1
|
Yin X, Wu Y, Song J. Characteristics of the immune environment in prostate cancer as an adjunct to immunotherapy. Health Sci Rep 2024; 7:e2148. [PMID: 38988627 PMCID: PMC11233410 DOI: 10.1002/hsr2.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
Background and Aims The tumor microenvironment (TME) exerts an important role in carcinogenesis and progression. Several investigations have suggested that immune cell infiltration (ICI) is of high prognostic importance for tumor progression and patient survival in many tumors, particularly prostate cancer. The pattern of immune infiltration of PCa, on the other hand, has not been thoroughly understood. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets on PCa were obtained, and several datasets were merged into one data set using the "ComBat" algorithm. The ICI profiles of PCa patients were then to be uncovered by two computer techniques. The unsupervised clustering method was utilized to identify three ICI patterns in tumor samples, and Principal Component Analysis (PCA) was conducted to estimate the ICI score. Results Three different clusters of three ICIs were identified in 1341 PCa samples, which also correlated with different clinical features/characteristics and biological pathways. Patients with PCa are classified into high and low subtypes based on the ICI scores extracted from immune-associated signature genes. High ICI score subtypes are associated with a worse prognosis, which may intrigue the activation of cancer-related and immune-related pathways such as pathways involving Toll-like receptors, T-cell receptors, JAK-STAT, and natural killer cells. The ICI score was linked to tumor mutation load and immune/cancer-relevant signaling pathways, which explain prostate cancer's poor prognosis. Conclusion The findings of this study not only advanced our knowledge of the mechanism of immune response in the prostate tumor microenvironment but also provided a novel biomarker, that is, the ICI score, for disease prognosis and guiding precision immunotherapy.
Collapse
Affiliation(s)
- Xinhai Yin
- Department of Oral and Maxillofacial Surgery Guizhou Provincial People's Hospital Guiyang China
| | - Yadong Wu
- Department of Oral and Maxillofacial Surgery the Affiliated Stomatological Hospital of Guizhou Medical University Guiyang China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery the Affiliated Stomatological Hospital of Guizhou Medical University Guiyang China
| |
Collapse
|
2
|
He JY, Li ZM, Chen YT, Zhao BH, Yu C. Development and validation of a prognostic prediction model for cervical cancer patients treated with radical radiotherapy: a study based on TCGA database. Transl Cancer Res 2024; 13:1721-1736. [PMID: 38737688 PMCID: PMC11082820 DOI: 10.21037/tcr-23-1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/22/2024] [Indexed: 05/14/2024]
Abstract
Background Radiotherapy or concurrent chemoradiotherapy is the standard treatment for patients with locally advanced or inoperable cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, treatment failure for CESC patients treated with radical radiotherapy still occurs due to local recurrence and distant metastasis. The previous prediction models were focused on all CESC patients, neglecting the prognostic differences under different treatment modalities. Therefore, there is a pressing demand to explore novel biomarkers for the prognosis and sensitivity of radiotherapy in CESC patients treated with radical radiotherapy. As a single biomarker has limited effect in stratifying these patients, our objective was to identify radioresponse-related mRNAs to ameliorate forecast of the prognosis for CESC patients treated with radical radiotherapy. Methods Sample data on CESC patients treated with radical radiotherapy were obtained from The Cancer Genome Atlas (TCGA) database. We randomly separated these patients into a training and test cohorts using a 1:1 ratio. Differential expression analysis was carried out to identify radioresponse-related mRNA sets that were significantly dysregulated between complete response (CR) and radiographic progressive disease (RPD) groups, and univariate Cox regression analyses, least absolute shrinkage and selection operator (LASSO) method and multivariate Cox regression were performed to identify the radioresponse-related signature in the training cohort. we adopted survival analysis to measure the predictive value of the radioresponse-related signature both in the test and entire cohorts. Moreover, we developed a novel nomogram to predict the overall survival (OS) of CESC patients treated with radical radiotherapy. In addition, immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were conducted to preliminarily explore possible mechanisms. Results This study included a total of 92 CESC patients subjected to radical radiotherapy. We developed and verified a risk score model based on radioresponse-related mRNA. The radioresponse-related mRNA signature and International Federation of Gynecology and Obstetrics (FIGO) stage were served as independent prognostic factors for CESC patients treated with radical radiotherapy. Moreover, a nomogram integrating radioresponse-related mRNA signature with FIGO stage was established to perform better for predicting 1-, 3-, and 5-year survival rates. Mechanically, the low-risk group under the risk score of this model had a better survival status, and the distribution of CD4 T cells was potentially involved in the regulation of radiotherapy response in CESC, leading to a better survival outcome in the low-risk group. Conclusions This study presents a new radioresponse-related mRNA signature that shows promising clinical efficacy in predicting the prognosis of CESC patients treated with radical radiotherapy.
