1
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
2
|
Akram F, Tanveer R, Andleeb S, Shah FI, Ahmad T, Shehzadi S, Akhtar AM, Syed G. Deciphering the Epigenetic Symphony of Cancer: Insights and Epigenetic Therapies Implications. Technol Cancer Res Treat 2024; 23:15330338241250317. [PMID: 38780251 PMCID: PMC11119348 DOI: 10.1177/15330338241250317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Epigenetic machinery is a cornerstone in normal cell development, orchestrating tissue-specific gene expression in mammalian cells. Aberrations in this intricate landscape drive substantial changes in gene function, emerging as a linchpin in cancer etiology and progression. While cancer was conventionally perceived as solely a genetic disorder, its contemporary definition encompasses genetic alterations intertwined with disruptive epigenetic abnormalities. This review explores the profound impact of DNA methylation, histone modifications, and noncoding RNAs on fundamental cellular processes. When these pivotal epigenetic mechanisms undergo disruption, they intricately guide the acquisition of the 6 hallmark characteristics of cancer within seemingly normal cells. Leveraging the latest advancements in decoding these epigenetic intricacies holds immense promise, heralding a new era in developing targeted and more efficacious treatment modalities against cancers driven by aberrant epigenetic modifications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rida Tanveer
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fatima Iftikhar Shah
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Tayyab Ahmad
- Department of Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Somia Shehzadi
- Department of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | | | - Ghania Syed
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Zhu M, Chen D, Ruan C, Yang P, Zhu J, Zhang R, Li Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14194. [PMID: 37762497 PMCID: PMC10532269 DOI: 10.3390/ijms241814194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC. OSCC is one of the most severe and frequent forms of head and neck cancer today, with a poor prognosis and low overall survival rate. Due to its prevalence, OSCC is a global health concern, characterized by genetic and epigenomic changes. However, the mechanism remains vague. With the advancement of biotechnology, a large number of circRNAs have been discovered in mammalian cells. CircRNAs are dysregulated in OSCC tissues and thus associated with the clinicopathological characteristics and prognosis of OSCC patients. Research studies have demonstrated that circRNAs can serve as biomarkers for OSCC diagnosis and treatment. Here, we summarized the properties, functions, and biogenesis of circRNAs, focusing on the progress of current research on circRNAs in OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| |
Collapse
|
4
|
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or Friends for Targeting Tumor Microenvironment. Noncoding RNA 2023; 9:52. [PMID: 37736898 PMCID: PMC10514839 DOI: 10.3390/ncrna9050052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a group of molecules critical for cell development and growth regulation. They are key regulators of important cellular pathways in the tumor microenvironment. To analyze ncRNAs in the tumor microenvironment, the use of RNA sequencing technology has revolutionized the field. The advancement of this technique has broadened our understanding of the molecular biology of cancer, presenting abundant possibilities for the exploration of novel biomarkers for cancer treatment. In this review, we will summarize recent achievements in understanding the complex role of ncRNA in the tumor microenvironment, we will report the latest studies on the tumor microenvironment using RNA sequencing, and we will discuss the potential use of ncRNAs as therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (A.S.); (C.R.-A.); (G.L.-B.)
| |
Collapse
|
5
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Zhao S, Ly A, Mudd JL, Rozycki EB, Webster J, Coonrod E, Othoum G, Luo J, Dang H, Fields RC, Maher C. Characterization of cell-type specific circular RNAs associated with colorectal cancer metastasis. NAR Cancer 2023; 5:zcad021. [PMID: 37213253 PMCID: PMC10198730 DOI: 10.1093/narcan/zcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.
