1
|
Samimi H, Shirzad N, Sajjadi-Jazi SM, Heshmat R, Amoli MM, Mohajeri-Tehrani MR, Tavangar SM, Larijani B, Haghpanah V. Thyroid Cancer research at endocrinology and metabolism research institute (EMRI): a report of scientific activities between 2005 and 2020. J Diabetes Metab Disord 2024; 23:1-9. [PMID: 39610531 PMCID: PMC11599522 DOI: 10.1007/s40200-020-00702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
Purpose Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, has achieved many advances in the understanding of epidemiology, pathology, and molecular biology of thyroid cancer (TC). This paper will focus on published literature in the field of TC research at EMRI since its inception. Methods A comprehensive literature search of "Scopus", "Web of Science (ISI)", "PubMed", and "SID" databases was done to identify TC-based studies in EMRI since 2005, using the predefined keywords. Results All the records were reviewed. Eventually, 46 articles that met the inclusion and exclusion criteria were considered. Timeline, characteristics, and summarized findings of the included most studies have been briefly described. Conclusion The main focus of the TC research at EMRI is to investigate genetic and epigenetic changes as well as the cellular and molecular aspects seen more frequently in TC patients, and find out how exactly these alterations lead to more aggressive TC behavior and resistance to the conventional treatment approaches in those patients.
Collapse
Affiliation(s)
- Hilda Samimi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology, Vali-Asr Hospital, Endocrinology and Metabolism Research Center, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, North Kargar Ave., Tehran, 14114 Iran
| |
Collapse
|
2
|
Qiannan-Di, Qianqian-Jiang, Jiahui-Sun, Haowei-Fu, Qian-Xu. LncRNA PVT1 mediates the progression of liver necroptosis via ZBP1 promoter methylation under nonylphenol exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157185. [PMID: 35803419 DOI: 10.1016/j.scitotenv.2022.157185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is one of the most toxic and ubiquitously present endocrine disrupting compounds. Numerous studies have shown that NP exposure induces liver injury, but the interactions between epigenetic factors and necroptosis in this context have not been examined. In this study, rats received daily NP administration (15, 45, and 135 mg/kg/day) via oral gavage over a 28-day period. The upregulation of lncRNA PVT1 was associated with the elevated expression of necroptosis-related proteins (ZBP1, RIPK3, MLKL, and p-MLKL). Moreover, similar effects were also observed after NP exposure in BRL-3A cells. LncRNA PVT1 was predominantly expressed in the nucleus, and ASO was chosen to knock down lncRNA PVT1 in BRL-3A cells. Experimental techniques such as RNA immunoprecipitation, chromatin immunoprecipitation, and co-immunoprecipitation were used to verify direct binding interactions among lncRNA PVT1, EZH2, DNMT1, and ZBP1. The evidence obtained indicated that lncRNA PVT1 could bind to DNMT1 via EZH2 and increase methylation at the ZBP1 promoter, thereby promoting necroptosis. Meanwhile, the demethylation of the highly expressed gene TET1 also promoted ZBP1 upregulation, inducing necroptosis. Taken together, these findings provide valuable insights into the potential molecular mechanisms underlying liver injury in response to NP exposure. Hence, they lay a mechanistic foundation for the evaluation of NP biosafety.
Collapse
|
3
|
Kim D, Yu J, Kim J, Hwang YA, Kim JK, Ku CR, Yoon JH, Kwak JY, Nam KH, Lee EJ. Use of long non-coding RNAs for the molecular diagnosis of papillary thyroid cancer. Front Oncol 2022; 12:924409. [PMID: 36132147 PMCID: PMC9483125 DOI: 10.3389/fonc.2022.924409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Improved molecular testing for common somatic mutations and the identification of mRNA and microRNA expression classifiers are promising approaches for the diagnosis of thyroid nodules. However, there is a need to improve the diagnostic accuracy of such tests for identifying thyroid cancer. Recent findings have revealed a crucial role of long non-coding RNAs (lncRNAs) in gene modulation. Thus, we aimed to evaluate the diagnostic value of selected lncRNAs from The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset. Methods LncRNAs in TANRIC thyroid cancer dataset that have significantly increased or decreased expression in papillary thyroid cancer (PTC) tissues were selected as candidates for PTC diagnosis. Surgical specimens from patients who underwent thyroidectomy were used to determine the separation capability of candidate lncRNAs between malignant and benign nodules. Fine needle aspiration samples were obtained and screened for candidate lncRNAs to verify their diagnostic value. Results LRRC52-AS1, LINC02471, LINC02082, UNC5B-AS1, LINC02408, MPPED2-AS1, LNCNEF, LOC642484, ATP6V0E2-AS1, and LOC100129129 were selected as the candidate lncRNAs. LRRC52-AS1, LINC02082, UNC5B-AS1, MPPED2-AS1, LNCNEF, and LOC100129129 expression levels were significantly increased or decreased in malignant nodules compared to those in benign nodules and paired normal thyroid tissues. The combination of LRRC52-AS1, LINC02082, and UNC5B-AS1 showed favorable results for the diagnosis of PTC from fine needle aspirates, with 88.9% sensitivity and 100.0% specificity. Conclusions LncRNA expression analysis is a promising approach for advancing the molecular diagnosis of PTC. Further studies are needed to identify lncRNAs of additional diagnostic value.