Collapse
Affiliation(s)
- Jun-Yan He
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Min Li
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ya-Ting Chen
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bi-Huan Zhao
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chang Yu
- Preventive Medicine Clinic, Sichuan Provincial Center for Disease Control and Prevention, Chengdu, China
| |
Collapse
|
3
|
Zhuang J, Qu Z, Chu J, Wang J, Wu Y, Fan Z, Song Y, Han S, Ru L, Zhao H. Single-cell transcriptome analysis reveals T population heterogeneity and functions in tumor microenvironment of colorectal cancer metastases. Heliyon 2023; 9:e17119. [PMID: 37539320 PMCID: PMC10394913 DOI: 10.1016/j.heliyon.2023.e17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/05/2023] Open
Abstract
Cell mediated immune escape, a microenvironment factor, induces tumorigenesis and metastasis. The purpose of this study was to display the characteristics of T cell populations in immune microenvironments for colorectal cancer (CRC) metastasis. Unsupervised cluster analysis was conducted to identify functionally distinct T cell clusters from 3,003 cells in peripheral blood and 4,656 cells in tissues. Subsequently, a total of 8 and 4 distinct T cell population clusters were identified from tumor tissue and peripheral blood, respectively. High levels of CD8+TEX, CD4+TRM, TH1-like T cells, CD8+TEM, tumor-Treg from tissues, and CD4+TN from peripheral blood are essential components of immune microenvironment for the prediction of CRC metastasis. Moreover, exhausted T cells are characterized by higher expression of multiple inhibitory receptors, including PDCD1 and LAG3. Some genes such as PFKFB3, GNLY, circDCUN1D4, TXNIP and NR4A2 in T cells of cluster were statistically different between CRC metastasis and non-metastasis. The ligand-receptor interactions identified between different cluster cells and metastases-related DEGs identified from each cluster revealed that the communications of cells, alterations of functions, and numbers of T subsets may contribute to the metastasis of CRC. The mutation frequency of KiAA1551, ATP8B4 and LNPEP in T cells from tissues and SOR1 from peripheral blood were higher in metastatic CRC than that in non-metastatic CRC. In conclusion, the discovery of differential genes in T cells may provide potential targets for immunotherapy of CRC metastasis and relevant insights into the clinical prediction and prognosis of CRC metastasis.
Collapse
Affiliation(s)
- Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Jingjing Wang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Zhiqing Fan
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Lixin Ru
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| | - Hui Zhao
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, China
- Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Huzhou Central Hospital, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, China
| |
Collapse
|
4
|
Chen T, Tang M, Zhou Y, Wang Z, Li S, Wang H, Lu Y, Wang J, Shen W. Pretreatment lymphocyte-to-monocyte ratio as a prognostic factor and influence on dose-effect in fractionated stereotactic radiotherapy for oligometastatic brain metastases in non-small cell lung cancer patients. Front Oncol 2023; 13:1216852. [PMID: 37456254 PMCID: PMC10348423 DOI: 10.3389/fonc.2023.1216852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Background Studies on the prognostic factors for patients with brain oligo-metastasis treated with fractionated stereotactic radiotherapy (FSRT) usually focus on the size of metastatic tumor and radiation dose. Some inflammatory indicators have predictive value in non-small cell lung cancer (NSCLC) with brain metastasis receiving stereotactic radiotherapy. However, the prognostic value of inflammatory indicators in NSCLC patients with brain oligo-metastasis treated with FSRT, and their effect on radiotherapy dose is unknown. Methods A total of 95 advanced NSCLC patients with brain oligo-metastasis who had undergone FSRT treatment at Ningbo Medical Center Lihuili Hospital between January 2015 and April 2022 were enrolled into the study. Neutrophil to lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), tumor diameter and biologically effective dose (BED10) were analyzed using Chi-square test. Univariate and multivariate Cox regressions were used to identify predictors of survival. Results Tumor diameter (< 2 cm), BED10 (≥ 48Gy) and LMR (≥ 4) were found to be independently associated with good intracranial local control survival (i-LCS) through multivariate analysis. The median i-LCS was longer in patients with 2 independent risk factors (tumor diameter ≥ 2 and LMR < 4) administered with BED10 > 53.6Gy compared with patients administered with BED10 ≤ 53.6Gy (20.7 months vs 12.0 months, P = 0.042). LMR ≥ 4 (P = 0.019) and positivity for driver gene mutations (P = 0.011) were independently associated with better overall survival (OS). Conclusions LMR is an independent prognostic factor of i-LCS and OS in NSCLC patients with brain oligo-metastasis treated with FSRT. Patients with tumor diameter ≥ 2 and LMR < 4 should be treated with BED10 greater than 53.6Gy.
Collapse
Affiliation(s)
- Tian Chen
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Mengqiu Tang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yang Zhou
- Department of Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhepei Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Shiwei Li
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yangfang Lu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jinguo Wang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Chen YX, Yang P, Du SS, Zhuang Y, Huang C, Hu Y, Zhu WC, Yu YY, Liu TS, Zeng ZC. Stereotactic body radiotherapy combined with sintilimab in patients with recurrent or oligometastatic hepatocellular carcinoma: A phase II clinical trial. World J Gastroenterol 2023; 29:3871-3882. [PMID: 37426321 PMCID: PMC10324536 DOI: 10.3748/wjg.v29.i24.3871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) and programmed cell death 1 inhibitors have shown potential in treating hepatocellular carcinoma (HCC) in retrospective studies.