Collapse
Affiliation(s)
- Sidi Zhao
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Amy Ly
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jace Webster
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ghofran Othoum
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO 63108, USA
| |
Collapse
|
7
|
Xing Y, Liang X, Lv X, Cheng Y, Du J, Liu C, Yang Y. New insights into the role of circular RNAs in ovarian cancer. Pathol Res Pract 2022; 238:154073. [PMID: 36007396 DOI: 10.1016/j.prp.2022.154073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Ovarian cancer (OC) is one of the most aggressive tumors in women and has a poor prognosis and the highest mortality rate. Circular RNAs (circRNAs) are a type of endogenous non-coding RNAs that have recently attracted interest in cancer research. Increasing evidence has demonstrated that circRNAs play an oncogenic or suppressive role in tumorigenesis and progression, and show tissue- or developmental-stage-specific expression. Due to high stability, conservation, abundance, and specificity, circRNAs are considered promising biomarkers for the diagnosis and prognosis of cancer. Herein, we have summarized the expression profiles of circRNAs in OC tissues, serums, and cell lines. Moreover, we discuss how circRNAs participate in the regulation of multiple biological processes in OC, including cell proliferation, apoptosis, migration, invasion, autophagy, epithelial-to-mesenchymal transition, glucose metabolism, angiogenesis, immune response, and chemotherapy resistance, by sponging microRNAs and interacting with proteins.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000 Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou 730000 Gansu, China.
| |
Collapse
|
8
|
Role of circular RNAs in disease progression and diagnosis of cancers: An overview of recent advanced insights. Int J Biol Macromol 2022; 220:973-984. [PMID: 35977596 DOI: 10.1016/j.ijbiomac.2022.08.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is a crucial regulator of tumor progression and cells in the TME release a number of molecules that are responsible for anaplasticity, invasion, metastasis of tumor, establishing stem cell niches, up-regulation and down-regulation of various pathways in cancer cells, interfering with immune surveillance and immune escape. Moreover, they can serve as diagnostic markers, and determine effective therapies. Among them, CircRNAs have gained special attention due to their involvement in mutated pathways in cancers. By functioning as a molecular sponge for miRNAs, binding with proteins, and directing selective splicing. CircRNAs modify the immunological environment of cancers to promote their growth. Besides of critical role in tumor growth, circRNAs are emerging as potential candidates as biomarkers for diagnosis cancer therapy. Also, circRNAs vaccination even offers a novel approach to tumor immunotherapy. Over the recent years, studies are advocating that circRNAs have tissue specific tumor specific expression patterns, which indicates their potential clinical utility. Especially, circRNAs have emerged as potential predictive and prognostic biomarkers. Although, there has been significant progress in deciphering the role of circRNA in cancers, literature lacks comprehensive overview on this topic. Keeping in view of these significant discoveries, this review systematically discusses circRNA and their role in the tumor in different dimensions.
Collapse
|
9
|
Lei TX, He DJ, Cao J, Lv WG. CircWDR26 regulates endometrial carcinoma progression via miR-212-3p-mediated typing genes MSH2. Eur J Med Res 2022; 27:135. [PMID: 35897048 PMCID: PMC9327368 DOI: 10.1186/s40001-022-00755-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNA) are important in mediating tumor progression, but their roles in endometrial carcinoma (EC) are not fully understood yet. Many circRNAs are dysregulated and may contribute to EC progression. The functions of circWDR26 in EC remain unknown. Methods The expression of circWDR26 in EC and adjacent normal tissues, and cell lines was determined by qPCR. The proliferation, apoptosis, migration, and invasion of EC cells was examined by CCK-8 assay, flow cytometry, wound healing assay and Transwell assay. The interaction between circWDR26, MSH2 and miR-212-3p was determined by luciferase assay. EC cells were inoculated into nude mice and tumor burden was determined by measuring tumor dimensions, size, and weight. The proliferative marker Ki67 in EC tissue was determined by immunohistochemistry. Results The expression of circWDR26 in EC tissues or cell lines was higher than in the normal tissue or endometrial epithelial cells. Downregulation of circWDR26 resulted in attenuated proliferation, increased apoptosis, reduced migration and invasion of EC cells. Mechanistically, circWDR26 targeted and suppressed the expression of miR-212-3p. We further found that MSH2 was the novel target of miR-212-3p and was upregulated by circWDR26 via inhibiting miR-212-3p. In vivo experiment demonstrated that circWDR26 was essential for EC tumor growth. Conclusion circWDR26 promoted EC progression by regulating miR-212-3p/MSH2 axis and provided novel insights into anti-cancer treatment.