Collapse
Affiliation(s)
- Daham Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Juyeon Yu
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon-a Hwang
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Kyong Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Hyun Yoon
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Kwak
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee-Hyun Nam
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Kee-Hyun Nam,
| | - Eun Jig Lee
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Yang S, Zhou J, Chen Z, Sun Q, Zhang D, Feng Y, Wang X, Sun Y. A novel m7G-related lncRNA risk model for predicting prognosis and evaluating the tumor immune microenvironment in colon carcinoma. Front Oncol 2022; 12:934928. [PMID: 35992788 PMCID: PMC9386370 DOI: 10.3389/fonc.2022.934928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
N7-Methylguanosine (m7G) modifications are a common type of posttranscriptional RNA modifications. Its function in the tumor microenvironment (TME) has garnered widespread focus in the past few years. Long non-coding RNAs (lncRNAs) played an essential part in tumor development and are closely associated with the tumor immune microenvironment. In this study, we employed a comprehensive bioinformatics approach to develop an m7G-associated lncRNA prognostic model based on the colon adenocarcinoma (COAD) database from The Cancer Genome Atlas (TCGA) database. Pearson’s correlation analysis was performed to identify m7G-related lncRNAs. Differential gene expression analysis was used to screen lncRNAs. Then, we gained 88 differentially expressed m7G-related lncRNAs. Univariate Cox analysis and Lasso regression analysis were performed to build an eight-m7G-related-lncRNA (ELFN1-AS1, GABPB1-AS1, SNHG7, GS1-124K5.4, ZEB1-AS1, PCAT6, C1RL-AS1, MCM3AP-AS1) risk model. Consensus clustering analysis was applied to identify the m7G-related lncRNA subtypes. We also verified the risk prediction effect of a gene signature in the GSE17536 test set (177 patients). A nomogram was constructed to predict overall survival rates. Furthermore, we analyzed differentially expressed genes (DEGs) between high-risk and low-risk groups. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted with the analyzed DEGs. At last, single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, MCP-COUNTER, and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithms were utilized to discover the relationship between the risk model and the TME. Consequently, the m7G-related lncRNA risk model for COAD patients could be a viable prognostic tool and treatment target.
Collapse
Affiliation(s)
- Sheng Yang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jiahui Zhou
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhihao Chen
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qingyang Sun
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Dongsheng Zhang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China
- *Correspondence: Yueming Sun, ; Xiaowei Wang,
| | - Yueming Sun
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yueming Sun, ; Xiaowei Wang,
| |
Collapse
|
5
|
Anaplastic thyroid carcinoma with unusual long-term survival: a case report. J Med Case Rep 2022; 16:39. [PMID: 35101107 PMCID: PMC8805419 DOI: 10.1186/s13256-021-03249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Anaplastic thyroid carcinoma is a rare, rapidly progressive, and highly aggressive tumor. It has a global annual incidence of 1–2 per million people. It mostly affects older adults and women. The median survival duration after diagnosis does not exceed 6–8 months. Case presentation A 60-year-old female patient of mixed race (Honduran) presented to the local medical service with dysphonia that had started approximately 2 months earlier, accompanied by orthopnea that had started 1 month earlier. On physical examination, a soft mass was palpated within the anterior neck region; it was approximately 4 cm in diameter, painless, and mobile on swallowing, and had irregular margins. Ultrasound and computed tomography of the neck were performed. Subsequently, fine needle aspiration biopsy was performed. The histological diagnosis was anaplastic thyroid carcinoma (stage IVB). She underwent total thyroidectomy and chemotherapy. She is currently in her fifth year of remission after diagnosis and remains under oncologic surveillance. Discussion Anaplastic thyroid carcinoma demonstrates a lethal behavior. Approximately 18% survive for more than a year after diagnosis, and 0–10% survive for 5 years. Different pretherapeutic prognostic factors may affect survival, including age < 70 years, the absence of distant metastases, and complete local resection. Conclusion Conventional treatment improves the quality of life of the patient, but the results are not encouraging for the medium and long term. Only a few patients manage to exceed the average life expectancy of 3–6 months, despite undergoing the currently available therapeutic regimen.
