maldonado V, Rangel C, Magaña JJ, Cisneros B, Hernández-Hernández O. Transcriptome Analysis Reveals Altered Inflammatory Pathway in an Inducible Glial Cell Model of Myotonic Dystrophy Type 1. Biomolecules 2021; 11:biom11020159. [PMID: 33530452 PMCID: PMC7910866 DOI: 10.3390/biom11020159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most frequent inherited muscular dystrophy in adults, is caused by the CTG repeat expansion in the 3′UTR of the DMPK gene. Mutant DMPK RNA accumulates in nuclear foci altering diverse cellular functions including alternative splicing regulation. DM1 is a multisystemic condition, with debilitating central nervous system alterations. Although a defective neuroglia communication has been described as a contributor of the brain pathology in DM1, the specific cellular and molecular events potentially affected in glia cells have not been totally recognized. Thus, to study the effects of DM1 mutation on glial physiology, in this work, we have established an inducible DM1 model derived from the MIO-M1 cell line expressing 648 CUG repeats. This new model recreated the molecular hallmarks of DM1 elicited by a toxic RNA gain-of-function mechanism: accumulation of RNA foci colocalized with MBNL proteins and dysregulation of alternative splicing. By applying a microarray whole-transcriptome approach, we identified several gene changes associated with DM1 mutation in MIO-M1 cells, including the immune mediators CXCL10, CCL5, CXCL8, TNFAIP3, and TNFRSF9, as well as the microRNAs miR-222, miR-448, among others, as potential regulators. A gene ontology enrichment analyses revealed that inflammation and immune response emerged as major cellular deregulated processes in the MIO-M1 DM1 cells. Our findings indicate the involvement of an altered immune response in glia cells, opening new windows for the study of glia as potential contributor of the CNS symptoms in DM1.
Collapse
Affiliation(s)
- Cuauhtli N. Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Daniel Sanchez-Celis
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Luis E. Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Escuela Nacional de Ciencias Biologicas-Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rocío Suárez-Sánchez
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - J. Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Jorge Peña
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711, USA
| | - Karla Vázquez-Santillán
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Norberto Leyva-García
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
| | - Arturo Ortega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico;
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico; (K.V.-S.); (V.M.)
| | - Claudia Rangel
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (J.P.); (C.R.)
| | - Jonathan J. Magaña
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- School of Engineering and Sciences, Department of Bioengineering, Tecnológico de Monterrey-Campus, Mexico City 14380, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.M.H.-H.); (B.C.)
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación, Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (C.N.A.-V.); (D.S.-C.); (L.E.A.-J.); (R.S.-S.); (N.L.-G.); (J.J.M.)
- Correspondence: or ; Tel.: +52-55-5999-1000 (ext. 14710)
| |
Collapse
|
22
|
Zhang Q, Su J, Kong W, Fang Z, Li Y, Huang Z, Wen J, Wang Y. Roles of miR-10a-5p and miR-103a-3p, Regulators of BDNF Expression in Follicular Fluid, in the Outcomes of IVF-ET. Front Endocrinol (Lausanne) 2021; 12:637384. [PMID: 34054723 PMCID: PMC8150000 DOI: 10.3389/fendo.2021.637384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays critical roles in the physiological process of oocyte mature and IVF outcomes of patients with infertility. However, the regulation of BDNF expression in the microenvironment surrounding the oocyte is still unknown. We initially predicted some microRNA (miRNA) candidates targeting bdnf with a series of bioinformatics analysis tools to determine the underlying regulatory mechanisms of BDNF, particularly the effect of miRNAs on BDNF expression. Then, we assessed whether the expression of these 14 selected miRNAs was negatively associated with BDNF expression in follicular fluid (FF) samples obtained from mature (>18 mm) or immature (<15 mm) follicles. Finally, we used the candidate miRNAs, miR-103a-3p and miR-10a-5p, to further investigate the relationship between their expression in FF and the outcomes of infertile patients undergoing IVF-ET treatment. The results of the bioinformatics analysis revealed 14 miRNAs that might directly regulate BDNF expression and might have a close relationship with oocyte development. BDNF was expressed at significantly lower levels in FF from immature follicles than in FF from mature follicles, and only the expression of miR-103a-3p and miR-10a-5p was negatively correlated with BDNF expression in FF. Moreover, in another cohort of 106 infertile women undergoing IVF-ET treatment, miR-103a-3p or miR-10a-5p expression predicted the developmental status of the corresponding oocytes in which high expression of miR-103a-3p or miR-10a-5p resulted in a poor quality of embryo on days 3 and 5 during the IVF-ET treatment. In conclusion, our study is the first to show that miR-103a-3p or miR-10a-5p negatively affects the maturation of oocytes by regulating the expression of BDNF in human FF. Additionally, the expression levels of miR-103a-3p or miR-10a-5p in FF may predict the outcomes of IVF, which are helpful for improving embryo selection and consequently the IVF success rate in the clinic.