Collapse
Affiliation(s)
- Tao-Xiang Lei
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China
| | - De-Jian He
- Department of Emergency, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), Chenzhou, 423000, Hunan Province, China
| | - Jian Cao
- Medical Imaging Center, Chenzhou Fourth People's Hospital, Chenzhou, 423000, Hunan Province, China
| | - Wang-Gui Lv
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China.
| |
Collapse
|
10
|
Zokaei E, Darbeheshti F, Rezaei N. Prospect of exosomal circular RNAs in breast Cancer: presents and future. Mol Biol Rep 2022; 49:6997-7011. [PMID: 35534582 DOI: 10.1007/s11033-022-07472-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Implementing precision oncology for breast cancer (BC) is a critical method for improving patient outcomes, which relies on the use of reliable biomarkers to be effective and safe. exosomes represent a potential alternative for the diagnosis and therapy of BC, As a "liquid biopsy" and a novel source for biomarkers. Exosomes are nanoscale phospholipid bilayer vesicles released by most cells that contain a large payload of various RNA species that can alter recipient cell activity. Circular RNAs (circRNAs) were recently revealed as a looping subclass of competing endogenous noncoding RNAs (ceRNAs) capable of microRNA sponging to regulate gene expression. They provide critical regulatory functions in carcinogenesis, proliferation, invasion, metastasis, and treatment resistance, as well as cancer prognostic. However, there is still a major gap in our understanding of the role of circRNA in the advancement of BC. CircRNAs are abundant in exosomes, according to various studies, and exosomal circRNAs (exo-circRNAs) play a significant role in cancer biology. Exo-circRNAs can be picked up by nearby or distant cells, affecting many features of the target cells' pathophysiological states, thus boosting cell communication and tumor spread. In this review, we have briefly summarized the major properties and functions of exosomes. Then, we have focused on exo-circRNAs, discussing their potential roles in both driving and inhibiting BC, as well as for cancer diagnosis, prognosis, and monitoring.
Collapse
Affiliation(s)
- Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Darbeheshti
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Gu J, Su C, Huang F, Zhao Y, Li J. Past, Present and Future: The Relationship Between Circular RNA and Immunity. Front Immunol 2022; 13:894707. [PMID: 35693804 PMCID: PMC9174805 DOI: 10.3389/fimmu.2022.894707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
The immune system has evolved since the birth of humans. However, immune-related diseases have not yet been overcome due to the lack of expected indicators and targeting specificity of current medical technology, subjecting patients to very uncomfortable physical and mental experiences and high medical costs. Therefore, the requirements for treatments with higher specificity and indicative ability are raised. Fortunately, the discovery of and continuous research investigating circular RNAs (circRNAs) represent a promising method among numerous methods. Although circRNAs wear regarded as metabolic wastes when discovered, as a type of noncoding RNA (ncRNA) with a ring structure and wide distribution range in the human body, circRNAs shine brilliantly in medical research by virtue of their special nature and structure-determined functions, such as high stability, wide distribution, high detection sensitivity, acceptable reproducibility and individual differences. Based on research investigating the role of circRNAs in immunity, we systematically discuss the hotspots of the roles of circRNAs in immune-related diseases, including expression profile analyses, potential biomarker research, ncRNA axis/network construction, impacts on phenotypes, therapeutic target seeking, maintenance of nucleic acid stability and protein binding research. In addition, we summarize the current situation of and problems associated with circRNAs in immune research, highlight the applications and prospects of circRNAs in the treatment of immune-related diseases, and provide new insight into future directions and new strategies for laboratory research and clinical applications.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- Chengdu Blood Center, Blood Research Laboratory, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| |
Collapse
|
12
|
Sharma AR, Banerjee S, Bhattacharya M, Saha A, Lee SS, Chakraborty C. Recent progress of circular RNAs in different types of human cancer: Technological landscape, clinical opportunities and challenges (Review). Int J Oncol 2022; 60:56. [PMID: 35362541 DOI: 10.3892/ijo.2022.5346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non‑coding RNAs that have been recently regarded as functionally active. CircRNAs are remarkably stable and known to possess several biological functions such as microRNA sponging, regulating transcription and splicing and occasionally acting as polypeptide‑producing templates. CircRNAs show tissue‑specific expression and have been reported to be associated with the progression of several types of malignancies. Given the recent progress in genome sequencing and bioinformatics techniques, a rapid increment in the biological role of circRNAs has been observed. Concurrently, the patent search