AIM To evaluate the efficacy of combining SBRT with sintilimab for patients with recurrent or oligometastatic HCC.
METHODS This trial involved patients with recurrent or oligometastatic HCC intravenously treated with SBRT plus sintilimab every 3 wk for 12 mo or until disease progression. The primary endpoint was progression-free survival (PFS).
RESULTS Twenty-five patients were enrolled from August 14, 2019, to August 23, 2021. The median treatment duration was 10.2 (range, 0.7-14.6) months. SBRT was delivered at a median dose of 54 (range, 48-60) Gy in 6 (range, 6-10) fractions. The median follow-up time was 21.9 (range, 10.3-39.7) mo, and 32 targeted lesions among 25 patients were evaluated for treatment response according to the Response Evaluation Criteria in Solid Tumors version 1.1. The median PFS was 19.7 mo [95% confidence interval (CI): 16.9-NA], with PFS rates of 68% (95%CI: 52-89) and 45.3% (95%CI: 28-73.4) at 12 and 24 mo, respectively. The median overall survival (OS) was not reached, with OS rates of 91.5% (95%CI: 80.8-100.0) and 83.2% (95%CI: 66.5-100.0) at 12 and 24 mo, respectively. The 1- and 2-year local control rate were 100% and 90.9% (95%CI: 75.4%-100.0%), respectively. The confirmed objective response rate and disease control rate was 96%, and 96%, respectively. Most adverse events were graded as 1 or 2, and grade 3 adverse events were observed in three patients.
CONCLUSION SBRT plus sintilimab is an effective, well-tolerated treatment regimen for patients with recurrent or oligometastatic HCC.
Collapse
Affiliation(s)
- Yi-Xing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wen-Chao Zhu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Yi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tian-Shu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Kang P, Yu H, Li Y, Wen X, Ye H, Luo Y, Yang Y, Yuan Q, Lin S. Tracking Peripheral Memory T Cell Subsets in Advanced Nonsmall Cell Lung Cancer Treated with Hypofractionated Radiotherapy and PD-1 Blockade. JOURNAL OF ONCOLOGY 2023; 2023:3221510. [PMID: 39282224 PMCID: PMC11401694 DOI: 10.1155/2023/3221510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 09/18/2024]
Abstract
Hypofractionated radiotherapy (HFRT) or chemotherapy combined with programmed death-1 (PD-1) blockade has achieved good clinical control in advanced nonsmall cell lung cancer (NSCLC). However, the relative influence of HFRT + PD-1 blockade and chemo-immunotherapy on peripheral memory T cell subsets in NSCLC responders has not been evaluated in clinical practice. Thirty-nine patients with advanced NSCLC were enrolled. The frequencies of naive (Tn; CD45RA+CCR7+), central memory (Tcm; CD45RA-CCR7+), effector memory (Tem; CD45RA-CCR7-), and effector memory RA (TemRA; CD45RA+CCR7-) T cell subsets and PD-1 expression were analyzed in CD4+ and CD8+ T cells using flow cytometry from peripheral blood samples. The correlations of memory T cell subsets and PD-1 expression with overall survival in HFRT + PD-1 blockade group were examined using the Kaplan-Meier method. Patients with partial response to HFRT + PD-1 blockade showed reduction in Tn and expansion in TemRA cell subpopulations among CD8+ T cells and reduced PD-1+CD4+ and PD-1+CD8+ T cells, all of which were significantly correlated with overall survival. The responders to chemo-immunotherapy showed expansion of the TemRA and decrease of Tcm in CD8+ T cell subpopulation. Our findings show that HFRT+PD-1 blockade and chemo-immunotherapy combination therapies induce differential memory T cell subset differentiation, offering predictive markers for treatment response. Clinical Trial Information: https://clinicaltrials.gov/ct2/show/ChiCTR-1900027768.