Collapse
Affiliation(s)
- Qiyao Zhang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinfeng Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Kong
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhou Fang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqiang Huang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji Wen
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Ji Wen, ; Yue Wang,
| | - Yue Wang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ji Wen, ; Yue Wang,
| |
Collapse
|
23
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
24
|
Yan Y, Xia H, Hu J, Zhang B. MicroRNA-542-3p Regulates P-glycoprotein Expression in Rat Epilepsy via the Toll-like Receptor 4/Nuclear Factor-kappaB Signaling Pathway. Curr Neurovasc Res 2020; 16:433-440. [PMID: 31702493 DOI: 10.2174/1567202616666191023160201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The function of microRNA-542-3p (miR-542-3p) in rat epilepsy is still unclear. METHODS The levels of miR-542-3p and toll-like receptor 4 (TLR4) were determined through quantitative real-time PCR. The protein levels were examined via the western blot analysis. The relationship between miR-542-3p and TLR4 was confirmed through luciferase assay. Pathological changes were analyzed via Hematoxylin-eosin (HE) and Nissl staining. RESULTS The rats and hippocampal cells were treated with kainic acid (KA) in vivo and in vitro. miR-542-3p was low in KA-treated rats, hippocampal cells and cerebrospinal fluid of patients with epilepsy. Further functional analysis showed that miR-542-3p overexpression inhibited KAinduced average seizure frequency, damage of hippocampal neuron and cell apoptosis, leading to the alleviation of the brain injury in epilepsy rats. miR-542-3p was determined to downregulate TLR4 expression. The relationship between miR-542-3p and TLR4 was confirmed. TLR4 knockdown reduced KA-induced nuclear factor-kappa B p65 (NF-κB p65), multidrug resistance 1 (MDR1), P-glycoprotein (P-gp) and apoptosis-associated protein levels. Further, for NF-κB p65, MDR1, P-gp and apoptosis-associated protein levels detection, miR-542-3p mimic showed a suppressive effect on these KA-induced protein levels, whereas TLR4 overexpression ameliorated the miR-542-3p-induced these protein levels in KA-treated epilepsy rats. CONCLUSION We identified that miR-542-3p attenuated seizure-induced brain injury and the expression of P-gp in epilepsy rats through inhibiting TLR4/NF-κB signaling pathway, which might contribute to improved epilepsy therapy.