from different patent databases shows that the patent number of circRNA is increasing very quickly. These phenomena reveal a rapid development of the technological landscape. In the present review, the recent progress on circRNAs in various kinds of cancer has been investigated and their function as biomarkers or therapeutic targets and their technological landscape have been appreciated. A new insight into circRNAs structure and functional capabilities in cancer has been reviewed. Continually increasing knowledge on their critical role during cancer progression is projecting them as biomarkers or therapeutic targets for various kinds of cancer. Thus, recent updates on the functional role of circRNAs in terms of the technological landscape, clinical opportunities (biomarkers and therapeutic targets), and challenges in cancer have been illustrated.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Shreya Banerjee
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‑Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
13
|
Natural Compounds Targeting Cancer-Associated Fibroblasts against Digestive System Tumor Progression: Therapeutic Insights. Biomedicines 2022; 10:biomedicines10030713. [PMID: 35327514 PMCID: PMC8945097 DOI: 10.3390/biomedicines10030713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical for cancer occurrence and progression in the tumor microenvironment (TME), due to their versatile roles in extracellular matrix remodeling, tumor–stroma crosstalk, immunomodulation, and angiogenesis. CAFs are the most abundant stromal component in the TME and undergo epigenetic modification and abnormal signaling cascade activation, such as transforming growth factor-β (TGF-β) and Wnt pathways that maintain the distinct phenotype of CAFs, which differs from normal fibroblasts. CAFs have been considered therapeutic targets due to their putative oncogenic functions. Current digestive system cancer treatment strategies often result in lower survival outcomes and fail to prevent cancer progression; therefore, comprehensive characterization of the tumor-promoting and -restraining CAF activities might facilitate the design of new therapeutic approaches. In this review, we summarize the enormous literature on natural compounds that mediate the crosstalk of CAFs with digestive system cancer cells, discuss how the biology and the multifaceted functions of CAFs contribute to cancer progression, and finally, pave the way for CAF-related antitumor therapies.
Collapse
|
14
|
Yarmishyn AA, Ishola AA, Chen CY, Verusingam ND, Rengganaten V, Mustapha HA, Chuang HK, Teng YC, Phung VL, Hsu PK, Lin WC, Ma HI, Chiou SH, Wang ML. Circular RNAs Modulate Cancer Hallmark and Molecular Pathways to Support Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14040862. [PMID: 35205610 PMCID: PMC8869994 DOI: 10.3390/cancers14040862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Circular RNAs (circRNA) are a type of RNA molecule of circular shape that are now being extensively studied due to the important roles they play in different biological processes. In addition, they were also shown to be implicated in disease such as cancer. Cancer is a complex process which is often defined by a combination of specific processes called cancer hallmarks. In this review, we summarize the literature on circRNAs in cancer and classify them as being implicated in specific cancer hallmarks. Abstract Circular RNAs (circRNAs) are noncoding products of backsplicing of pre-mRNAs which have been established to possess potent biological functions. Dysregulated circRNA expression has been linked to diseases including different types of cancer. Cancer progression is known to result from the dysregulation of several molecular mechanisms responsible for the maintenance of cellular and tissue homeostasis. The dysregulation of these processes is defined as cancer hallmarks, and the molecular pathways implicated in them are regarded as the targets of therapeutic interference. In this review, we summarize the literature on the investigation of circRNAs implicated in cancer hallmark molecular signaling. First, we present general information on the properties of circRNAs, such as their biogenesis and degradation mechanisms, as well as their basic molecular functions. Subsequently, we summarize the roles of circRNAs in the framework of each cancer hallmark and finally discuss the potential as therapeutic targets.
Collapse
Affiliation(s)
- Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Afeez Adekunle Ishola
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Chieh-Yu Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Nalini Devi Verusingam
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Vimalan Rengganaten
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Postgraduate Programme, Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Habeebat Aderonke Mustapha
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hao-Kai Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Yuan-Chi Teng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
| | - Van Long Phung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Kuei Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 112, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (A.A.Y.); (A.A.I.); (C.-Y.C.); (N.D.V.); (V.R.); (H.A.M.); (H.-K.C.); (Y.-C.T.); (V.L.P.); (S.-H.C.)