Collapse
|
6
|
Bao J, Bi X, Wang J, Li X. Long noncoding RNA LINC00649 functions as a microRNA‑432‑5p sponge to facilitate tumourigenesis in colorectal cancer by upregulating HDGF. Mol Med Rep 2022; 25:104. [PMID: 35088877 PMCID: PMC8822880 DOI: 10.3892/mmr.2022.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Long intergenic nonprotein coding RNA 649 (LINC00649) is a functional regulator in acute myeloid leukaemia. However, the contribution of LINC00649 in colorectal cancer (CRC) has yet to be confirmed. Accordingly, the present investigation was devoted to exploring the detailed functions of LINC00649 and reveal the mechanisms underlying the LINC00649-induced promotion of CRC progression. LINC00649 expression in CRC was investigated by reverse transcription-quantitative PCR. Knockdown of LINC00649 was achieved using small interfering RNAs or short hairpin RNA, followed by functional experiments. The binding between LINC00649 and microRNA (miR)-432-5p was predicted by a bioinformatics tool, and corroborated by luciferase reporter assay and RNA immunoprecipitation. In the present study, LINC00649 was expressed at a high level in CRC. The aberrant expression of LINC00649 exhibited an inverse association with CRC patient prognosis. Functionally, the downregulation of LINC00649 exerted anticarcinogenic activities in CRC by decreasing cell proliferation, migration, and invasion and inducing cell apoptosis. Furthermore, the growth of CRC cells in vivo was attenuated after LINC00649 deficiency. Mechanistically, LINC00649 functioned as a competitive endogenous RNA by competitively binding to miR-432-5p in CRC cells, inducing an increase in hepatoma-derived growth factor (HDGF). Ultimately, functional rescue experiments highlighted that the exogenous introduction of miR-432-5p inhibitor or HDGF overexpression plasmid partially abated the inhibitory effects of LINC00649 silencing. In conclusion, LINC00649 promoted the aggressiveness of CRC cells by adjusting the miR-432-5p/HDGF axis. Thus, the LINC00649/miR-432-5p/HDGF pathway may be a promising target for CRC therapy.
Collapse
Affiliation(s)
- Junjie Bao
- Department of General Surgery, The First People's Hospital of Chongqing Liangjiang, Chongqing 401121, P.R. China
| | - Xiaokai Bi
- Department of General Surgery, The First People's Hospital of Chongqing Liangjiang, Chongqing 401121, P.R. China
| | - Jingbo Wang
- Department of General Surgery, The First People's Hospital of Chongqing Liangjiang, Chongqing 401121, P.R. China
| | - Xiaoqiang Li
- Department of General Surgery, The First People's Hospital of Chongqing Liangjiang, Chongqing 401121, P.R. China
| |
Collapse
|
7
|
Zhang H, Luo Z, Tang J, Tian J, Xiao Y, Sun C, Wang T. Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle 2022; 21:63-73. [PMID: 34985387 PMCID: PMC8837250 DOI: 10.1080/15384101.2021.1995130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear factor I (NFI) family is emerging found playing oncogenic or tumor-suppressive potential in cancers. However, the function and underlying mechanisms of NFIC, in the progression of Lung Squamous Cell Carcinoma (LUSC) remain unclear. Therefore, this study aims to probe into the function of NFIC in the development of LUSC. In the present study, we reported that NFIC was low expressed in human LUSC tissues and cell lines. NFIC inhibited LUSC cell proliferation and promoted cell apoptosis in vitro and in vivo. Moreover, NFIC also inhibited LUSC cell migration and invasion. Furthermore, we found that there were binding sites between lncRNA cancer susceptibility candidate 2 (CASC2) and NFIC, whose relationship was confirmed by the luciferase reporter assay. The expression of CASC2 and the expression of NFIC were positively correlated, and the function of CASC2 overexpression is similar to that of NFIC overexpression, which suggested that CASC2 may play a key role in LUSC development. Our study provided a new perspective for NFIC acting as an antioncogene in LUSC tumorigenesis, and NFIC and CASC2 may serve as novel potential targets for the treatment of LUSC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Zhilin Luo