Collapse
Affiliation(s)
- YuKui Yan
- Department of Neurology, Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Hongping Xia
- College of Basic Medicine, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, China
| | - Jianqin Hu
- Department of Neurology, Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313000, China
| | - Bing Zhang
- Department of Neurology, Huzhou Central Hospital, Huzhou City, Zhejiang Province, 313000, China
| |
Collapse
|
25
|
Li C, Niu J, Zhou B, Deng W, Deng F, Zhou Z, Xu G. Dexmedetomidine attenuates cisplatin-induced cognitive impairment by modulating miR-429-3p expression in rats. 3 Biotech 2020; 10:244. [PMID: 32411568 DOI: 10.1007/s13205-020-02217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is widely recognized as a frequent adverse side effect following the administration of chemotherapeutic agents. This study aimed to explore the neuroprotective functions and mechanisms of microRNAs (miRNAs) mediated by dexmedetomidine (Dex) on cisplatin-induced CICI. The model rats received 5 mg/kg cisplatin injections once per week for 4 weeks. Dex (30 μg/kg) was administered before cisplatin treatment. The protective effects of Dex were evaluated using Morris water maze, Nissl staining, and transmission electron microscopy. Dex-mediated miRNAs were screened via miRNA sequencing. The effects of Dex and key miRNAs on mitochondrial DNA gene mt-ND1 and caspase-9 expression were tested. Dex exhibited a protective effect against decreased learning memory ability, hippocampal neuronal damage, and mitochondrial damage in CICI rats. Thirty-nine differentially expressed (DE) miRNAs were screened, 13 of which responded positively to Dex treatment. Gene Ontology annotation identified that DE miRNAs were mainly involved in transcription, DNA-templated. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DE miRNAs were mainly involved in neuronal function and brain development-related pathways, such as axon guidance and calcium signaling pathways. Compared to cisplatin treatment, the expression of miR-429-3p responded more strongly to Dex treatment. In cisplatin-treated cultured hippocampal neurons, Dex treatment and miR-429-3p overexpression significantly increased mitochondrial DNA gene mt-ND1expression and decreased caspase-9 expression. Our study suggests that Dex alleviates CICI by modulating miR-429-3p expression in rats. Thus, Dex may be effective in preventing the side effects of cisplatin.
Collapse
|
26
|
Cheng F, Yuan G, He J, Shao Y, Zhang J, Guo X. Aberrant expression of miR-214 is associated with obesity-induced insulin resistance as a biomarker and therapeutic. Diagn Pathol 2020; 15:18. [PMID: 32093712 PMCID: PMC7041268 DOI: 10.1186/s13000-019-0914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) in obesity is associated with the occurrence of metabolic and cardiovascular diseases. Dipepidyl peptidase 4 (DPP4) plays a pivotal role during the development of IR, and was found to be a target gene of microRNA-214 (miR-214) in our study. This study sought to assess the expression and clinical value of miR-214 in obese patients with IR, and investigate its therapeutic potential in obese rats and adipocytes with IR. METHODS Serum expression of miR-214 in obese patients with or without IR was estimated by quantitative real-time-PCR. A receiver operating characteristic curve was plotted to evaluate the diagnostic value of miR-214 in the patients. Obesity-induced IR animal and cell models were constructed, and the therapeutic ability of miR-214 was explored. RESULTS Serum expression of miR-214 was decreased in obese patients compared with the healthy controls, and the lowest expression was observed in the cases with IR. Downregulation of miR-214 was significantly correlated with the serum DPP4 levels and HOMA-IR of the patients upon IR conditions, and was demonstrated to perform diagnostic accuracy for distinguishing obese patients with IR from those without IR. In obesity-associated IR animal and cell models, the downregulation of miR-214 was also been detected. According to the measurement of glucose and insulin tolerance and glucose uptake abilities, we found that the overexpression of miR-214 could be used to alleviate IR in the IR models, especially when collaboratively used with DPP4 inhibitor vildagliptin. CONCLUSION All data revealed that miR-214, as a regulator of DPP4, is decreased in obese patients with IR and may serve as a diagnostic biomarker. The upregulation of miR-214 could improve IR in obese rats and adipocytes, indicating that miR-214 has the therapeutic potential for obesity and IR.
Collapse
Affiliation(s)
- Fangxiao Cheng
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Jiao He
- Department of Endocrinology, Baoding First Central Hispital, Baoding, 071000, Hebei Province, China
| | - Yimin Shao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
27
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
28
|
Abstract
The contribution of an impaired astrocytic K+ regulation system to epileptic neuronal hyperexcitability has been increasingly recognized in the last decade. A defective K+ regulation leads to an elevated extracellular K+ concentration ([K+]o). When [K+]o reaches peaks of 10-12 mM, it is strongly associated with seizure initiation during hypersynchronous neuronal activities. On the other hand, reactive astrocytes during a seizure attack restrict influx of K+ across the membrane both passively and actively. In addition to decreased K+ buffering, aberrant Ca2+ signaling and declined glutamate transport have also been observed in astrogliosis in epileptic specimens, precipitating an increased neuronal discharge and induction of seizures. This review aims to provide an overview of experimental findings that implicated astrocytic modulation of extracellular K+ in the mechanism of epileptogenesis.
