1
|
Berkley K, Zalejski J, Sharma N, Sharma A. Journey of PROTAC: From Bench to Clinical Trial and Beyond. Biochemistry 2025. [PMID: 39791901 DOI: 10.1021/acs.biochem.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein. By promoting protein degradation rather than merely inhibiting function, PROTACs present a novel therapeutic strategy with enhanced specificity and effectiveness, especially in areas such as cancer and neurodegenerative diseases. Since their initial discovery, the field of PROTAC research has rapidly expanded with numerous PROTACs now designed to target a wide range of disease-relevant proteins. The substantial research, investment, and collaboration across academia and the pharmaceutical industry reflect the growing interest in PROTACs. This Review discusses the journey of PROTACs from initial discovery to clinical trials, highlighting advancements and challenges. Additionally, recent developments in fluorescent and photogenic PROTACs, used for real-time tracking of protein degradation, are presented, showcasing the evolving potential of PROTACs in targeted therapy.
Collapse
Affiliation(s)
- Kyli Berkley
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julian Zalejski
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Nidhi Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Sun D, Hou H, Feng F, Wu W, Tan J, Xie T, Liu J, Wang J, Qian H, Li J, Xing P. A cohort-based multi-omics identifies nuclear translocation of eIF5B /PD-L1/CD44 complex as the target to overcome Osimertinib resistance of ARID1A-deficient lung adenocarcinoma. Exp Hematol Oncol 2025; 14:3. [PMID: 39773749 PMCID: PMC11705878 DOI: 10.1186/s40164-024-00594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD). METHODS Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance. Co-IP, MS, RNA-seq, ChIP-seq, RIP-seq, and ATAC-seq were performed in cell lines to further explore the mechanism. To validate the findings, in vitro and in vivo molecular experiments were conducted. RESULTS We found that the ARID1A deficiency results in resistance to Osimertinib by hindering programmed cell death through the EZH2/PTEN/E2F1 axis. This altered axis influences PD-L1 transcription through E2F1-mediated promoter activation and PD-L1 translation via the MDM2/eIF5B/PD-L1 axis. Subsequently, ARID1A deficiency results in increased expression of eIF5B and Importin-β1, promoting PD-L1 nuclear-translocation. The nuclear PD-L1 (nPD-L1) interacts with CD44, leading to nPD-L1 complex formation, activation of the RASGEF1A promoter, initiation of the Ras pathway, and contributing to Osimertinib resistance. Targeting the transcription, translation and nuclear-translocation of PD-L1 using lipid nanoparticles (LNPs) overcomes ARID1A deficiency-induced resistance. CONCLUSION ARID1A deficiency promotes PD-L1 nuclear translocation and induces Osimertinib resistance.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Feiyue Feng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weizheng Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jingyu Tan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayu Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Fefilova E, Kirdeeva Y, Parfenyev S, Daks A, Fedorova O, Sorokina M, Ha NX, Huong TT, Loc VT, Hai PT, Cuong NM, Barlev N, Shuvalov O. MDM2 up-regulates the energy metabolism in NSCLC in a p53-independent manner. Biochem Biophys Res Commun 2025; 743:151169. [PMID: 39693937 DOI: 10.1016/j.bbrc.2024.151169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Although an E3 ligase MDM2 is the major negative regulator of the p53 tumor suppressor, a growing body of evidence suggests its p53-independent oncogenic properties. In particular, MDM2 has been shown to regulate serine metabolism independently of p53 status in several types of neoplasia, including NSCLC. Using the GSEA approach and publicly available molecular data on NSCLC tumors, our bioinformatics data suggest that MDM2 affects a number of metabolic genes, particularly those encoding components of the electron transport chain (ETC). To experimentally elucidate the role of MDM2 in respiration and energy metabolism of NSCLC cell models, we established NSCLC cell lines (WT p53+ A549 and p53-null H1299) overexpressing wild-type MDM2, or its catalytically deficient (C464A) mutant (MUT), or the control vector. Using TMRE staining and SeaHorse energy profiling, we demonstrated that wild-type MDM2, but not its catalytically inactive mutant, significantly increased mitochondrial membrane potential (MMP), glycolysis, respiration, and ATP production in a p53-independent manner. Further, we compared MDM2-associated effects of two natural compounds that, according to our docking experiment data, bind MDM2 with affinities similar to nutlin-3A, ganoderic acid A and berberine. Despite the fact that both nutlin-3A and berberine stabilized the MDM2 protein, they displayed differential effects on energy metabolism. Taken together, our data argue that MDM2 affects energy metabolism likely in a p53-independent manner. These results also highlight another pharmacological dimension of using MDM2-targeting compounds as potent inhibitors of glycolysis and respiration in tumor cells.
Collapse
Affiliation(s)
- Elizaveta Fefilova
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | - Margarita Sorokina
- Almazov National Medical Research Centre, 197341, St. Petersburg, Russia
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Tran Thu Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Vu Thanh Loc
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam
| | - Pham The Hai
- University of Sciences and Technology of Hanoi (VAST), 122100, Hanoi, Viet Nam
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 122100, Hanoi, Viet Nam.
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia; Department of Biomedical Studies, Nazarbayev University School of Medicine, Astana, 001000, Kazakhstan.
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia.
| |
Collapse
|
4
|
Takemon Y, Pleasance ED, Gagliardi A, Hughes CS, Csizmok V, Wee K, Trinh DL, Huff RD, Mungall AJ, Moore RA, Chuah E, Mungall KL, Lewis E, Nelson J, Lim HJ, Renouf DJ, Jones SJ, Laskin J, Marra MA. Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities. Genome Med 2024; 16:136. [PMID: 39578878 PMCID: PMC11583415 DOI: 10.1186/s13073-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required. METHODS Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2DLOF) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes. RESULTS We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines. CONCLUSIONS Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Alessia Gagliardi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | | | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Kathleen Wee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Diane L Trinh
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Jessica Nelson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steven Jm Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wu L, Jiang S, Shi M, Yuan T, Li Y, Huang P, Li Y, Zuo E, Zhou C, Sun Y. Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells. Genome Biol 2024; 25:291. [PMID: 39529170 PMCID: PMC11552398 DOI: 10.1186/s13059-024-03434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The safety of CRISPR-based gene editing methods is of the utmost priority in clinical applications. Previous studies have reported that Cas9 cleavage induced frequent aneuploidy in primary human T cells, but whether cleavage-mediated editing of base editors would generate off-target structure variations remains unknown. Here, we investigate the potential off-target structural variations associated with CRISPR/Cas9, ABE, and CBE editing in mouse embryos and primary human T cells by whole-genome sequencing and single-cell RNA-seq analyses. RESULTS The results show that both Cas9 and ABE generate off-target structural variations (SVs) in mouse embryos, while CBE induces rare SVs. In addition, off-target large deletions are detected in 32.74% of primary human T cells transfected with Cas9 and 9.17% of cells transfected with ABE. Moreover, Cas9-induced aneuploid cells activate the P53 and apoptosis pathways, whereas ABE-associated aneuploid cells significantly upregulate cell cycle-related genes and are arrested in the G0 phase. A percentage of 16.59% and 4.29% aneuploid cells are still observable at 3 weeks post transfection of Cas9 or ABE. These off-target phenomena in ABE are universal as observed in other cell types such as B cells and Huh7. Furthermore, the off-target SVs are significantly reduced in cells treated with high-fidelity ABE (ABE-V106W). CONCLUSIONS This study shows both CRISPR/Cas9 and ABE induce off-target SVs in mouse embryos and primary human T cells, raising an urgent need for the development of high-fidelity gene editing tools.