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - JianMing Tang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Jie Tian
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China
| | - Yajie Xiao
- YuceBio Technology Co.Ltd., Shenzhen, China
| | - Chao Sun
- YuceBio Technology Co.Ltd., Shenzhen, China
| | - Tianhu Wang
- Department of Thoracic Surgery, The Third Affitiated Hospital of Cqmu, Chongqing, China,CONTACT Tianhu Wang Department of Thoracic Surgery, The Third Affiliated Hospital of Cqmu, No.1 Shuanghu Branch Road, Yubei District, Chongqing, China
| |
Collapse
|
8
|
Noncoding RNAs in Papillary Thyroid Cancer: Interaction with Cancer-Associated Fibroblasts (CAFs) in the Tumor Microenvironment (TME) and Regulators of Differentiation and Lymph Node Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:145-155. [PMID: 34888848 DOI: 10.1007/978-3-030-83282-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large majority of all thyroid cancers are papillary thyroid carcinomas (PTC), named for the specific papillary architecture observed histologically. Despite the high rate of success with modern diagnostic and therapeutic algorithms, there are significant areas where the management of PTC can be improved. Aggressive PTC subtypes that are refractory to radioactive iodine (RAI) therapy carry a more severe prognosis and account for most of PTC-related deaths. As lymph node metastasis is present in roughly 40% of all adult PTC cases, higher specificity in these tests is a clinical need, especially since lymph node metastases are associated with reduced survival and higher recurrence rates. Additionally, this cancer can progress to more dedifferentiated and aggressive variants, such as poorly differentiated papillary thyroid cancer (PDPTC) and anaplastic thyroid cancer (ATC). Therefore, development of more sensitive and specific detection methods that allow unnecessary surgeries to be avoided is of the utmost importance. The body of large-scale, unbiased gene expression analysis in PTC has focused on the coding transcriptome, specifically mRNAs and microRNAs. However, there have been implications for the potential use of long noncoding RNAs (lncRNAs) in PTC diagnosis, prognosis, and treatment via the utilization of genome-wide studies of patient samples. lncRNAs have diverse regulatory potential in gene expression, alternative splicing, posttranscriptional mRNA modification, and epigenomic alterations. Many lncRNAs have tissue-specific expression and are demonstrated to play key roles in cancer progression and prognosis. However, lncRNAs are not being exploited as biomarkers or therapeutic targets currently, despite their elucidated effects on oncogenesis. These potent biomarkers would be revolutionary in detection at early stages, as this significantly increases the chances of survival. Their aberrant expression in cancer and correlation with steps in tumorigenesis as well as their role in differentiation would allow for a promising role as a prognostic and diagnostic biomarker in thyroid cancer. This would help prevent the more aggressive ATC that derives from dedifferentiation of the less aggressive PTC and FTC. The targeting of the specific lncRNAs could also pose a valuable treatment option via preventing or reversing this dedifferentiation process and making this usually refractory form of thyroid cancer more responsive to standard treatment options.