Collapse
Affiliation(s)
- Pengyuan Kang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hua Ye
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yaqi Yang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, China
| |
Collapse
|
7
|
Guo Z, Zhang K, Wei X, Li Y, Ma X, Li Y, Han D, Du Q, Zhang T, Chen X, Wei H, Yan C, Zhang W, Pang Q, Wang P. Radiotherapy plus camrelizumab affects peripheral CD8 T-cell differentiation subsets expressing PD-1, TIGIT, and CTLA-4 in esophageal squamous cell carcinoma. J Leukoc Biol 2023; 113:11-17. [PMID: 36822161 DOI: 10.1093/jleuko/qiac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 01/11/2023] Open
Abstract
Our previous phase Ib trial (NCT03222440) showed that radiotherapy plus the anti-PD-1 antibody camrelizumab is a safe and feasible first-line therapy for locally advanced esophageal squamous cell carcinoma. In this study, we divided peripheral CD8 T-cell differentiation subsets into 4 subpopulations (naive T cells, central memory T cells, effector memory T cells, and CD45RA+ effector memory T cells). We then investigated the influence of radiotherapy plus camrelizumab therapy on the proportions of the 4 subsets and their PD-1, TIGIT, and CTLA-4 expression as well as their proliferative activity and compared the effects with those of concurrent chemoradiotherapy. Nineteen and 15 patients with esophageal squamous cell carcinoma who received radiotherapy plus camrelizumab therapy and concurrent chemoradiotherapy, respectively, were enrolled in this study. We isolated peripheral blood mononuclear cells from these patients before treatment and longitudinally after the delivery of 40 Gy radiotherapy. Flow cytometry was conducted to detect peripheral CD8 T-cell subsets and PD-1, TIGIT, CTLA-4, and Ki67 expression levels in patients with esophageal squamous cell carcinoma. We found that radiotherapy plus camrelizumab therapy did not change the proportions of the 4 subsets or the expression of CTLA-4, but this therapy decreased PD-1 expression by the 4 subsets and TIGIT expression by effector memory T cells, as well as significantly enhanced the proliferative activity of CD8 T cells, whereas concurrent chemoradiotherapy produced different effects. In addition, we further identified peripheral biomarkers that potentially predict the outcome of radiotherapy plus camrelizumab therapy.
Collapse
Affiliation(s)
- Zhoubo Guo
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Kunning Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xiaoying Wei
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yanqi Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xiaoxue Ma
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yang Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Dong Han
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Qingwu Du
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Tian Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xi Chen
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Hui Wei
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Wencheng Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Qingsong Pang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Ping Wang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| |
Collapse
|
8
|
Identification of Cuproptosis-Related Subtypes in Lung Cancer, Characterization of Tumor Microenvironment Infiltration, and Establishment of a Prognostic Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7406636. [PMID: 36588537 PMCID: PMC9797313 DOI: 10.1155/2022/7406636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022]
Abstract
Cuproptosis, a recently found kind of programmed cell death, has been linked to tumor development, prognosis, and therapeutic response. The roles of cuproptosis-related genes (CRG) in the tumor microenvironment (TME) are, nevertheless, unknown. We evaluated alterations in CRG and assessed the related expression patterns in 1445 lung cancer (LC) samples from three separate datasets, analyzing genetic, and transcriptional domains. We discovered two separate molecular subtypes of CRG and discovered that various subtypes of CRG were connected with patient clinical features and prognosis. Furthermore, we discovered connections between distinct CRG subtypes and TME cell infiltration features. The CRG_score was then developed and validated for predicting overall survival (OS). Following that, we investigated the relationship between CRG_score and the cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity. In addition, we created a very accurate nomogram to increase the clinical usefulness of CRG_score. The potential roles of CRG in the tumor-immune-microenvironment, clinical characteristics, and prognosis in LC are demonstrated by our multiplex study. These findings expand our understanding of CRG in LC and may open up new options for assessing LC patients' prognosis and generating more effective immunotherapeutic treatments.
Collapse
|
9
|
Wang Z, Ge Y, Li H, Fei G, Wang S, Wei P. Identification and validation of a genomic mutation signature as a predictor for immunotherapy in NSCLC. Biosci Rep 2022; 42:BSR20220892. [PMID: 36305643 PMCID: PMC9702799 DOI: 10.1042/bsr20220892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Currently, the benefits of immune checkpoint inhibitor (ICI) therapy prediction via emerging biomarkers have been identified, and the association between genomic mutation signatures (GMS) and immunotherapy benefits has been widely recognized as well. However, the evidence about non-small cell lung cancer (NSCLC) remains limited. We analyzed 310 immunotherapy patients with NSCLC from the Memorial Sloan Kettering Cancer Center (MSKCC) cohort. Lasso Cox regression was used to construct a GMS, and the prognostic value of GMS could be able to verify in the Rizvi cohort (N=240) and Hellmann cohort (N=75). We further conducted immunotherapy-related characteristics analysis in The Cancer Genome Atlas (TCGA) cohort (N=1052). A total of seven genes (ZFHX3, NTRK3, EPHA7, MGA, STK11, EPHA5, TP53) were identified for GMS model construction. Compared with GMS-high patients, patients with GMS-low had longer overall survival (OS; P<0.001) in the MSKCC cohort and progression-free survival (PFS; P<0.001) in the validation cohort. Multivariate Cox analysis revealed that GMS was an independent predictive factor for NSCLC patients in both the MSKCC and validation cohort. Meanwhile, we found that GMS-low patients reflected enhanced antitumor immunity in TCGA cohort. The results indicated that GMS had not only potential predictive value for the benefit of immunotherapy but also may serve as a potential biomarker to guide clinical ICI treatment decisions for NSCLC.