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-2-5568-1156; Fax: +886-2-2875-7435
| |
Collapse
|
15
|
Abstract
Objective Circular RNA (circRNA) plays a vital role in the development and progression of malignancies, however, the function of circRNAs in cholangiocarcinoma (CCA) remains unexplored. The aim of this study was to investigate circRNA expression in CCA versus para-cancer tissues, and elucidate any potential associated mechanisms. Methods Differential expression of circRNAs between CCA and para-cancer tissue was analysed by microarray hybridization, and validated by real-time quantitative reverse transcription–polymerase chain reaction (qRT–PCR). The downstream pathway was investigated using bioinformatics and qRT–PCR. Results Microarray hybridization revealed 10 circRNAs with > 3-fold increased expression versus para-cancer (circRNA_002172, circRNA_002144, circRNA_001588, circRNA_000166, circRNA_000585, circRNA_000167, circRNA_402608, circRNA_006853, circRNA_001589, circRNA_008882), and three circRNAs with > 3-fold decreased expression (circRNA_406083, circRNA_104940, circRNA_006349). CircRNA_000585 was shown by qRT-PCR to be upregulated in tumour versus paired para-cancer tissue from 15 patients with CCA. Bioinformatics analysis revealed a potential pathway comprising circRNA_000585/microRNA-615-5p/angiomotin (AMOT)/Yes associated protein 1 (YAP) in CCA. RT–PCR validation of crucial molecule expression showed downregulation of miR-615-5p, and upregulation of AMOT and YAP in CCA tumours. Conclusion Multiple circRNAs are dysregulated in CCA. CircRNA_000585 is upregulated in CCA, and may function by a circRNA_000585/miR-615-5p/AMOT/YAP pathway, which may be a novel CCA pathway.
Collapse
Affiliation(s)
- Fengming Yi
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, P.R. China
| | - Longxiang Xin
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, P.R. China.,Jiangxi Cancer hospital, Nanchang, P.R. China
| | - Long Feng
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, P.R. China
| |
Collapse
|
16
|
Koulouris A, Tsagkaris C, Spyrou V, Pappa E, Troullinou A, Nikolaou M. Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options. J Hepatocell Carcinoma 2021; 8:387-401. [PMID: 34012929 PMCID: PMC8128500 DOI: 10.2147/jhc.s300182] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The last three years have seen remarkable progress in comprehending predisposing factors and upgrading our treatment arsenal concerning hepatocellular carcinoma (HCC). Until recently, there were no means to withstand the progression of viral hepatitis-associated liver cirrhosis to HCC. A deeper understanding of the molecular mechanism of the disease, the use of biomarkers, and the follow-up, allowed us to realize that conventional chemotherapy failing to increase survival in patients with advanced HCC tends to be exiled from clinical practice. Multi-kinase inhibitors (TKIs) such as sorafenib, lenvatinib targeting mainly the vascular endothelial growth factor receptors 1–3 VEGFRs 1–3 provided until recently the standard of care for these patients, as first- or second-line treatment. Since May 2020, the atezolizumab plus bevacizumab combination (immunotherapy plus anti-VEGF) has become the new reference standard in first-line HCC treatment. Additionally, anti-programmed cell death protein 1 (anti-PD-1) immunotherapy can be used as a second-line treatment following first-line treatment’s failure. Phase III clinical trials have recently suggested the efficacy of novel anti-angiogenic factors such as cabozantinib and ramucirumab as a second-line treatment option. With considerations about toxicity arising, clinical trials are investigating combinations of the aforementioned targeted therapies with immunotherapy as first-line treatment. This paper aims to perform a systematic review describing the evolving treatment options for HCC over the last decades, ranging from neoadjuvant treatment to systemic therapy of advanced-stage HCC. With the landscape of HCC treatment shifting towards novel agents the forming of a new therapeutic algorithm for HCC seems to be imperative.