Collapse
|
9
|
Xiao H, Huang W, Li Y, Zhang R, Yang L. Targeting Long Non-Coding RNA TTN-AS1 Suppresses Bladder Cancer Progression. Front Genet 2021; 12:704712. [PMID: 34671381 PMCID: PMC8522982 DOI: 10.3389/fgene.2021.704712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: To explore the biological and clinical effects of titin-antisense RNA1 (TTN-AS1) in bladder cancer (BC) and the association between TTN-AS1 and activating transcription factor 2 (ATF2) in BC. Methods: The Kaplan-Meier method was performed to analyze the association between the expression of TTN-AS1 and prognosis of BC patients from TCGA data set and our institution. Quantitative real-time PCR (RT-PCR) was conducted to explore the expression of TTN-AS1 between the patients who underwent TURBT and Re-TURBT. MTT, colony formation, and tumor formation assays were conducted to evaluate the effect of TTN-AS1 on the ability of proliferation in BC cell lines. Transwell assay was performed to evaluate the effect of TTN-AS1 on the ability of invasion in BC cell lines. Bioinfomatics and immunohistochemical staining was used to identify the relationship between TTN-AS1 and ATF2. Results: The higher expression of TTN-AS1 was related to poorer disease-free survival (DFS) in patients with BC. The expression of TTN-AS1 was higher in BC patients who underwent Re-TURBT compared with BC patients who underwent TURBT. Knocking down TTN-AS1 resulted in inhibiting the ability of proliferation and invasion of BC cells. ATF2 may serve as a downstream target of TTN-AS1 in BC, and the high expression of ATF2 is also related to adverse DFS. Conclusion: Our study reveals that TTN-AS1 serves as an oncogene by activating ATF2 in BC. The findings suggest that TTN-AS1 may act as a novel therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Huiyuan Xiao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Huang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Rongxin Zhang
- Department of Radiotherapy, Tianjin Medical University General Hospital, Tianjin, China
| | - Long Yang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Chen J, Gao C, Zhu W. Long non-coding RNA SLC25A25-AS1 exhibits oncogenic roles in non-small cell lung cancer by regulating the microRNA-195-5p/ITGA2 axis. Oncol Lett 2021; 22:529. [PMID: 34055094 PMCID: PMC8138898 DOI: 10.3892/ol.2021.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA SLC25A25 antisense RNA 1 (SLC25A25-AS1) exerts antitumour activity in colorectal cancer. The present study investigated whether SLC25A25-AS1 is implicated in the aggressiveness of non-small cell lung cancer (NSCLC) and the possible underlying mechanism. SLC25A25-AS1 expression in NSCLC was determined by reverse transcription-quantitative PCR. The proliferation, apoptosis, migration and invasion of NSCLC cells were tested in vitro through cell counting kit-8 assay, flow cytometry analysis, Transwell migration and invasion assays, followed by in vivo validation using animal experiments. Additionally, the competitive endogenous RNA theory for SLC25A25-AS1, microRNA-195-5p (miR-195-5p) and integrin α2 (ITGA2) was identified using subcellular fractionation, bioinformatics analysis, reverse transcription-quantitative PCR, western blotting, a luciferase assay and RNA immunoprecipitation. As compared with normal lung tissues, increased expression of SLC25A25-AS1 was demonstrated in NSCLC tissues using The Cancer Genome Atlas database.. In addition, SLC25A25-AS1 was overexpressed in both NSCLC tissues and cell lines. High SLC25A25-AS1 expression was markedly associated with shorter overall survival time of patients with NSCLC. SLC25A25-AS1 silencing impeded NSCLC cell proliferation and triggered apoptosis, while restricting cell migration and invasion. Tumour growth in vivo was also impaired by SLC25A25-AS1 silencing. Mechanistically, SLC25A25-AS1 was demonstrated to be an miR-195-5p sponge in NSCLC cells. miR-195-5p mimics decreased ITGA2 expression in NSCLC cells by directly targeting ITGA2, and SLC25A25-AS1 interference decreased ITGA2 expression by sequestering miR-195-5p. Furthermore, the antitumour effects of SLC25A25-AS1 silencing on malignant behaviours were counteracted when ITGA2 was restored or when miR-195-5p was silenced. In summary, by controlling the miR-195-5p/ITGA2 axis, SLC25A25-AS1 served tumour-promoting roles in NSCLC cells. Therefore, the SLC25A25-AS1/miR-195-5p/ITGA2 signalling pathway might be an attractive target for future therapeutic options in NSCLC.