Collapse
Affiliation(s)
- Zemin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - You Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Han Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Shuai Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Ratnayake G, Reinwald S, Edwards J, Wong N, Yu D, Ward R, Smith R, Haydon A, Au PM, van Zelm MC, Senthi S. Blood T-cell profiling in metastatic melanoma patients as a marker for response to immune checkpoint inhibitors combined with radiotherapy. Radiother Oncol 2022; 173:299-305. [PMID: 35772575 DOI: 10.1016/j.radonc.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The addition of stereotactic ablative radiotherapy (SABR) to immune checkpoint inhibitors (ICIs) has the potential to significantly improve outcomes in the treatment of metastatic melanoma. We analysed peripheral blood immune cells of patients receiving combination SABR and ICI to detect the effect of treatment and identify potential biomarkers that predict outcome. METHODS 24 polymetastatic melanoma patients participated in the SABR IMPACT trial, receiving standard dose immunotherapy with anti-PD-1 and/or anti-CTLA-4 and stereotactic ablative radiotherapy to one site. Comprehensive immunophenotyping of T-cells was performed with flow cytometry on blood samples from 13 patients at baseline and following the first 4 cycles of treatment. RESULTS Following four cycles of immunotherapy and SABR, the proportion of naïve subsets were reduced within both the CD4 and CD8 T-cell lineages. Independently, SABR resulted in increased expression of PD-1 (p = 0.019) and ICOS (p = 0.046) on the CD8+ T-cells, accompanied by a reduction in regulatory T-cell frequencies (p = 0.048). A multivariate discriminant analysis revealed a baseline signature of lower levels of CD8+ naive T-cells and higher expression of TIM-3 on regulatory T-cells and memory T-cells better predicted response. CONCLUSION The combination of immunotherapy and SABR changed the immunophenotype of blood T cells, with some shifts attributable to SABR. Importantly, we identified a T-cell signature at baseline that best predicted response. Validation of these findings in an independent cohort could confirm these as biomarkers at baseline or early during treatment, and whether these can be utilised to stratify patients for high or low intensity treatment to reduce toxicity.
Collapse
Affiliation(s)
- Gishan Ratnayake
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia; Radiation Oncology Princess Alexandra Hospital Raymond Terrace, Brisbane, Australia; Central Clinical School, Monash University, Melbourne, Australia.
| | - Simone Reinwald
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Jack Edwards
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Nicholas Wong
- Central Clinical School, Monash University, Melbourne, Australia; Monash Bioinformatic Platform, Monash University, Melbourne, Australia
| | - Di Yu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Rachel Ward
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia
| | - Robin Smith
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia
| | - Andrew Haydon
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia
| | - Pei M Au
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia; Monash Bioinformatic Platform, Monash University, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia; Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia
| | - Sashendra Senthi
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, Australia; Radiation Oncology Princess Alexandra Hospital Raymond Terrace, Brisbane, Australia
| |
Collapse
|
11
|
Lapierre A, Gourgou S, Brengues M, Quéro L, Deutsch É, Milliat F, Riou O, Azria D. Tumour and normal tissue radiosensitivity. Cancer Radiother 2021; 26:96-103. [PMID: 34953704 DOI: 10.1016/j.canrad.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The place of personalized treatments is highly increasing in medical and radiation oncology. During the last decades, a huge number of assays have been developed to predict responses of normal tissues and tumours. These tests have not yet been included into daily clinical practice but the recent developments of radiation oncology are paving the way of personalized strategies including the risk of tumour recurrence and normal tissue reactions. Concerning tumor radiosensitivity prediction, no test are currently used, even if the radiosensitivity index and the genome-based model for adjusting radiotherapy dose assays seem the most promising with level II of evidence. Commercial developments are under progress. Concerning normal tissue radiosensitivity prediction, single nucleotide polymorphims of prostate cancer patients and radiation-induced CD8 T-lymphocyte apoptosis breast and prostate assays are of level I of evidence. They can be proposed before the beginning of radiotherapy in order to propose personalized treatments according to both risks of tumour and normal tissue radiosensitivity. Commercial developments are also under way.
Collapse
Affiliation(s)
- A Lapierre
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, INCa_Inserm_DGOS_12553, université de Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France; Département de radiothérapie oncologie, centre hospitalier universitaire Lyon Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite, France; Université de Lyon, 69000 Lyon, France
| | - S Gourgou
- Unité de biométrie, ICM, Institut régional du cancer Montpellier, université de Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France
| | - M Brengues
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, INCa_Inserm_DGOS_12553, université de Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France; Fédération universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, ICM, Institut régional du cancer Montpellier, université de Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France
| | - L Quéro
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefeaux, 75475 Paris, France
| | - É Deutsch
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - F Milliat
- Laboratoire de radiobiologie des expositions médicales, Institut de radioprotection et de sûreté nucléaire (IRSN), 31, avenue de la Division-Leclerc, 92260 Fontenay-aux-Roses, France
| | - O Riou
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, INCa_Inserm_DGOS_12553, université de Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France; Fédération universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, ICM, Institut régional du cancer Montpellier, université de Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France
| | - D Azria
- IRCM, Institut de recherche en cancérologie de Montpellier, Inserm U1194, INCa_Inserm_DGOS_12553, université de Montpellier, avenue des Apothicaires, 34298 Montpellier cedex 05, France; Fédération universitaire d'oncologie radiothérapie d'Occitanie Méditerranée, ICM, Institut régional du cancer Montpellier, université de Montpellier, rue Croix-Verte, 34298 Montpellier cedex 05, France.