Collapse
Affiliation(s)
- Leilei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Shutan Jiang
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Meisong Shi
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yaqin Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | | | - Yingqi Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Changyang Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Lui K, Cheung KK, Ng WWM, Wang Y, Au DWH, Cho WC. The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer. Int J Mol Sci 2024; 25:11954. [PMID: 39596025 PMCID: PMC11594099 DOI: 10.3390/ijms252211954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, Rb1, BRAF, MET, and ERBB2. Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations. However, either the mutations are undruggable or the efficacy of these therapies is often compromised over time due to the emergence of drug resistance, which can occur through additional mutations in the targeted protein or alternative growth signaling pathways. In recent years, immunotherapy has emerged as a promising approach to enhance the effectiveness of cancer treatment by leveraging the body's immune system. Notable advancements include immune checkpoint inhibitors, monoclonal antibodies targeting cell surface receptors, antibody-drug conjugates, and bispecific antibodies. This review provides an overview of the mechanisms of FDA-approved immunotherapeutic drugs, offering an updated perspective on the current state and future developments in lung cancer therapy. More importantly, the factors that positively and negatively impact the immunotherapy's efficacy will also be discussed.
Collapse
Affiliation(s)
- Ki Lui
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Winnie Wing-Man Ng
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Yanping Wang
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Doreen W. H. Au
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
8
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2024:10.1007/s00204-024-03891-3. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
9
|
Özay B, Tükel EY, Ayna Duran G, Kiraz Y. Identification of potential inhibitors for drug resistance in acute lymphoblastic leukemia through differentially expressed gene analysis and in silico screening. Anal Biochem 2024; 694:115619. [PMID: 39025197 DOI: 10.1016/j.ab.2024.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.
Collapse
Affiliation(s)
- Başak Özay
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Ezgi Yağmur Tükel
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Gizem Ayna Duran
- İzmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, 35330, Balçova, Izmir, Turkey
| | - Yağmur Kiraz
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey.
| |
Collapse
|
10
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
11
|
Advani D, Kumar P. Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs. Mol Neurobiol 2024; 61:8600-8630. [PMID: 38532240 DOI: 10.1007/s12035-024-04130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
12
|
Lian Y, Chen J, Han J, Zhao B, Wu J, Li X, Yue M, Hou M, Wu T, Ye T, Han X, Sun T, Tu M, Zhang K, Liu G, An Y. Deciphering the prognostic and therapeutic significance of BAG1 and BAG2 for predicting distinct survival outcome and effects on liposarcoma. Sci Rep 2024; 14:23084. [PMID: 39366981 PMCID: PMC11452671 DOI: 10.1038/s41598-024-67659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/15/2024] [Indexed: 10/06/2024] Open
Abstract
Liposarcoma (LPS) is the second most common kind of soft tissue sarcoma, and a heterogeneous malignant tumor derived from adipose tissue. Up to now, the prognostic value of BAG1 or BAG2 in LPS has not been defined yet. Expression profiling data of LPS patients were collected from TCGA and GEO database. Survival curves were plotted to verify the outcome differences of patients based on BAG1 or BAG2 expression. Univariate and multivariate Cox regression models were used to analyze the prognostic ability of BAG1 or BAG2. Chaperone's regulators BAG1 and BAG2 were identified as prognostic biomarkers for LPS patients, which exhibited distinct expression patterns and survival outcome prediction performances. Patients with high BAG2 expression and/or low BAG1 expression had worse prognosis. Enrichment analysis showed that BAG1 was involved in negative regulation of TGF-β signaling. Low expression of BAG1 was associated with high abundance of regulatory T cells (Tregs). The 2-gene signature model further confirmed the improved risk assessment performance of BAG1 and BAG2: high risk patients displayed poor prognosis. BAG1 and BAG2 are supposed to be potential prognostic biomarkers for LPS and have impacts on liposarcomagenesis and immune infiltration in distinctive manners, which may function as potential therapy targets (BAG1 agonists/BAG2 inhibitors) for LPS.
Collapse
Affiliation(s)
- Yingying Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiahao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xinyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tinggai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Ting Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- School of Stomatology, Henan University, Kaifeng, 475004, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
13
|
Majc B, Habič A, Malavolta M, Vittori M, Porčnik A, Bošnjak R, Mlakar J, Matjašič A, Zupan A, Vidmar MS, Turnšek TL, Sadikov A, Breznik B, Novak M. Patient-derived tumor organoids mimic treatment-induced DNA damage response in glioblastoma. iScience 2024; 27:110604. [PMID: 39252971 PMCID: PMC11381849 DOI: 10.1016/j.isci.2024.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, characterized by resistance to therapy. Despite aggressive treatment options, GB remains an incurable disease. Invasiveness and heterogeneity are key GB features that cannot be studied in preclinical in vitro models. In this study, we investigated the effects of standard therapy using patient-derived GB organoids (GBOs). GBOs reflect the complexity and heterogeneity of the original tumor tissue. No significant effect on GBO viability or invasion was observed after irradiation and temozolomide treatment. E3 ubiquitin-protein ligase (MDM2), cyclin-dependent kinase inhibitor 1A (CDKN1A), and the serine/threonine kinases ATM and ATR were upregulated at the gene and protein levels after treatment. Our results show that the p53 pathway and DNA-damage response mechanisms were triggered, suggesting that GBOs recapitulate GB therapy resistance. GBOs thus provide a highly efficient platform to assess the specific responses of GB patients to therapy and to further explore therapy resistance.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Nanosciences and Nanotechnologies, 1000 Ljubljana, Slovenia
| | - Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Nanosciences and Nanotechnologies, 1000 Ljubljana, Slovenia
| | - Marta Malavolta
- University of Ljubljana, Faculty of Computer and Information Science, 1000 Ljubljana, Slovenia
| | - Miloš Vittori
- University of Ljubljana, Biotechnical Faculty, Department of Biology, 1000 Ljubljana, Slovenia
| | - Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alenka Matjašič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Zupan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Skoblar Vidmar
- Institute of Oncology, University Medical Centre Ljubljana, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Aleksander Sadikov
- University of Ljubljana, Faculty of Computer and Information Science, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Han R, Li Y, Wang W, Ding C, Davis JJ, Luo X. Platinum-Selenopeptide Interfaces in Support of High Fidelity Electrochemical Biomarker Quantification in Complex Biological Matrices. Anal Chem 2024. [PMID: 39267351 DOI: 10.1021/acs.analchem.4c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The real world applications of conventional antifouling biosensors based on gold-thiol (Au-S) interfaces are hampered by the progressive competitive displacement of key functionality by ubiquitous biothiols. To overcome this limitation, we introduce here novel platinum-selenium (Pt-Se) interfaces. Thiol displacement tests, antifouling analyses, and density functional theory calculations confirm markedly improved interfacial stability. This was then leveraged through the application of a seleno-multifunctional peptide platform, tailored to the detection of murine double minute 2, in biological samples. A derived amperometric sensing platform exhibited a notably lower detection limit and more accurate target quantification than that supported by analogous Au-S and Pt-S interfaces. We believe that this work broadens the scope of electrochemical sensor construction and holds significant promise for the development of high-fidelity impactful bioassay platforms.
Collapse
Affiliation(s)
- Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Manteaux G, Amsel A, Riquier-Morcant B, Prieto Romero J, Gayte L, Fourneaux B, Larroque M, Gruel N, Quignot C, Perot G, Jacq S, Cisse MY, Pomiès P, Sengenes C, Chibon F, Heuillet M, Bellvert F, Watson S, Carrere S, Firmin N, Riscal R, Linares LK. A metabolic crosstalk between liposarcoma and muscle sustains tumor growth. Nat Commun 2024; 15:7940. [PMID: 39266552 PMCID: PMC11393074 DOI: 10.1038/s41467-024-51827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Dedifferentiated and Well-differentiated liposarcoma are characterized by a systematic amplification of the Murine Double Minute 2 (MDM2) oncogene. We demonstrate that p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in liposarcoma and mediate an addiction to serine metabolism to sustain tumor growth. However, the origin of exogenous serine remains unclear. Here, we show that elevated serine levels in mice harboring liposarcoma-patient derived xenograft, released by distant muscle is essential for liposarcoma cell survival. Repressing interleukine-6 expression, or treating liposarcoma cells with Food and Drugs Administration (FDA) approved anti-interleukine-6 monoclonal antibody, decreases de novo serine synthesis in muscle, impairs proliferation, and increases cell death in vitro and in vivo. This work reveals a metabolic crosstalk between muscle and liposarcoma tumor and identifies anti-interleukine-6 as a plausible treatment for liposarcoma patients.