Collapse
Affiliation(s)
- Andreas Koulouris
- Resident of Medical Oncology, University General Hospital of Heraklion, University of Crete, Crete, Greece
| | | | | | - Eleni Pappa
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michail Nikolaou
- 1st Oncology Department, "Saint Savas" Anticancer - Oncology Hospital, Athens, Greece
| |
Collapse
|
17
|
Chen Y, Song S, Zhang L, Zhang Y. Circular RNA hsa_circ_0091579 facilitates the Warburg effect and malignancy of hepatocellular carcinoma cells via the miR-624/H3F3B axis. Clin Transl Oncol 2021; 23:2280-2292. [PMID: 33934291 DOI: 10.1007/s12094-021-02627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. It has been reported that circular RNA hsa_circ_0091579 (circ_0091579) is involved in HCC progression. Nevertheless, the molecular mechanism by which circ_0091579 modulates HCC advancement is indistinct. METHODS The expression of circ_0091579, microRNA (miR)-624, and H3 histone family member 3B (H3F3B) mRNA was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of HCC cells were analyzed using an extracellular flux analyzer. Adenosine triphosphate (ATP) level was evaluated using a commercial kit. Cell migration, invasion, and apoptosis were assessed by wound-healing, transwell, or flow cytometry assay. The relationship between miR-624 and circ_0091579 or H3F3B was verified using luciferase reporter assay and/or RNA immunoprecipitation (RIP) assay. H3F3B protein level was detected by western blotting. RESULTS Circ_0091579 was upregulated in HCC tissues and cells. Circ_0091579 inhibition decreased xenograft tumor growth in vivo and repressed Warburg effect, migration, invasion, and induced apoptosis of HCC cells in vitro. MiR-624 was downregulated, while H3F3B was upregulated in HCC tissues and cells. Circ_0091579 acted as a miR-624 sponge and regulated H3F3B expression by adsorbing miR-624. MiR-624 inhibitor reversed circ_0091579 downregulation-mediated effects on the Warburg effect and malignant behaviors of HCC cells. H3F3B overexpression reversed the repressive impact of miR-624 mimic on the Warburg effect and malignancy of HCC cells. CONCLUSIONS Circ_0091579 accelerated Warburg effect and tumor growth via upregulating H3F3B via adsorbing miR-624 in HCC, providing evidence to support the involvement of circ_0091579 in the progression of HCC.
Collapse
Affiliation(s)
- Y Chen
- Department of Hepatobiliary Surgery, Tengzhou Central People's Hospital of Shandong Province, Tengzhou, Shandong, China
| | - S Song
- Department of Medical, Yantai Hospital of Traditional Chinese Medicine, Antai, Shandong, China
| | - L Zhang
- Department of Hepatobiliary Vascular Surgery, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Y Zhang
- The Operating Room, Zaozhuang Hospital of Traditional Chinese Medicine, 2666 Taihang Shan Road, Xuecheng District, Zaozhuang, 277000, Shandong, China.
| |
Collapse
|
18
|
Wu S, Huang X, Tie X, Cheng Y, Xue X, Fan M. Role and mechanism of action of circular RNA and laryngeal cancer. Pathol Res Pract 2021; 223:153460. [PMID: 33971544 DOI: 10.1016/j.prp.2021.153460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC), is the second most common malignant cancer of the head and neck after oral cavity cancer. Laryngeal cancer is associated with huge socio-economic burden worldwide. Studies have widely explored the role of non-coding RNAs, especially microRNAs and long non-coding RNAs in pathogenesis of laryngeal cancer. In addition, several studies have explored the mechanism and function of circRNAs. CircRNAs has higher stability and more extensive function models, including combining miRNA as sponge, modifying transcription, and even regulating protein translation have been developed. Therefore, circRNAs is applied as an excellent diagnostic tool and a promising candidate for development of cancer therapies. This study reviews the biogenesis and function of circRNAs, explores potential mechanism of circRNAs in LSCC, and implications and challenges in LSCC research.