| |
Collapse
|
12
|
Zhao X, Zhang Y, Gao Z, Han Y. Prognostic value of peripheral naive CD8 + T cells in oligometastatic non-small-cell lung cancer. Future Oncol 2021; 18:55-65. [PMID: 34608815 DOI: 10.2217/fon-2021-0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: This study aimed to investigate the prognostic value of peripheral naive and memory CD8+ and CD4+ T cells and other immune cells in patients with oligometastatic non-small-cell lung cancer (NSCLC) undergoing radiotherapy (RT). Methods: A total of 142 patients with oligometastatic NSCLC treated with RT were enrolled, and their blood samples were collected within 3 days before RT. Immune cells were identified by flow cytometry. Results: Patients with high levels of naive CD8+ T cells had longer overall survival (p = 0.004) and progression-free survival (p = 0.001) than those with low levels of naive CD8+ T cells. Multivariate analyses revealed that naive CD8+ T cells were independently correlated with overall survival (p = 0.019) and progression-free survival (p = 0.024). Conclusion: The results suggest that peripheral naive CD8+ T cells may be an independent prognostic indicator for patients with oligometastatic NSCLC undergoing RT.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Oncology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Zhang
- Department of Oncology, Hebei Medical University, Shijiazhuang 050017, PR China.,Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| | - Zhenlin Gao
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| | - Yaguang Han
- Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang 050030, PR China
| |
Collapse
|
13
|
Identification and Prognostic Value Exploration of Radiotherapy Sensitivity-Associated Genes in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5963868. [PMID: 34518802 PMCID: PMC8433590 DOI: 10.1155/2021/5963868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. The radiotherapy is one of the most common treatments of NSCLC, and the radiotherapy sensitivity of patients could affect the individual prognosis of NSCLC. However, the prognostic signatures related to radiotherapy response still remain limited. Here, we explored the radiosensitivity-associated genes and constructed the prognostically predictive model of NSCLC cases. Methods The NSCLC samples with radiotherapy records were obtained from The Cancer Genome Atlas database, and the mRNA expression profiles of NSCLC patients from the GSE30219 and GSE31210 datasets were obtained from the Gene Expression Omnibus database. The Weighted Gene Coexpression Network Analysis (WGCNA), univariate, least absolute shrinkage and selection operator (LASSO), multivariate Cox regression analysis, and nomogram were conducted to identify and validate the radiotherapy sensitivity-related signature. Results WGCNA revealed that 365 genes were significantly correlated with radiotherapy response. LASSO Cox regression analysis identified 8 genes, including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12, RPS4XP22, HIST1H2BH, and BLACAT1. The overall survival (OS) of the low-risk group was better than that of the high-risk group separated by the Risk Score based on these 8 genes for the NSCLC patients. Furthermore, the immune infiltration analysis showed that monocytes and activated memory CD4 T cells had different relative proportions in the low-risk group compared with the high-risk group. The Risk Score was correlated with immune checkpoints, including CTLA4, PDL1, LAG3, and TIGIT. Conclusion We identified 365 genes potentially correlated with the radiotherapy response of NSCLC patients. The Risk Score model based on the identified 8 genes can predict the prognosis of NSCLC patients.