Collapse
Affiliation(s)
- Gabrielle Manteaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Alix Amsel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Blanche Riquier-Morcant
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Jaime Prieto Romero
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Benjamin Fourneaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Marion Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nadège Gruel
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Chloé Quignot
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Gaelle Perot
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Solenn Jacq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Madi Y Cisse
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier-INSERM-CNRS, Montpellier, France
| | - Coralie Sengenes
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Frédéric Chibon
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Maud Heuillet
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sarah Watson
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Sebastien Carrere
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Firmin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Romain Riscal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
16
|
Szlanka T, Lukacsovich T, Bálint É, Virágh E, Szabó K, Hajdu I, Molnár E, Lin YH, Zvara Á, Kelemen-Valkony I, Méhi O, Török I, Hegedűs Z, Kiss B, Ramasz B, Magdalena LM, Puskás L, Mechler BM, Fónagy A, Asztalos Z, Steinbach G, Žurovec M, Boros I, Kiss I. Dominant suppressor genes of p53-induced apoptosis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae149. [PMID: 38985658 PMCID: PMC11373661 DOI: 10.1093/g3journal/jkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
One of the major functions of programmed cell death (apoptosis) is the removal of cells that suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes that, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS promoters at both ends, which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, 7 genes were identified, which suppressed the p53-induced apoptosis. In 4 mutants, the suppression effect resulted from single genes activated by 1 UAS promoter (Pka-R2, Rga, crol, and Spt5). In the other 3 (Orct2, Polr2M, and stg), deleting either UAS promoter eliminated the suppression effect. In qPCR experiments, we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eukaryotic genomes, there are coexpressed gene clusters. Three of the DEP insertion mutants are included, and 2 are in close vicinity of separate coexpressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.
Collapse
Affiliation(s)
- Tamás Szlanka
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Tamás Lukacsovich
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Éva Bálint
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Erika Virágh
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Kornélia Szabó
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Ildikó Hajdu
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Enikő Molnár
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Yu-Hsien Lin
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Ildikó Kelemen-Valkony
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Orsolya Méhi
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Török
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Zoltán Hegedűs
- Bioinformatics Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Brigitta Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Beáta Ramasz
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Laura M Magdalena
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - László Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Bernard M Mechler
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Adrien Fónagy
- Centre for Agricultural Sciences, Plant Protection Institute, 1022 Budapest, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Aktogen Hungary Ltd., 6726 Szeged, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Michal Žurovec
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Imre Boros
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
17
|
Jin Y, Zhou P, Huang S, Shao C, Huang D, Su X, Yang R, Jiang J, Wu J. Cucurbitacin B Inhibits the Proliferation of WPMY-1 Cells and HPRF Cells via the p53/MDM2 Axis. Int J Mol Sci 2024; 25:9333. [PMID: 39273281 PMCID: PMC11395236 DOI: 10.3390/ijms25179333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade.
Collapse
Affiliation(s)
- Yangtao Jin
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Sisi Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Juan Jiang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (Y.J.); (P.Z.); (S.H.); (C.S.); (D.H.); (X.S.); (R.Y.); (J.J.)
- Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| |
Collapse
|
18
|
de Queiroz RM, Efe G, Guzman A, Hashimoto N, Kawashima Y, Tanaka T, Rustgi AK, Prives C. Mdm2 requires Sprouty4 to regulate focal adhesion formation and metastasis independent of p53. Nat Commun 2024; 15:7132. [PMID: 39164253 PMCID: PMC11336179 DOI: 10.1038/s41467-024-51488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Although the E3 ligase Mdm2 and its homologue and binding partner MdmX are the major regulators of the p53 tumor suppressor protein, it is now evident that Mdm2 and MdmX have multiple functions that do not involve p53. As one example, it is known that Mdm2 can regulate cell migration, although mechanistic insight into this function is still lacking. Here we show in cells lacking p53 expression that knockdown of Mdm2 or MdmX, as well as pharmacological inhibition of the Mdm2/MdmX complex, not only reduces cell migration and invasion, but also impairs cell spreading and focal adhesion formation. In addition, Mdm2 knockdown decreases metastasis in vivo. Interestingly, Mdm2 downregulates the expression of Sprouty4, which is required for the Mdm2 mediated effects on cell migration, focal adhesion formation and metastasis. Further, our findings indicate that Mdm2 dampening of Sprouty4 is a prerequisite for maintaining RhoA levels in the cancer cells that we have studied. Taken together we describe a molecular mechanism whereby the Mdm2/MdmX complex through Sprouty4 regulates cellular processes leading to increase metastatic capability independently of p53.
Collapse
Affiliation(s)
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
19
|
Manoochehri H, Farrokhnia M, Sheykhhasan M, Mahaki H, Tanzadehpanah H. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molecular docking and experimental investigation. Heliyon 2024; 10:e34300. [PMID: 39108872 PMCID: PMC11301165 DOI: 10.1016/j.heliyon.2024.e34300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.
Collapse
Affiliation(s)
- Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Xu Q, Yang M, Ji J, Weng J, Wang W, Xu X. Impact of Nonnative Interactions on the Binding Kinetics of Intrinsically Disordered p53 with MDM2: Insights from All-Atom Simulation and Markov State Model Analysis. J Chem Inf Model 2024; 64:5219-5231. [PMID: 38916177 DOI: 10.1021/acs.jcim.3c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined tertiary structure but are essential players in various biological processes. Their ability to undergo a disorder-to-order transition upon binding to their partners, known as the folding-upon-binding process, is crucial for their function. One classical example is the intrinsically disordered transactivation domain (TAD) of the tumor suppressor protein p53, which quickly forms a structured α-helix after binding to its partner MDM2, with clinical significance for cancer treatment. However, the contribution of nonnative interactions between the IDP and its partner to the rapid binding kinetics, as well as their interplay with native interactions, is not well understood at the atomic level. Here, we used molecular dynamics simulation and Markov state model (MSM) analysis to study the folding-upon-binding mechanism between p53-TAD and MDM2. Our results suggest that the system progresses from the nascent encounter complex to the well-structured encounter complex and finally reaches the native complex, following an induced-fit mechanism. We found that nonnative hydrophobic and hydrogen bond interactions, combined with native interactions, effectively stabilize the nascent and well-structured encounter complexes. Among the nonnative interactions, Leu25p53-Leu54MDM2 and Leu25p53-Phe55MDM2 are particularly noteworthy, as their interaction strength is close to the optimum. Evidently, strengthening or weakening these interactions could both adversely affect the binding kinetics. Overall, our findings suggest that nonnative interactions are evolutionarily optimized to accelerate the binding kinetics of IDPs in conjunction with native interactions.