Collapse
Affiliation(s)
- Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA; Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan Province, China
| | - Xiaoming Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Jun Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
29
|
Zhang YW, Li XQ, Tan WF, Fang B, Ma H. Postoperative 24-h Acute Sleep Deprivation Improves Learning and Memory Through Inhibition of Tau Phosphorylation in the Hippocampal Neurons of Splenectomized Rats. Nat Sci Sleep 2020; 12:603-613. [PMID: 32904483 PMCID: PMC7455769 DOI: 10.2147/nss.s254449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE As tau pathology is involved in impaired postoperative learning and memory in rats, we attempted to identify the possible mechanisms by which tau pathology affects postoperative sleep deprivation. METHODS Adult male Sprague-Dawley rats were randomly assigned into six groups as follows: the Control group, Anaesthesia group, Surgery group, Sleep deprivation (SD) group: 24-h SD with the modified multiple platform method (MMPM), Anaesthesia and SD (ASD) group, and Surgery and SD (SSD) group. Tau396 and FOXQ1 protein expression levels in the hippocampal neurons of all groups were analysed. Changes following co-culture of hippocampal neurons with IL-6 were detected by flow cytometry. RESULTS Twenty-four hours of acute SD decreased the error scores on postoperative day 5 in the ASD and SSD groups compared with the Anaesthesia and Surgery groups. Compared with the tau levels in the Control group, tau levels in the Anaesthesia and Surgery groups were increased, but SD decreased the expression of tau in the ASD and SSD groups. The expression levels of tau and FOXQ1 were inversely regulated. When hippocampal neurons were co-cultured with IL-6, the same changes were observed. CONCLUSION Postoperative 24-h acute SD improves learning and memory through inhibition of tau phosphorylation and increases IL-6-induced expression of FOXQ1 in the hippocampal neurons of splenectomized rats.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiao-Qian Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wen-Fei Tan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Ma
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
30
|
Lu X, Chen F, Yuan D, He X, Liu X, Zi Y, Lu Y. Retracted Article: Exosome-derived PTENP1 suppresses cisplatin resistance of bladder cancer (BC) by suppressing cell proliferation, migration and inducing apoptosis via the miR-103a/PDCD4 axis. RSC Adv 2019; 9:37642-37651. [PMID: 35542268 PMCID: PMC9075761 DOI: 10.1039/c9ra07823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people. Chemotherapy drug resistance, for example, cisplatin (DDP) resistance, is a huge limitation for BC therapy. PTEN pseudogene-1 (PTENP1) has been identified as a significant biomarker of multiple cancers. Therefore, it is essential to illuminate the molecular mechanism of PTENP1 in BC cell DDP resistance and progression. Serum exosomes were isolated using an ExoQuick precipitation kit. Serum exosomes were round-shaped vesicles of 100 ± 60 nm in size. The expression of PTENP1 was down-regulated in serum exosomes isolated from cisplatin non-responsive patients compared with responsive patients. ROC curves certified the diagnostic value of PTENP1. Apparently, PTENP1 transfection inhibited DDP-resistant BC cell proliferation, migration, cisplatin resistance and facilitated apoptosis. Next, we discovered that PTENP1 was a sponge of miR-103a, while PDCD4 was a target of miR-103a. More importantly, PTENP1 regulated DDP-resistant cell viability, migration, apoptosis and cisplatin resistance by interacting with the miR-103a/PDCD4 axis. In addition, PTENP1 hindered tumor growth of cisplatin-resistant mice. Exosome-derived PTENP1 suppressed the DDP resistance of BC by inhibiting cell proliferation, migration and promoting apoptosis through regulating the miR-103a/PDCD4 axis, representing a targeted therapy for DDP-resistant BC patients.
Collapse
Affiliation(s)
- Xingre Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Fengyu Chen
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Diao Yuan
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiang He
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiaowen Liu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yunju Zi
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yu Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| |
Collapse
|