Collapse
Affiliation(s)
- Shanying Wu
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xiaodong Huang
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xinting Tie
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Yongshan Cheng
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Xue Xue
- Department of Otolaryngology, Linyi Central Hospital, Linyi, 276400 Shandong, China
| | - Mingfang Fan
- Clinical Laboratory, Linyi Central Hospital, Linyi, 276400 Shandong, China.
| |
Collapse
|
19
|
Aishanjiang K, Wei XD, Fu Y, Lin X, Ma Y, Le J, Han Q, Wang X, Kong X, Gu J, Wu H. Circular RNAs and Hepatocellular Carcinoma: New Epigenetic Players With Diagnostic and Prognostic Roles. Front Oncol 2021; 11:653717. [PMID: 33959506 PMCID: PMC8093866 DOI: 10.3389/fonc.2021.653717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Due to the lack of potent diagnosis and prognosis biomarkers and effective therapeutic targets, the overall prognosis of survival is poor in HCC patients. Circular RNAs (circRNAs) are a class of novel endogenous non-coding RNAs with covalently closed loop structures and implicated in diverse physiological processes and pathological diseases. Recent studies have demonstrated the involvement of circRNAs in HCC diagnosis, prognosis, development, and drug resistance, suggesting that circRNAs may be a class of novel targets for improving HCC diagnosis, prognosis, and treatments. In fact, some artificial circRNAs have been engineered and showed their therapeutic potential in treating HCV infection and gastric cancer. In this review, we introduce the potential of circRNAs as biomarkers for HCC diagnosis and prognosis, as therapeutic targets for HCC treatments and discuss the challenges in circRNA research and chances of circRNA application.
Collapse
Affiliation(s)
- Kedeerya Aishanjiang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Dong Wei
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yi Fu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Jiamei Le
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China
| | - Xuan Wang
- Department of General Surgery, The 81st Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Department of Collaborative Innovation Center for Biomedicine, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Fang Z, Jiang C, Li S. The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Front Immunol 2021; 11:617583. [PMID: 33613544 PMCID: PMC7886782 DOI: 10.3389/fimmu.2020.617583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes with features of high stability, tissue-specific and cell-specific expression. According to their biogenesis, circRNAs are mainly classified into five types, i.e. exonic circRNAs (EciRNAs), exon-intron circRNAs (EIciRNAs), intronic RNAs (CiRNAs), fusion circRNAs (f-circRNAs), and read-through circRNAs (rt-circRNAs). CircRNAs have been emerging as important non-coding regulatory RNAs in a variety of human cancers. CircRNA4s were revealed to exert regulatory function through multiple mechanisms, such as sponges/decoys of miRNAs and proteins, enhancers of protein functions, protein scaffolds, protein recruitment, or protein translation templates. Furthermore, some circRNAs are intensively associated with immune cells in tumor immune microenvironment (TIME), e.g. circARSP91 and natural killer cells. Through regulating immune checkpoint genes, circRNAs are demonstrated to modulate the immune checkpoint blockade immunotherapy, e.g. circCPA4 could up-regulate PD-L1 expression. In summary, we reviewed the molecular features of circRNAs and mechanisms how they exert functions. We further summarized functional implications of circRNA regulations in tumor immunology and immunotherapy. Further understanding of the regulatory roles of circRNAs in tumor immunology and immunotherapy will benefit tumor treatment.
Collapse
Affiliation(s)
- Zhixiao Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Shengli Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Zeng F, Luo L, Song M, Li D. Silencing of circular RNA PUM1 inhibits clear cell renal cell carcinoma progression through the miR-340-5p/FABP7 axis. J Recept Signal Transduct Res 2021; 42:141-150. [PMID: 33472512 DOI: 10.1080/10799893.2020.1870494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) monitor the development of clear cell renal cell carcinoma (ccRCC). However, the role of CircPUM1 in ccRCC malignancy is not studied. We estimated the mechanism of CircPUM1 in ccRCC progression in this study. CircPUM1 expression in ccRCC tissues and cells was detected. The expression of CircPUM1 was interfered in ccRCC cells, and its effects on the growth of ccRCC cells were studied. Nuclear/cytosol fractionation assay was performed for the location of CircPUM1, and the downstream miR, gene, and pathway involved in ccRCC progression were explored through gain- and loss-of-function experiments. CircPUM1 was highly expressed in ccRCC samples and cells. Inhibition of CircPUM1 prevented the growth ccRCC cells. CircPUM1 was localized in the cytoplasm and bound to miR-340-5p. Overexpression of miR-340-5p inhibited the growth of ccRCC cells. miR-340-5p targeted FABP7, and CircPUM1 induced FABP7 expression and the activation of MEK/ERK pathway through competitively binding to miR-340-5p. Overexpression of FABP7 attenuated the inhibitory effect of CircPUM1 silencing on the growth of ccRCC cells. Overall, CircPUM1 upregulates FABP7 expression by competitively binding to miR-340-5p, and then activates the MEK/ERK pathway, thus promoting ccRCC progression.
