1
|
Qian P, Cao X, Zhang Q, Gao M, Liu X, Yan L. Circ_0004872 deficiency attenuates ox-LDL-induced vascular smooth muscle cell dysfunction by miR-424-5p-dependent regulation of FRS2. Mol Cell Biochem 2024; 479:3425-3435. [PMID: 38376663 DOI: 10.1007/s11010-024-04929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Atherosclerosis (AS) is a pivotal pathological basis of cardiovascular and cerebrovascular diseases, and circular RNAs (circRNAs) has been disclosed to exert a vital part in the progression of AS. However, the functions of circ_0004872 in the progression of AS is indistinct. In this context, we aimed to elucidate the role of circ_0004872 and the potential mechanism in AS. The level of circ_0004872, miR-424-5p and fibroblast growth factor receptor substrate 2 (FRS2) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was monitored by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine (EDU) assays. The invasion and migration capabilities of VSMCs were tested by transwell assays and wound-healing assay, respectively. Western blot was adopted to check the protein levels of CyclinD1, Vimentin and FRS2. Dual-luciferase reporter and RNA immunoprecipitation assay were executed to manifest the interaction between miR-424-5p and circ_0004872 or FRS2. The level of circ_0004872 was increased in the serum samples of AS patients and ox-LDL-exposed VSMCs. Ox-LDL exposure triggered cell proliferation, invasion and migration ability of VSMCs. depletion of circ_0004872 partly weakened ox-LDL-mediated effects in VSMCs. Mechanistically, circ_0004872 functioned as a sponge of miR-424-5p, and miR-424-5p inhibition partly alleviated circ_0004872 deficiency-mediated influences in VSMCs. Additionally, miR-424-5p interacted with FRS2, and miR-424-5p constrained dysfunction in ox-LDL-stimulated VSMCs via reducing FRS2 level. Notably, circ_0004872 functioned as a sponge of miR-424-5p to elevate FRS2 expression. Circ_0004872 accelerated ox-LDL-induced damage via mediating miR-424-5p/FRS2 axis.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Humans
- Lipoproteins, LDL/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Cell Proliferation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Movement
- Male
Collapse
Affiliation(s)
- Peng Qian
- Department of Geriatric Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Xuanchao Cao
- Department of Geriatric Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Qian Zhang
- Department of Geriatric Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Meihua Gao
- Department of Geriatric Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Xin Liu
- Department of Geriatric Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, China
| | - Lijie Yan
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Fuwai Central China Hospital of Zhengzhou University, No. 1 Fuwai Street, Zhengdong New District, Zhengzhou, 451464, China.
| |
Collapse
|
2
|
Bi G, Zhang L. Hsa_circ_0001480 affects osteosarcoma progression by regulating the miR-363-3p/IBSP pathway. Biotechnol Appl Biochem 2024; 71:721-732. [PMID: 38409882 DOI: 10.1002/bab.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Osteosarcoma (OS) is a malignant bone tumor that commonly affects young individuals. Circular RNAs (circRNAs) are associated with OS progression. In this study, we aimed to determine the role of hsa_circ_0001480 (circ_0001480) in OS development. OS cell invasion, viability, and colony numbers were assessed via transwell, cell counting kit-8, and colony formation assays, respectively. Tumor growth in vivo was also assessed using an OS mouse model. Additionally, targeted associations among the integrin-binding sialoprotein (IBSP), microRNA (miR)-363-3p, and circ_0001480 were evaluated via RNA immunoprecipitation and dual luciferase reporter assays, whereas their expression levels in OS cells and tissues were determined via quantitative reverse transcription-polymerase chain reaction and western blotting. Loss of circ_0001480 or IBSP significantly inhibited the proliferation and invasion of OS cells, but this effect was reversed by miR-363-3p downregulation. Moreover, circ_0001480 knockdown inhibited neoplasm growth in vivo. circ_0001480 directly bound to miR-363-3p, which further modulated IBSP. Both circ_0001480 and IBSP levels were high, whereas miR-363-3p levels were low in OS cells. Furthermore, low miR-363-3p levels attenuated the suppressive effects of circ_0001480 silencing on the proliferation and invasion of OS cells; however, loss of IBSP partially reversed these effects. Overall, our findings revealed circ_0001480 an oncogenic circRNA stimulating OS progression by modulating the miR-363-3p/IBSP pathway, suggesting its potential for OS treatment.