Collapse
Affiliation(s)
- Qianjun Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Maohua Yang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
Lagu IJL, Nyamai DW, Njeru SN. Phytochemical analysis, in-vitro and in-silico study of antiproliferative activity of ethyl acetate fraction of Launaea cornuta (Hochst. ex Oliv. & Hiern) C. Jeffrey against human cervical cancer cell line. Front Pharmacol 2024; 15:1399885. [PMID: 39005932 PMCID: PMC11239972 DOI: 10.3389/fphar.2024.1399885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: Cervical cancer is one of the leading causes of death among women globally due to the limitation of current treatment methods and their associated adverse side effects. Launaea cornuta is used as traditional medicine for the treatment of a variety of diseases including cancer. However, there is no scientific validation on the antiproliferative activity of L. cornuta against cervical cancer. Objective: This study aimed to evaluate the selective antiproliferative, cytotoxic and antimigratory effects of L. cornuta and to explore its therapeutical mechanisms in human cervical cancer cell lines (HeLa-229) through a network analysis approach. Materials and methods: The cytotoxic effect of L. cornuta ethyl acetate fraction on the proliferation of cervical cancer cells was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) bioassay and the antimigratory effect was assessed by wound healing assays. Compounds were analysed using the qualitative colour method and gas chromatography-mass spectroscopy (GC-MS). Subsequently, bioinformatic analyses, including the protein-protein interaction (PPI) network analysis, Gene Ontology (GO), and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis, were performed to screen for potential anticervical cancer therapeutic target genes of L. cornuta. Molecular docking (MD) was performed to predict and understand the molecular interactions of the ligands against cervical cancer. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to validate the network analysis results. Results: L. cornuta ethyl acetate fraction exhibited a remarkable cytotoxic effect on HeLa-229 proliferation (IC50 of 20.56 ± 2.83 μg/mL) with a selectivity index (SI) of 2.36 with minimal cytotoxicity on non-cancerous cells (Vero-CCL 81 (IC50 of 48.83 ± 23.02). The preliminary screening revealed the presence of glycosides, phenols, saponins, terpenoids, quinones, and tannins. Thirteen compounds were also identified by GC-MS analysis. 124 potential target genes associated with the effect of L. cornuta ethyl acetate fraction on human cervical cancer were obtained, including AKT1, MDM2, CDK2, MCL1 and MTOR were identified among the top hub genes and PI3K/Akt1, Ras/MAPK, FoxO and EGFR signalling pathways were identified as the significantly enriched pathways. Molecular docking results showed that stigmasteryl methyl ether had a good binding affinity against CDK2, ATK1, BCL2, MDM2, and Casp9, with binding energy ranging from -7.0 to -12.6 kcal/mol. Tremulone showed a good binding affinity against TP53 and P21 with -7.0 and -8.0 kcal/mol, respectively. This suggests a stable molecular interaction of the ethyl acetate fraction of L. cornuta compounds with the selected target genes for cervical cancer. Furthermore, RT-qPCR analysis revealed that CDK2, MDM2 and BCL2 were downregulated, and Casp9 and P21 were upregulated in HeLa-229 cells treated with L. cornuta compared to the negative control (DMSO 0.2%). Conclusion: The findings indicate that L. cornuta ethyl acetate fraction phytochemicals modulates various molecular targets and pathways to exhibit selective antiproliferative and cytotoxic effects against HeLa-229 cells. This study lays a foundation for further research to develop innovative clinical anticervical cancer agents.
Collapse
Affiliation(s)
- Inyani John Lino Lagu
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Dorothy Wavinya Nyamai
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sospeter Ngoci Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
22
|
Brummer T, Zeiser R. The role of the MDM2/p53 axis in antitumor immune responses. Blood 2024; 143:2701-2709. [PMID: 37467495 PMCID: PMC11251213 DOI: 10.1182/blood.2023020731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
ABSTRACT Mouse double minute 2 homolog (MDM2) is a negative regulator of the tumor suppressor p53 and is often highly expressed in acute myeloid leukemia (AML) and other solid tumors. Inactivating mutations in TP53, the gene encoding p53, confers an unfavorable prognosis in AML and increases the risk for relapse after allogeneic hematopoietic cell transplantation. We review the concept that manipulation of MDM2 and p53 could enhance immunogenicity of AML and solid tumor cells. Additionally, we discuss the mechanisms by which MDM2 and p53 regulate the expression of major histocompatibility complex class I and II, transcription of double stranded RNA of endogenous retroviruses, responses of interferons, production of interleukin-15, and expression of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 and 2 on malignant cells. The direct effects of MDM2 inhibition or MDM2 deletion in effector T cells are discussed in the context of cancer immunotherapy. The preclinical findings are connected to clinical studies using MDM2 inhibition to enhance antitumor immunity in patients. This review summarizes current evidence supporting the use of MDM2 inhibition to restore p53 as well as the direct effects of MDM2 inhibition on T cells as an emerging concept for combined antitumor immunotherapy against hematological malignancies and beyond.
Collapse
Affiliation(s)
- Tilman Brummer
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Faculty of Medicine, Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
- Signalling Research Centres BIOSS and Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Department of Medicine I (Hematology, Oncology, and Stem Cell Transplantation), Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Cortiana V, Abbas RH, Chorya H, Gambill J, Mahendru D, Park CH, Leyfman Y. Personalized Medicine in Pancreatic Cancer: The Promise of Biomarkers and Molecular Targeting with Dr. Michael J. Pishvaian. Cancers (Basel) 2024; 16:2329. [PMID: 39001391 PMCID: PMC11240738 DOI: 10.3390/cancers16132329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic cancer, with its alarming rising incidence, is predicted to become the second deadliest type of solid tumor by 2040, highlighting the urgent need for improved diagnostic and treatment strategies. Despite medical advancements, the five-year survival rate for pancreatic cancer remains about 14%, dropping further when metastasized. This review explores the promise of biomarkers for early detection, personalized treatment, and disease monitoring. Molecular classification of pancreatic cancer into subtypes based on genetic mutations, gene expression, and protein markers guides treatment decisions, potentially improving outcomes. A plethora of clinical trials investigating different strategies are currently ongoing. Targeted therapies, among which those against CLAUDIN 18.2 and inhibitors of Claudin 18.1, have shown promise. Next-generation sequencing (NGS) has emerged as a powerful tool for the comprehensive genomic analysis of pancreatic tumors, revealing unique genetic alterations that drive cancer progression. This allows oncologists to tailor therapies to target specific molecular abnormalities. However, challenges remain, including limited awareness and uptake of biomarker-guided therapies. Continued research into the molecular mechanisms of pancreatic cancer is essential for developing more effective treatments and improving patient survival rates.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | | | - Diksha Mahendru
- Global Remote Research Scholars Program, St. Paul, MN 55101, USA
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY 11572, USA
| |
Collapse
|
24
|
Liu W, Ma Y, He Y, Liu Y, Guo Z, He J, Han X, Hu Y, Li M, Jiang R, Wang S. Discovery of Novel p53-MDM2 Inhibitor (RG7388)-Conjugated Platinum IV Complexes as Potent Antitumor Agents. J Med Chem 2024; 67:9645-9661. [PMID: 38776419 DOI: 10.1021/acs.jmedchem.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While a number of p53-MDM2 inhibitors have progressed into clinical trials for the treatment of cancer, their progression has been hampered by a variety of problems, including acquired drug resistance, dose-dependent toxicity, and limited clinical efficiency. To make more progress, we integrated the advantages of MDM2 inhibitors and platinum drugs to construct novel PtIV-RG7388 (a selective MDM2 inhibitor) complexes. Most complexes, especially 5a and 5b, displayed greatly improved antiproliferative activity against both wild-type and mutated p53 cancer cells. Remarkably, 5a exhibited potent in vivo tumor growth inhibition in the A549 xenograft model (66.5%) without apparent toxicity. It arrested the cell cycle at both the S phase and the G2/M phase and efficiently induced apoptosis via the synergistic effects of RG7388 and cisplatin. Altogether, PtIV-RG7388 complex 5a exhibited excellent in vitro and in vivo antitumor activities, highlighting the therapeutic potential of PtIV-RG7388 complexes as antitumor agents.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yujiao Hu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Muqiong Li