Collapse
Affiliation(s)
- Fanchang Zeng
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Liumei Luo
- Division of Science and Education, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Mi Song
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, P.R. China
| |
Collapse
|
22
|
Zhang Y, Li X, Zhang J, Mao L. Circ-CCDC66 upregulates REXO1 expression to aggravate cervical cancer progression via restraining miR-452-5p. Cancer Cell Int 2021; 21:20. [PMID: 33407514 PMCID: PMC7789749 DOI: 10.1186/s12935-020-01732-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Cervical cancer is one most common cancer types among females over the world. While its underlying mechanisms remain unclear. Circ-CCDC66 has been revealed to participate in multiple biological functions, and contribute to various diseases’ progression. In the current study, we aimed to demonstrate the role of circ-CCDC66 in cervical cancer progression. Methods Real-time quantitative PCR (RT-qPCR) was conducted to measure the expression of circ-CCDC66, miR-452-5p, and REXO1 mRNA. Cell fractionation assay and RNA fluorescence in situ hybridization (FISH) were performed to locate circ-CCDC66 in cells. Cell account kit 8 (CCK-8) was used to detect cell proliferation ability. Transwell assay was applied to evaluate cell migration or invasion ability. Bioinformatics analysis, biotinylated RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays were conducted to assess the association between miR-452 and circ-CCDC66 or REXO1. Western blot was applied to measure the protein expression of REXO1. The animal tumor model was used to assess the effect of circ-CCDC66 in vivo. Results The expression of circ-CCDC66 was upregulated in cervical cancer tumor tissues in comparison with normal tissues, and correlated with later tumor stage and larger tumor size. Downregulated circ-CCDC66 inhibited cervical cancer cell proliferation, migration, and invasion. Circ-CCDC66 was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. MiR-452-5p directly targeted to REXO1. Circ-CCDC66 regulated REXO1 expression to modulate cervical cancer progression via miR-452-5p. Moreover, downregulated circ-CCDC66 was found to suppress tumor growth in vivo. Conclusion Our results demonstrated the role of circ-CCDC66/miR-452-5p/REXO1 axis in cervical cancer progression, we might provide novel therapeutic targets for cervical cancer clinical intervention.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Mao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of circRNAs in hematological malignancies. J Hematol Oncol 2020; 13:138. [PMID: 33069241 PMCID: PMC7568356 DOI: 10.1186/s13045-020-00976-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
With covalently closed circular structures, circular RNAs (circRNAs) were once misinterpreted as by-products of mRNA splicing. Being abundant, stable, highly conserved, and tissue-specific, circRNAs are recently identified as a type of regulatory RNAs. CircRNAs bind to certain miRNAs or proteins to participate in gene transcription and translation. Emerging evidence has indicated that the dysregulation of circRNAs is closely linked to the tumorigenesis and treatment response of hematological malignancies. CircRNAs play critical roles in various biological processes, including tumorigenesis, drug resistance, tumor metabolism, autophagy, pyroptosis, and ferroptosis. The N6-methyladenosine modification of circRNAs and discovery of fusion-circRNAs provide novel insights into the functions of circRNAs. Targeting circRNAs in hematological malignancies will be an attractive treatment strategy. In this review, we systematically summarize recent advances toward the novel functions and molecular mechanisms of circRNAs in hematological malignancies, and highlight the potential clinical applications of circRNAs as novel biomarkers and therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| | - Linquan Zhan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Kai Huang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| |
Collapse
|