Collapse
|
14
|
Association between circulating CD39+CD8+ T cells pre-chemoradiotherapy and prognosis in patients with nasopharyngeal carcinoma. Chin Med J (Engl) 2021; 134:2066-2072. [PMID: 34435978 PMCID: PMC8439997 DOI: 10.1097/cm9.0000000000001745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background The mortality rate among patients with nasopharyngeal carcinoma (NPC) has improved significantly with the advent of chemoradiotherapy strategies. However, distant metastasis remains problematic. Tumor-specific reactivity in cancer patients has been detected exclusively in CD39+ T cells, particularly in CD39+CD103+ T cells. Circulating cancer-specific T cells are important for protecting against metastasis. This study aimed to evaluate the predictive value of circulating CD39+CD8+ T cells for metastasis in patients with NPC. Methods We performed a cross-sectional, longitudinal study of 55 patients with newly diagnosed NPC of stage III–IVa. All patients were initially treated with standard combined chemoradiotherapy. Blood samples were obtained from 24 patients before and at 1 month and 6 months after treatment. T cell expression of CD39 and CD103, together with the markers of T cell exhaustion programmed death-1 (PD-1)/T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and markers of cell differentiation CD27/CC-chemokine receptor 7/CD45RA, was examined by flow cytometry. The Wilcoxon rank-sum test analysis was used to analyze the differences between two groups. Kaplan-Meier analysis was used for analysis of progression-free survival (PFS). Results The expression of circulating CD39+CD8+ and CD39+CD103+ CD8+ T cells was significantly higher in patients without distant metastasis (CD39+CD8+: 6.52% [1.24%, 12.58%] vs. 2.41% [0.58%, 5.31%], Z=−2.073, P=0.038 and CD39+CD103+CD8+: 0.72% [0.26%, 2.05%] vs. 0.26% [0.12%, 0.64%], Z=−2.313, P = 0.021). Most CD39+ T cells did not express PD-1 or Tim-3. Patients with high expression of CD39+CD103+CD8+ T cells had better PFS than patients with low expression (log rank value = 4.854, P = 0.028). CD39+CD8+ T cells were significantly elevated at 1-month post-treatment (10.02% [0.98%, 17.42%] vs. 5.91% [0.61%, 10.23%], Z = −2.943, P = 0.003). The percentage of advanced differentiated CD8+ T cells also increased at 1-month post-treatment compared with pre-treatment (33.10% [21.60%, 43.05%] vs. 21.00% [11.65%, 43.00%], Z = −2.155, P = 0.031). There was a significant correlation between elevated CD39+CD8+ T cells and increased effector memory T cells (intermediate stage: r = 0.469, P = 0.031; advanced stage: r = 0.508, P = 0.019). Conclusions CD39+CD8+ circulating T cells have preserved effector function, contributing to an improved prognosis and a reduced risk of metastasis among NPC patients. These cells may thus be a useful predictive marker for a better prognosis in patients with NPC.
Collapse
|
15
|
Wei X, Gu L, Heng W. T lymphocytes related biomarkers for predicting immunotherapy efficacy in non-small cell lung cancer. Oncol Lett 2020; 21:89. [PMID: 33376522 PMCID: PMC7751340 DOI: 10.3892/ol.2020.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The immune environment is a determinant of whether patients with cancer can benefit from immunotherapy. Immune checkpoint inhibitors (ICIs) have improved the prognosis of patients with different types of malignancies and have initiated a transformation in tumor therapy. However, some patients cannot achieve a long-term response and several patients even have no response to ICIs therapy. Thus, potential biomarkers that can effectively predict the efficacy of ICIs are essential for their clinical application and for the selection of patients. The accuracy of well-known biomarkers, such as expression of programmed cell death ligand 1 and tumor mutational burden, remains controversial. One of the critical factors for immune responses in the tumor microenvironment is tumor antigen-specific T cell. The density and distribution of tumor-infiltrating lymphocytes, T cells activation and T lymphocytes phenotypes in peripheral blood and serum cytokines have been observed in different types of solid cancer. Although the association with immunotherapy prognosis is in dispute, the prospect of T cell-related biomarkers is encouraged. The present review discusses whether these factors are associated with clinical outcomes of patients with non-small cell lung cancer. The association between several serum cytokines and ICIs therapy efficacy is also discussed.
Collapse
Affiliation(s)
- Xiaoying Wei
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ling Gu
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Wei Heng
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
16
|
Jiang Y, Zhu P, Gao Y, Wang A. miR‑379‑5p inhibits cell proliferation and promotes cell apoptosis in non‑small cell lung cancer by targeting β‑arrestin‑1. Mol Med Rep 2020; 22:4499-4508. [PMID: 33173959 PMCID: PMC7646737 DOI: 10.3892/mmr.2020.11553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most common fatal type of cancer, demonstrating high incidence rates in both sexes. Therefore, it is of vital importance to devise more effective and targeted therapies to improve the treatment quality for patients. The present study aimed to determine the effects of microRNA (miR)-379-5p on cell proliferation and apoptosis, in addition to its underlying molecular mechanisms in lung cancer. Tumor and adjacent normal tissues were obtained from patients with NSCLC and transfection experiments in A549 cells were performed using miR-379-5p mimics and pcDNA3.1- β-arrestin-1 (ARRB1) overexpression plasmids. The cell proliferation rate was determined using a Cell Counting Kit-8 assay and the cell apoptotic rate was analyzed using flow cytometry. Additionally, the mRNA and protein expression levels of proliferation-related signaling (PI3K, p-PI3K, AKT and p-AKT) and apoptotic-related factors (Bcl-2, Bax and caspase-3) were detected using reverse transcription-quantitative PCR and western blotting, respectively. The results of the present study revealed that miR-379-5p expression levels were downregulated, whereas ARRB1 expression levels were significantly upregulated in NSCLC tissues and cell lines. Following the successful transfection of the miR-379-5p mimic and ARRB1 overexpression plasmid, it was revealed that the overexpression of miR-379-5p inhibited cell proliferation and promoted cell apoptosis, whereas ARRB1 overexpression reversed this inhibition over proliferation and promotion of apoptosis. The increased cell apoptotic rate observed in the miR-379-5p mimics group was associated with a significant downregulation and upregulation of Bcl-2, and Bax and caspase-3 expression levels, respectively. Finally, ARRB1 was identified as a target gene of miR-379-5p. In conclusion, the expression levels of miR-379-5p were demonstrated to be significantly downregulated in lung cancer. In addition, miR-379-5p overexpression led to the decreased expression levels of Bcl-2, phosphorylated (p)-PI3K/PI3K and p-AKT/AKT, and the increased expression levels of Bax and caspase-3. Overall, this resulted in the inhibition of cell proliferation and promoted cell apoptosis by directly targeting ARRB1. Therefore, miR-379-5p may be a potential target for NSCLC treatment due to its ability to inhibit cell proliferation and accelerate the apoptotic process.