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ru Jiang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
25
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
26
|
Andersen KØ, Detlefsen S, Brusgaard K, Christesen HT. Well-differentiated G1 and G2 pancreatic neuroendocrine tumors: a meta-analysis of published expanded DNA sequencing data. Front Endocrinol (Lausanne) 2024; 15:1351624. [PMID: 38868744 PMCID: PMC11167081 DOI: 10.3389/fendo.2024.1351624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Well-differentiated pancreatic neuroendocrine tumors (PNETs) can be non-functional or functional, e.g. insulinoma and glucagonoma. The majority of PNETs are sporadic, but PNETs also occur in hereditary syndromes, primarily multiple endocrine neoplasia type 1 (MEN1). The Knudson hypothesis stated a second, somatic hit in MEN1 as the cause of PNETs of MEN1 syndrome. In the recent years, reports on genetic somatic events in both sporadic and hereditary PNETs have emerged, providing a basis for a more detailed molecular understanding of the pathophysiology. In this systematic review and meta-analysis, we made a collation and statistical analysis of aggregated frequent genetic alterations and potential driver events in human grade G1/G2 PNETs. Methods A systematic search was performed in concordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) reporting guidelines of 2020. A search in Pubmed for published studies using whole exome, whole genome, or targeted gene panel (+400 genes) sequencing of human G1/G2 PNETs was conducted at the 25th of September 2023. Fourteen datasets from published studies were included with data on 221 patients and 225 G1/G2 PNETs, which were divided into sporadic tumors, and hereditary tumors with pre-disposing germline variants, and tumors with unknown germline status. Further, non-functioning and functioning PNETs were distinguished into two groups for pathway evaluation. The collated genetical analyses were conducted using the 'maftools' R-package. Results Sporadic PNETs accounted 72.0% (162/225), hereditary PNETs 13.3% (30/225), unknown germline status 14.7% (33/225). The most frequently altered gene was MEN1, with somatic variants and copy number variations in overall 42% (95/225); hereditary PNETs (germline variations in MEN1, VHL, CHEK2, BRCA2, PTEN, CDKN1B, and/or MUTYH) 57% (16/30); sporadic PNETs 36% (58/162); unknown germline status 64% (21/33). The MEN1 point mutations/indels were distributed throughout MEN1. Overall, DAXX (16%, 37/225) and ATRX-variants (12%, 27/225) were also abundant with missense mutations clustered in mutational hotspots associated with histone binding, and translocase activity, respectively. DAXX mutations occurred more frequently in PNETs with MEN1 mutations, p<0.05. While functioning PNETs shared few variated genes, non-functioning PNETs had more recurrent variations in genes associated with the Phosphoinositide 3-kinase, Wnt, NOTCH, and Receptor Tyrosine Kinase-Ras signaling onco-pathways. Discussion The somatic genetic alterations in G1/G2 PNETs are diverse, but with distinct differences between sporadic vs. hereditary, and functional vs. non-functional PNETs. Increased understanding of the genetic alterations may lead to identification of more drivers and driver hotspots in the tumorigenesis in well-differentiated PNETs, potentially giving a basis for the identification of new drug targets. (Funded by Novo Nordisk Foundation, grant number NNF19OC0057915).
Collapse
Affiliation(s)
- Kirstine Øster Andersen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| |
Collapse
|
27
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
28
|
Strachowska M, Robaszkiewicz A. Characteristics of anticancer activity of CBP/p300 inhibitors - Features of their classes, intracellular targets and future perspectives of their application in cancer treatment. Pharmacol Ther 2024; 257:108636. [PMID: 38521246 DOI: 10.1016/j.pharmthera.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Collapse
Affiliation(s)
- Magdalena Strachowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute of Fundamental and Basic Research, 600 5(th) Street South, Saint Petersburg FL33701, United States of America.
| |
Collapse
|
29
|
Watanabe K, Zhao Q, Iwatsuki R, Fukui R, Ren W, Sugita Y, Nishida N. Deciphering the Multi-state Conformational Equilibrium of HDM2 in the Regulation of p53 Binding: Perspectives from Molecular Dynamics Simulation and NMR Analysis. J Am Chem Soc 2024; 146:9790-9800. [PMID: 38549219 DOI: 10.1021/jacs.3c14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryosuke Iwatsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryota Fukui
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
30
|
Yao ZX, Tu JH, Liu YL, Xue XF, Qin L. Long Non-coding RNA LINC00342 Promotes the Proliferation, Invasion, and Migration of Primary Hepatocellular Carcinoma Cells by Regulating the Expression of miRNA-19a-3p, miRNA-545-5p, and miRNA-203a-3p. Biochem Genet 2024; 62:675-697. [PMID: 37395850 DOI: 10.1007/s10528-023-10420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to investigate the role of the long non-coding RNA (lncRNA) LINC00342-207 (LINC00342) in the development and progression of primary hepatocellular carcinoma (HCC). Forty-two surgically resected HCC tissues and corresponding paracancerous tissues were collected from October 2019 to December 2020 and examined for lncRNA LINC00342, microRNA (miR)-19a-3p, miR-545-5p, miR-203a-3p, cell cycle protein D1 (CyclinD1/CCND1), murine double minute 2 (MDM2), and fibroblast growth factor 2 (FGF2) expression. The disease-free survival and overall survival of patients with HCC were followed up. HCC cell lines and the normal hepatocyte cell line HL-7702 were cultured and the expression level of LINC00342 was measured. HepG2 cells were transfected with LINC00342 siRNA, LINC00342 overexpression plasmid, miR-19a-3p mimics and their corresponding suppressors, miR-545-5p mimics and their corresponding suppressors, and miR-203a-3p mimics and their corresponding suppressors. The proliferation, apoptosis, migration, and invasion of HepG2 cells were detected. Stably transfected HepG2 cells were inoculated into the left axilla of male BALB/c nude mice, and the volume and quality of transplanted tumors as well as the expression levels of LINC00342, miR-19a-3p, miR-545-5p, miR-203a-3p, CCND1, MDM2, and FGF2 were examined. LINC00342 played an oncogenic role in HCC and exhibited inhibitory effects on proliferation, migration, and invasion, and promoted the apoptosis of HepG2 cells. Moreover, it inhibited the growth of transplanted tumors in vivo in mice. Mechanistically, the oncogenic effect of LINC00342 was associated with the targeted regulation of the miR-19a-3p/CCND1, miR-545-5p/MDM2, and miR-203a-3p/FGF2 axes.
Collapse
Affiliation(s)
- Zong-Xi Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Jun-Hao Tu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yu-Lin Liu
- Department of General Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiao-Feng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215031, China.
| |
Collapse
|
31
|
Posada JM, Yakirevich E, Kamat AM, Sood A, Jacob JM, Bratslavsky G, Grivas P, Spiess PE, Li R, Necchi A, Mega AE, Golijanin DJ, Pavlick D, Huang RSP, Lin D, Danziger N, Sokol ES, Sivakumar S, Ross JS, Cheng L. Characterizing the Genomic Landscape of the Micropapillary Subtype of Urothelial Carcinoma of the Bladder Harboring Activating Extracellular Mutations of ERBB2. Mod Pathol 2024; 37:100424. [PMID: 38219954 DOI: 10.1016/j.modpat.2024.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/02/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
The micropapillary subtype of urothelial carcinoma (MPUC) of the bladder is a very aggressive histological variant of urothelial bladder cancer (UBC). A high frequency of MPUC contains activating mutations in the extracellular domain (ECD) of ERBB2. We sought to further characterize ERBB2 ECD-mutated MPUC to identify additional genomic alterations that have been associated with tumor progression and therapeutic response. In total, 5,485 cases of archived formalin-fixed, paraffin-embedded UBC underwent comprehensive genomic profiling to identify ERBB2 ECD-mutated MPUC and evaluate the frequencies of genomic co-alterations. We identified 219 cases of UBC with ERBB2 ECD mutations (74% S310F and 26% S310Y), of which 63 (28.8%) were MPUC. Genomic analysis revealed that TERT, TP53, and ARID1A were the most common co-altered genes in ERBB2-mutant MPUC (82.5%, 58.7%, and 39.7%, respectively) and did not differ from ERBB2-mutant non-MPUC (86.5%, 51.9%, and 35.3%). The main differences between ERBB2 ECD-mutated MPUC compared with non-MPUC were KMT2D, RB1, and MTAP alterations. KMT2D and RB1 are tumor-suppressor genes. KMT2D frequency was significantly decreased in ERBB2 ECD-mutated MPUC (6.3%) in contrast to non-MPUC (27.6%; P < .001). RB1 mutations were more frequent in ERBB2 ECD-mutated MPUC (33.3%) than in non-MPUC (17.3%; P = .012). Finally, MTAP loss, an emerging biomarker for new synthetic lethality-based anticancer drugs, was less frequent in ERBB2 ECD-mutated MPUC (11.1%) than in non-MPUC (26.9%; P = .018). Characterizing the genomic landscape of MPUC may not only improve our fundamental knowledge about this aggressive morphological variant of UBC but also has the potential to identify possible prognostic and predictive biomarkers that may drive tumor progression and dictate treatment response to therapeutic approaches.