Collapse
Affiliation(s)
- Jinqin Chen
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Chengpeng Gao
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Wei Zhu
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| |
Collapse
|
11
|
Jeong S, Lee SG, Kim H, Lee G, Park S, Kim IK, Lee J, Jo YS. Simultaneous Expression of Long Non-Coding RNA FAL1 and Extracellular Matrix Protein 1 Defines Tumour Behaviour in Young Patients with Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13133223. [PMID: 34203279 PMCID: PMC8268647 DOI: 10.3390/cancers13133223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary FAL1 upregulation has been reported in many types of human cancers. The up-regulatory mechanism was identified in ovarian cancer but was not investigated in other type of cancers. Using The Cancer Genome Atlas (TCGA) database, we identified simultaneous upregulation of FAL1 adjacent to chromosome 1q21.3. Among 53 putative transcription factors for FAL1 and neighbouring genes, we selected c-JUN and JUND as the best candidates. This simultaneous upregulation defines molecular biological features representing RAS-driven PTC-enriched immune-related gene sets. These findings suggest that the simultaneous upregulation might be a potential diagnostic and therapeutic target for RAS-driven PTC. Abstract We investigated the regulatory mechanism of FAL1 and unravelled the molecular biological features of FAL1 upregulation in papillary thyroid cancer (PTC). Correlation analyses of FAL1 and neighbouring genes adjacent to chromosome 1q21.3 were performed. Focal amplification was performed using data from copy number alterations in The Cancer Genome Atlas (TCGA) database. To identify putative transcriptional factors, PROMO and the Encyclopaedia of DNA Elements (ENCODE) were used. To validate c-JUN and JUND as master transcription factors for FAL1 and ECM1, gene set enrichment analysis was performed according to FAL1 and ECM1 expression. Statistical analyses of the molecular biological features of FAL1- and ECM1-upregulated PTCs were conducted. FAL1 expression significantly correlated with that of neighbouring genes. Focal amplification of chromosome 1q21.3 was observed in ovarian cancer but not in thyroid carcinoma. However, PROMO suggested 53 transcription factors as putative common transcriptional factors for FAL1 and ECM1 simultaneously. Among them, we selected c-JUN and JUND as the best candidates based on ENCODE results. The expression of target genes of JUND simultaneously increased in FAL1- and ECM1-upregulated PTCs, especially in young patients. The molecular biological features represented RAS-driven PTC and simultaneously enriched immune-related gene sets. FAL1 and ECM1 expression frequently increased simultaneously and could be operated by JUND. The simultaneous upregulation might be a potential diagnostic and therapeutic target for RAS-driven PTC.
Collapse
Affiliation(s)
- Seonhyang Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
| | - Seul-Gi Lee
- Department of Surgery, Eulji University School of Medicine, 95 Dunsanseo-ro, Seo-gu, Daejeon 35233, Korea;
| | - Hyunji Kim
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Gibbeum Lee
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Sunmi Park
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
| | - In-Kyu Kim
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Jandee Lee
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
- Correspondence: (J.L.); (Y.-S.J.); Tel.: +82-2-2228-2100 (J.L.); +82-2-2228-0752 (Y.-S.J.); Fax: +82-2-313-8289 (J.L.); +82-2-393-6884 (Y.-S.J.)
| | - Young-Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
- Correspondence: (J.L.); (Y.-S.J.); Tel.: +82-2-2228-2100 (J.L.); +82-2-2228-0752 (Y.-S.J.); Fax: +82-2-313-8289 (J.L.); +82-2-393-6884 (Y.-S.J.)
| |
Collapse
|
12
|
Wu L, Li K, Lin W, Liu J, Qi Q, Shen G, Chen W, He W. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther 2021; 29:341-357. [PMID: 33674778 PMCID: PMC8940622 DOI: 10.1038/s41417-021-00313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023]
Abstract
Studies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291’s role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wei Lin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jianjiang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Qiang Qi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Weixin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Wenjun He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|
13
|
Volante M, Lam AK, Papotti M, Tallini G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:63-76. [PMID: 33543394 PMCID: PMC7960587 DOI: 10.1007/s12022-021-09665-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The molecular characterization of poorly and anaplastic thyroid carcinomas has been greatly improved in the last years following the advent of high throughput technologies. However, with special reference to genomic data, the prevalence of reported alterations is partly affected by classification criteria. The impact of molecular pathology in these tumors is multifaceted and bears diagnostic, prognostic, and predictive implications although its use in the clinical practice is not completely assessed. Genomic profiling data claim that genetic alterations in poorly differentiated and anaplastic thyroid carcinomas include "Early" and "Late" molecular events, which are consistent with a multi-step model of progression. "Early" driver events are mostly RAS and BRAF mutations, whereas "Late" changes include above all TP53 and TERT promoter mutations, as well as dysregulation of gene involved in the cell cycle, chromatin remodeling, histone modifications, and DNA mismatch repair. Gene fusions are rare but represent relevant therapeutic targets. Epigenetic modifications are also playing a relevant role in poorly differentiated and anaplastic thyroid carcinomas, with altered regulation of either genes by methylation/deacetylation or non-coding RNAs. The biological effects of epigenetic modifications are not fully elucidated but interfere with a wide spectrum of cellular functions. From a clinical standpoint, the combination of genomic and epigenetic data shows that several molecular alterations affect druggable cellular pathways in poorly differentiated and anaplastic thyroid carcinomas, although the clinical impact of molecular typing of these tumors in terms of predictive biomarker testing is still under exploration.
Collapse
Affiliation(s)
- Marco Volante
- Department of Oncology, University of Turin, Turin, Italy.
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy
| |
Collapse
|
14
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|