Collapse
Affiliation(s)
- Yonghong Jiang
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Panpan Zhu
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Yamei Gao
- Department of Nursing, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Aiping Wang
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
17
|
Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers (Basel) 2020; 12:cancers12102762. [PMID: 32992835 PMCID: PMC7600068 DOI: 10.3390/cancers12102762] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy (RT) is a conventional method for clinical treatment of local tumors, which can induce tumor-specific immune response and cause the shrinkage of primary tumor and distal metastases via mediating tumor infiltration of CD8+ T cells. Ionizing radiation (IR) induced tumor regression outside the radiation field is termed as abscopal effect. However, due to the mobilization of immunosuppressive signals by IR, the activated CD8+T cells are not sufficient to maintain a long-term positive feedback to make the tumors regress completely. Eventually, the "hot" tumors gradually turn to "cold". With the advent of emerging immunotherapy, the combination of immune checkpoint blockade (ICB) and local RT has produced welcome changes in stubborn metastases, especially anti-PD-1/PD-L1 and anti-CTLA-4 which have been approved in clinical cancer treatment. However, the detailed mechanism of the abscopal effect induced by combined therapy is still unclear. Therefore, how to formulate a therapeutic schedule to maximize the efficacy should be took into consideration according to specific circumstance. This paper reviewed the recent research progresses in immunomodulatory effects of local radiotherapy on the tumor microenvironment, as well as the unique advantage for abscopal effect when combined with ICB, with a view to exploring the potential application value of radioimmunotherapy in clinic.
Collapse
|
18
|
Zhong R, Chen D, Cao S, Li J, Han B, Zhong H. Immune cell infiltration features and related marker genes in lung cancer based on single-cell RNA-seq. Clin Transl Oncol 2020; 23:405-417. [PMID: 32656582 DOI: 10.1007/s12094-020-02435-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Immune cells in the immune microenvironment of lung cancer have a great impact on the development of lung cancer. Our purpose was to analyze the immune cell infiltration features and related marker genes for lung cancer. METHODS Single cell RNA sequencing data of 11,485 lung cancer cells were retrieved from the Gene Expression Omnibus. After quality control and data normalization, cell clustering was performed using the Seurat package. Based on the marker genes of each cell type from the CellMarker database, each cell was divided into G1, G2M, and S phases. Then, differential expression and functional enrichment analyses were performed. CIBERSORT was used to reconstruct immune cell types. RESULTS Following cell filtering, highly variable genes were identified for all cells. 14 cell types were clustered. Among them, CD4 + T cell, B cell, plasma cell, natural killer cell and cancer stem cell were the top five cell types. Up-regulated genes were mainly enriched in immune-related biological processes and pathways. Using CIBERSORT, we identified the significantly higher fractions of naïve B cell, memory CD4 + T cell, T follicular helper cell, T regulatory helper cell and M1 macrophage in lung cancer tissues compared to normal tissues. Furthermore, the fractions of resting NK cell, monocyte, M0 macrophage, resting mast cell, eosinophil and neutrophil were significantly lower in tumor tissues than normal tissues. CONCLUSION Our findings dissected the immune cell infiltration features and related marker genes for lung cancer, which might provide novel insights for the immunotherapy of lung cancer.
Collapse
Affiliation(s)
- R Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - D Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - S Cao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - J Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China
| | - H Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Huaihai West Road No. 241, Shanghai, 200030, China.
| |
Collapse
|
19
|
[Predictive assays for responses of tumors and normal tissues in radiation oncology]. Cancer Radiother 2019; 23:666-673. [PMID: 31451357 DOI: 10.1016/j.canrad.2019.07.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022]
Abstract
The impact of curative radiotherapy depends mainly on the total dose delivered homogenously in the target volume. Tumor sensitivity to radiotherapy may be particularly inconstant depending on location, histology, somatic genetic parameters and the capacity of the immune system to infiltrate the tumor. In addition, the dose delivered to the surrounding healthy tissues may reduce the therapeutic ratio of many radiation treatments. In a same population treated in one center with the same technique, it appears that individual radiosensitivity clearly exists, namely in terms of late side effects that are in principle non-reversible. This review details the different radiobiological approaches that have been developed to better predict the tumor response but also the radiation-induced late effects.
Collapse
|