Collapse
Affiliation(s)
- Jessica M Posada
- Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, Rhode Island; Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, Rhode Island
| | - Ashish M Kamat
- Department of Urology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Sood
- Department of Urology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | | | - Petros Grivas
- Fred Hutchinson Cancer Center, University of Washington, Seattle, Washington
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Andrea Necchi
- San Raffaele Hospital and Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Anthony E Mega
- Division of Hematology and Oncology, The Warren Alpert Medical School of Brown University, Lifespan Cancer Institute, Providence, Rhode Island
| | - Dragan J Golijanin
- Division of Urology, Department of Surgery, Brown University, The Miriam Hospital, Providence, Rhode Island
| | - Dean Pavlick
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | - Douglas Lin
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | | | | | - Jeffrey S Ross
- Upstate Medical University, Syracuse, New York; Foundation Medicine Inc., Cambridge, Massachusetts.
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, The Warren Albert Medical School of Brown University, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, Rhode Island.
| |
Collapse
|
32
|
Zhang B, Chen Y, Chen X, Ren Z, Xiang H, Mao L, Zhu G. Genome-wide CRISPR screen identifies ESPL1 limits the response of gastric cancer cells to apatinib. Cancer Cell Int 2024; 24:83. [PMID: 38402402 PMCID: PMC10893712 DOI: 10.1186/s12935-024-03233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/26/2024] Open
Abstract
Apatinib was the first anti-angiogenic agent approved for treatment of metastatic gastric cancer (GC). However, the emergence of resistance was inevitable. Thus investigating new and valuable off-target effect of apatinib directly against cancer cells is of great significance. Here, we identified extra spindle pole bodies-like 1 (ESPL1) was responsible for apatinib resistance in GC cells through CRISPR genome-wide gain-of-function screening. Loss of function studies further showed that ESPL1 inhibition suppressed cell proliferation, migration and promoted apoptosis in vitro, and accordingly ESPL1 knockdown sensitized GC cells to apatinib. In addition, we found ESPL1 interacted with mouse double minute 2 (MDM2), a E3 ubiquitin protein ligase, and the combination of MDM2 siRNA with apatinib synergistically ameliorated the resistance induced by ESPL1 overexpression. In summary, our study indicated that ESPL1 played a critical role in apatinib resistance in GC cells. Inhibition of MDM2 could rescue the sensitivity of GC cells to apatinib and reverse ESPL1-mediated resistance.
Collapse
Affiliation(s)
- Bei Zhang
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
- Collaborative Innovation Center for Civil Affairs of Guangzhou, Guangzhou, China
| | - Yan Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinqi Chen
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiyao Ren
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
- Collaborative Innovation Center for Civil Affairs of Guangzhou, Guangzhou, China
| | - Hong Xiang
- Departments of Oncology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China.
- Collaborative Innovation Center for Civil Affairs of Guangzhou, Guangzhou, China.
| |
Collapse
|
33
|
Choi S, Park YS, Lee KW, Park YJ, Jang HJ, Kim DM, Yoo TH. Sensitive Methods to Detect Single-Stranded Nucleic Acids of Food Pathogens Based on Cell-Free Protein Synthesis and Retroreflection Signal Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3783-3792. [PMID: 38346351 DOI: 10.1021/acs.jafc.3c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cell-free protein synthesis (CFPS) has recently gained considerable attention as a new platform for developing methods to detect various molecules, ranging from small chemicals to biological macromolecules. Retroreflection has been used as an alternative signal to develop analytical methods because it can be detected by using a simple instrument comprising a white light source and a camera. Here, we report a novel reporter protein that couples the capability of CFPS and the simplicity of retroreflection signal detection. The design of the reporter was based on two pairs of protein-peptide interactions, SpyCatcher003-SpyTag003 and MDM2-PMI(N8A). MDM2-MDM2-SpyCatcher003 was decided as the reporter protein, and the two peptides, SpyTag003 and PMI(N8A), were immobilized on the surfaces of retroreflective Janus particles and microfluidic chips, respectively. The developed retroreflection signal detection system was combined with a previously reported CFPS reaction that can transduce the presence of a single-stranded nucleic acid into protein synthesis. The resulting methods were applied to detect 16S rRNAs of several foodborne pathogens. Concentration-dependent relationships were observed over a range of 10° fM to 102 pM, with the limits of detection being single-digit femtomolar concentrations. Considering the designability of the CFPS system for other targets, the retroreflection signal detection method will enable the development of novel methods to detect various molecules.
Collapse
Affiliation(s)
- Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yu Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| |
Collapse
|
34
|
Merlino F, Pecoraro A, Longobardi G, Donati G, Di Leva FS, Brignola C, Piccarducci R, Daniele S, Martini C, Marinelli L, Russo G, Quaglia F, Conte C, Russo A, La Pietra V. Development and Nanoparticle-Mediated Delivery of Novel MDM2/MDM4 Heterodimer Peptide Inhibitors to Enhance 5-Fluorouracil Nucleolar Stress in Colorectal Cancer Cells. J Med Chem 2024; 67:1812-1824. [PMID: 38285632 DOI: 10.1021/acs.jmedchem.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (1), the only known peptide acting through this mechanism. The new peptides, notably 3 and 9, showed lower IC50 values than 1. When incorporated into tumor-targeted biodegradable nanoparticles, these exhibited cytotoxicity against three different CRC cell lines. Notably, NPs/9 caused a significant increase in p53 levels associated with a strong increment of its main downstream target p21 inducing apoptosis. Also, the combined treatment of 9 with 5-FU caused the activation of nucleolar stress and a synergic apoptotic effect. Hence, the co-delivery of MDM2/4 heterodimer disruptors with 5-FU through nanoparticles might be a promising strategy to overcome drug resistance in CRC.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | | | - Chiara Brignola
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56126 Pisa, PI, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, NA, Italy
| |
Collapse
|
35
|
Sun D, Qian H, Li J, Xing P. Targeting MDM2 in malignancies is a promising strategy for overcoming resistance to anticancer immunotherapy. J Biomed Sci 2024; 31:17. [PMID: 38281981 PMCID: PMC10823613 DOI: 10.1186/s12929-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
36
|
Sun D, Xing X, Wang Y, Hou H. MET fusions are targetable genomic variants in the treatment of advanced malignancies. Cell Commun Signal 2024; 22:20. [PMID: 38195556 PMCID: PMC10775437 DOI: 10.1186/s12964-023-01454-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Targeted therapy for malignancies has developed rapidly in recent years, benefiting patients harboring genetic mutations sensitive to relevant tyrosine kinase inhibitors (TKIs). With the development of targeted sequencing techniques, an increasing number of detectable genomic alterations in malignancies, including MET fusions, have been revealed. MET fusions, although rare among malignancies, might be functional driver genes that participate in activating downstream signaling pathways and promoting cell proliferation. Therefore, it is believed that MET fusions could be targetable genomic variants of MET, and inhibition of MET is considered an optionable therapeutic choice for patients harboring MET fusions. According to the summary presented in this review, we recommend MET-TKIs as suitable treatment agents for patients harboring primary MET fusions. For patients harboring acquired MET fusions after the development of resistance to TKIs targeting primary genomic alterations, such as sensitive EGFR mutations, treatment with a MET-TKI alone or in combination with TKIs targeting primary genomic alterations, such as EGFR-TKIs, is hypothesized to be a reasonable option for salvage treatment. In summary, MET fusions, despite their low incidence, should be taken into consideration when developing treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoming Xing
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliation Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
37
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
38
|
Shaikh N, Sivaram A, Vyas R. Screening of natural product libraries in MCF7 cell line reveals the pro-apoptotic properties of β tetralone. J Biomol Struct Dyn 2024; 42:876-884. [PMID: 37014028 DOI: 10.1080/07391102.2023.2196697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Despite the exponential increase in research toward better treatment options for breast cancer patients, developing an effective drug with fewer side effects continues to remain a challenge. Natural compounds have emerged as a viable option and several drugs have been derived or inspired from them. In this study, we screened a library of natural compounds with diverse chemical structures against selected kinase proteins using in silico methods such as molecular docking and dynamics simulation. The best results were obtained between β tetralone and MDM2 E3 ubiquitin ligase protein. In vitro experiments such as cytotoxicity, scratch assays and flow cytometry analysis using an MCF7 cell line were performed to determine the anti-cancer potential of the compound. As the treatment resulted in cell death and apoptosis, β tetralone was screened in silico against anti-apoptotic targets where the best results were obtained between Bcl-w and β tetralone. This comprehensive study suggests that the anti-cancer activity of β tetralone is probably through the dual targeting of MDM2 E3 ubiquitin kinase and Bcl-w anti-apoptotic protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nilofer Shaikh
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| |
Collapse
|
39
|
KITIC D, MILADINOVIC B, RANDJELOVIC M, FAGOONEE S, POPA D, CALINA D, SHARIFI-RAD J. Alvaradoin E: an update of its anticancer potential and mechanisms of action. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 35. [DOI: 10.23736/s2724-542x.23.03035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Shridhar P, Glennon MS, Pal S, Waldron CJ, Chetkof EJ, Basak P, Clavere NG, Banerjee D, Gingras S, Becker JR. MDM2 Regulation of HIF Signaling Causes Microvascular Dysfunction in Hypertrophic Cardiomyopathy. Circulation 2023; 148:1870-1886. [PMID: 37886847 PMCID: PMC10691664 DOI: 10.1161/circulationaha.123.064332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Microvasculature dysfunction is a common finding in pathologic remodeling of the heart and is thought to play an important role in the pathogenesis of hypertrophic cardiomyopathy (HCM), a disease caused by sarcomere gene mutations. We hypothesized that microvascular dysfunction in HCM was secondary to abnormal microvascular growth and could occur independent of ventricular hypertrophy. METHODS We used multimodality imaging methods to track the temporality of microvascular dysfunction in HCM mouse models harboring mutations in the sarcomere genes Mybpc3 (cardiac myosin binding protein C3) or Myh6 (myosin heavy chain 6). We performed complementary molecular methods to assess protein quantity, interactions, and post-translational modifications to identify mechanisms regulating this response. We manipulated select molecular pathways in vivo using both genetic and pharmacological methods to validate these mechanisms. RESULTS We found that microvascular dysfunction in our HCM models occurred secondary to reduced myocardial capillary growth during the early postnatal time period and could occur before the onset of myocardial hypertrophy. We discovered that the E3 ubiquitin protein ligase MDM2 (murine double minute 2) dynamically regulates the protein stability of both HIF1α (hypoxia-inducible factor 1 alpha) and HIF2α (hypoxia-inducible factor 2 alpha)/EPAS1 (endothelial PAS domain protein 1) through canonical and noncanonical mechanisms. The resulting HIF imbalance leads to reduced proangiogenic gene expression during a key period of myocardial capillary growth. Reducing MDM2 protein levels by genetic or pharmacological methods normalized HIF protein levels and prevented the development of microvascular dysfunction in both HCM models. CONCLUSIONS Our results show that sarcomere mutations induce cardiomyocyte MDM2 signaling during the earliest stages of disease, and this leads to long-term changes in the myocardial microenvironment.
Collapse
Affiliation(s)
- Puneeth Shridhar
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (P.S., J.R.B.)
| | - Michael S. Glennon
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Soumojit Pal
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Christina J. Waldron
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Ethan J. Chetkof
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Payel Basak
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Nicolas G. Clavere
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Dipanjan Banerjee
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Sebastien Gingras
- Department of Immunology (S.G.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
| | - Jason R. Becker
- Division of Cardiology, Department of Medicine, and Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute (P.S., M.S.G., S.P., C.J.W., E.J.C., P.B., N.C.G., D.B., J.R.B.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (P.S., J.R.B.)
| |
Collapse
|
41
|
Abdullazade S, Behrens HM, Krüger S, Haag J, Röcken C. MDM2 amplification is rare in gastric cancer. Virchows Arch 2023; 483:795-807. [PMID: 37821635 DOI: 10.1007/s00428-023-03674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The MDM2 proto-oncogene (MDM2) is a primary negative regulator of p53. The latter is frequently mutated in gastric cancer (GC). In the present study, we aimed to validate gene amplification, protein expression, and the putative tumor biological function of MDM2 in a well-characterized Western GC cohort. MDM2 amplification and protein expression were studied in a cohort of 327 GCs by fluorescence in situ hybridization (FISH) and immunohistochemistry. Gene amplification and protein expression were correlated with diverse clinicopathological patient characteristics including patient outcome. Immunohistochemically, 97 GCs (29.7%) were categorized as MDM2 positive and 230 GCs (70.3%) as negative. An amplification of MDM2 was found in 11 (3.4%) cases without evidence of intratumoral heterogeneity. Nine of these eleven (81.8%) cases showed MDM2 protein expression. MDM2 amplification correlated significantly with MDM2 protein expression (p < 0.001). On a case-by-case analysis, MDM2-amplified cases showed varied histological phenotypes and were most commonly microsatellite stable; EBV, HER2, and MET negative; and FGFR2 positive. A single case harbored both, MDM2 amplification and TP53 mutation. MDM2 amplification and MDM2 expression, respectively, did not correlate with overall or tumor-specific survival. Our targeted analysis of MDM2 in a well-characterized cohort of GC patients showed that MDM2 amplification is rare, of no specific histological phenotype, and may not be always mutually exclusive with TP53 mutations. Given the low number of cases, currently, no diagnostic or therapeutic recommendation related to MDM2 amplification can be given for GC of Western origin.
Collapse
Affiliation(s)
- Samir Abdullazade
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Hans-Michael Behrens
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Jochen Haag
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Arnold-Heller-Str. 3, Haus U33, D-24105, Kiel, Germany.
| |
Collapse
|
42
|
Roisman LC, Kian W, Anoze A, Fuchs V, Spector M, Steiner R, Kassel L, Rechnitzer G, Fried I, Peled N, Bogot NR. Radiological artificial intelligence - predicting personalized immunotherapy outcomes in lung cancer. NPJ Precis Oncol 2023; 7:125. [PMID: 37990050 PMCID: PMC10663598 DOI: 10.1038/s41698-023-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Personalized medicine has revolutionized approaches to treatment in the field of lung cancer by enabling therapies to be specific to each patient. However, physicians encounter an immense number of challenges in providing the optimal treatment regimen for the individual given the sheer complexity of clinical aspects such as tumor molecular profile, tumor microenvironment, expected adverse events, acquired or inherent resistance mechanisms, the development of brain metastases, the limited availability of biomarkers and the choice of combination therapy. The integration of innovative next-generation technologies such as deep learning-a subset of machine learning-and radiomics has the potential to transform the field by supporting clinical decision making in cancer treatment and the delivery of precision therapies while integrating numerous clinical considerations. In this review, we present a brief explanation of the available technologies, the benefits of using these technologies in predicting immunotherapy response in lung cancer, and the expected future challenges in the context of precision medicine.
Collapse
Affiliation(s)
- Laila C Roisman
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel.
- Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Waleed Kian
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
- The Institute of Oncology, Assuta Ashdod, Ashdod, Israel
| | - Alaa Anoze
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Vered Fuchs
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Maria Spector
- The Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Roee Steiner
- The Institute for Nuclear Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Levi Kassel
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Gilad Rechnitzer
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Iris Fried
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Nir Peled
- The Hebrew University, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Naama R Bogot
- The Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
44
|
Gołąbek K, Hudy D, Gaździcka J, Miśkiewicz-Orczyk K, Nowak-Chmura M, Asman M, Komosińska-Vassev K, Ścierski W, Golusiński W, Misiołek M, Strzelczyk JK. The Analysis of Selected miRNAs and Target MDM2 Gene Expression in Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:3053. [PMID: 38002053 PMCID: PMC10668942 DOI: 10.3390/biomedicines11113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and margin samples and their association with the selected socio-demographic and clinicopathological characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression in tumour samples compared to the margin samples. When analysing the effect of smoking on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers and non-smokers. In addition, we showed an association between the miR-3613-3p expression level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic values.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie 3 St., 31-054 Kraków, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności St., 41-200 Sosnowiec, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
45
|
Damizia M, Moretta GM, De Wulf P. The RioK1 network determines p53 activity at multiple levels. Cell Death Discov 2023; 9:410. [PMID: 37935656 PMCID: PMC10630321 DOI: 10.1038/s41420-023-01704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
By responding to a host of adverse conditions, ranging from DNA damage to viral infection, transcription factor p53 supports genomic stability, cellular health, and survival. Not surprisingly, tumours across the cancer spectrum carry mutations in p53, misexpress the protein, or dysregulate its activity. Several signalling pathways, many of which comprise oncogenic proteins, converge upon p53 to control its stability and activity. We here present the conserved kinase/ATPase RioK1 as an upstream factor that determines p53 activity at the DNA, RNA, and protein levels. It achieves this task by integrating the regulatory events that act on p53 into a coherent response circuit. We will also discuss how RIOK1 overexpression represents an alternative mechanism for cancers to inactivate p53, and how targeting RioK1 could eradicate malignancies that are driven by a dysregulated RioK1-p53 network.
Collapse
Affiliation(s)
- Michela Damizia
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Gian Mario Moretta
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy
| | - Peter De Wulf
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123, Trento (TN), Italy.
| |
Collapse
|
46
|
Liao L, Deng L, Zhang Y, Yang S, Andriani L, Hu S, Zhang F, Shao Z, Li D. C9orf142 transcriptionally activates MTBP to drive progression and resistance to CDK4/6 inhibitor in triple-negative breast cancer. Clin Transl Med 2023; 13:e1480. [PMID: 38009308 PMCID: PMC10679971 DOI: 10.1002/ctm2.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents the most challenging subtype of all breast cancers because of its aggressive clinical phenotypes and absence of viable therapy targets. In order to identify effective molecular targets for treating patients with TNBC, we conducted an integration analysis of our recently published TNBC dataset of quantitative proteomics and RNA-Sequencing, and found the abnormal upregulation of chromosome 9 open reading frame 142 (C9orf142) in TNBC. However, the functional roles of C9orf142 in TNBC are unclear. METHODS In vitro and in vivo functional experiments were performed to assess potential roles of C9orf142 in TNBC. Immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescent staining were used to investigate the expression levels of C9orf142 and its downstream molecules. The molecular mechanisms underlying C9orf142-regulated mouse double minute 2 (MDM2)-binding protein (MTBP) were determined by chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS In TNBC tissues and metastatic lymph nodes, we observed that C9orf142 exhibited abnormal up-regulation, and its elevated expression was indicative of unfavorable prognosis for TNBC patients. Both in vitro and in vivo functional experiments demonstrated that C9orf142 accelerated TNBC growth and metastasis. Further mechanism exploration revealed that C9orf142 transcriptionally activated MTBP, thereby regulating its downstream MDM2/p53/p21 signaling axis and the transition of cell cycle from G1 to S phase. Functional rescue experiment demonstrated that knockdown of MTBP attenuated C9orf142-mediated tumour growth and metastasis. Furthermore, depletion of C9orf142 remarkably increased the responsiveness of TNBC cells to CDK4/6 inhibitor abemaciclib. CONCLUSIONS Together, these findings unveil a previously unrecognized effect of C9orf142 in TNBC progression and responsiveness to CDK4/6 inhibitor, and emphasize C9orf142 as a promising intervention target for TNBC treatment.
Collapse
Affiliation(s)
- Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yin‐Ling Zhang
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Shao‐Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lisa Andriani
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Shu‐Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Fang‐Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhi‐Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Da‐Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Cancer Institute, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Breast Surgery, Fudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
47
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
49
|
Abukwaik R, Vera-Siguenza E, Tennant DA, Spill F. Interplay of p53 and XIAP protein dynamics orchestrates cell fate in response to chemotherapy. J Theor Biol 2023; 572:111562. [PMID: 37348784 DOI: 10.1016/j.jtbi.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Chemotherapeutic drugs are used to treat almost all types of cancer, but the intended response, i.e., elimination, is often incomplete, with a subset of cancer cells resisting treatment. Two critical factors play a role in chemoresistance: the p53 tumour suppressor gene and the X-linked inhibitor of apoptosis (XIAP). These proteins have been shown to act synergistically to elicit cellular responses upon DNA damage induced by chemotherapy, yet, the mechanism is poorly understood. This study introduces a mathematical model characterising the apoptosis pathway activation by p53 before and after mitochondrial outer membrane permeabilisation upon treatment with the chemotherapy Doxorubicin (Dox). "In-silico" simulations show that the p53 dynamics change dose-dependently. Under medium to high doses of Dox, p53 concentration ultimately stabilises to a high level regardless of XIAP concentrations. However, caspase-3 activation may be triggered or not depending on the XIAP induction rate, ultimately determining whether the cell will perish or resist. Consequently, the model predicts that failure to activate apoptosis in some cancer cells expressing wild-type p53 might be due to heterogeneity between cells in upregulating the XIAP protein, rather than due to the p53 protein concentration. Our model suggests that the interplay of the p53 dynamics and the XIAP induction rate is critical to determine the cancer cells' therapeutic response.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia; School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Fabian Spill
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| |
Collapse
|
50
|
Di Matteo G, Cimbalo A, Manyes L, Mannina L. Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro. Toxins (Basel) 2023; 15:538. [PMID: 37755964 PMCID: PMC10535299 DOI: 10.3390/toxins15090538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Beauvericin (BEA) is an emerging mycotoxin produced by some species of Fusarium genera that widely contaminates food and feed. Gentiana lutea is a protected medicinal plant known for its antioxidant and anti-inflammatory properties, which are attributed to its rich content of bioactive compounds. In order to evaluate the beneficial effects of G. lutea flower against BEA cytotoxicity, the aim of this study is to evaluate changes in protein expression after Jurkat cell exposure through a proteomics approach. To carry out the experiment, cells were exposed to intestinally digested G. lutea flower alone or in combination with the BEA standard (100 nM) over 7 days. Differentially expressed proteins were statistically evaluated (p < 0.05), revealing a total of 172 proteins with respect to the control in cells exposed to the BEA standard, 145 proteins for G. lutea alone, and 139 proteins when exposing the cells to the combined exposure. Bioinformatic analysis revealed processes implicated in mitochondria, ATP-related activity, and RNA binding. After careful analysis of differentially expressed proteins, it was evident that G. lutea attenuated, in most cases, the negative effects of BEA. Furthermore, it decreased the presence of major oncoproteins involved in the modulation of immune function.
Collapse
Affiliation(s)
- Giacomo Di Matteo
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.D.M.); (L.M.)
| |
Collapse
|