Collapse
Affiliation(s)
- Guijuan Bi
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Chen L, He L, Liu B, Zhou Y, Lv L, Wang Z. Intelligent structure prediction and visualization analysis of non-coding RNA in osteosarcoma research. Front Oncol 2024; 14:1255061. [PMID: 38532928 PMCID: PMC10964489 DOI: 10.3389/fonc.2024.1255061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignant tumor in children and adolescents. Recent research indicates that non-coding RNAs (ncRNAs) have been associated with OS occurrence and development, with significant progress made in this field. However, there is no intelligent structure prediction and literature visualization analysis in this research field. From the perspective of intelligent knowledge structure construction and bibliometrics, this study will comprehensively review the role of countries, institutions, journals, authors, literature citation relationships and subject keywords in the field of ncRNAs in OS. Based on this analysis, we will systematically analyze the characteristics of the knowledge structure of ncRNAs in OS disease research and identify the current research hotspots and trends. Methods The Web of Science Core Collection (WoSCC) database was searched for articles on ncRNAs in OS between 2001 and 2023. This bibliometric analysis was performed using VOSviewers, CiteSpace, and Pajek. Results This study involved 15,631 authors from 2,631 institutions across 57 countries/regions, with a total of 3,642 papers published in 553 academic journals. China has the highest number of published papers in this research field. The main research institutions include Nanjing Medical University (n = 129, 3.54%), Shanghai Jiao Tong University (n = 128, 3.51%), Zhengzhou University (n = 110, 3.02%), and China Medical University (n = 109, 2.99%). Oncology Letters (n =139, 3.82%), European Review for Medical Pharmacological Sciences (120, 3.31%), and Molecular Medicine Reports (n = 95, 2.61%) are the most popular journals in this field, with Oncotarget being the most co-cited journal (Co-Citation = 4,268). Wei Wang, Wei Liu, and Zhenfeng Duan published the most papers, with Wang Y being the most co-cited author. "miRNA", "lncRNA" and "circRNA" are the main focuses of ncRNAs in OS studies. Key themes include "migration and invasion", "apoptosis and proliferation", "prognosis", "biomarkers" and "chemoresistance". Since 2020, hotspots and trends in ncRNA research in OS include "tumor microenvironment", "immune" and "exosome". Conclusion This study represents the first comprehensive bibliometric analysis of the knowledge structure and development of ncRNAs in OS. These findings highlight current research hotspots and frontier directions, offering valuable insights for future studies on the role of ncRNAs in OS.
Collapse
Affiliation(s)
- Longhao Chen
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Liuji He
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Baijie Liu
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yinghua Zhou
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lijiang Lv
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Clinical Medical College, Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhiguang Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Wen Y, Xu F, Zhang H. Circ_0049271 targets the miR-1197/PTRF axis to attenuate the malignancy of osteosarcoma. Cancer Biomark 2024; 40:141-153. [PMID: 38578882 PMCID: PMC11321495 DOI: 10.3233/cbm-230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) perform key regulatory functions in osteosarcoma (OS) tumorigenesis. In this study, we aimed to explore the detailed action mechanisms of circ_0049271 in OS progression. METHODS Cell colony formation, cell counting kit-8, and transwell assays were performed to assess the proliferation and invasion of OS cells. Quantitative reverse transcription-polymerase chain reaction and western blotting were used to determine the expression levels of polymerase 1 and transcript release factor (PTRF), microRNA (miR)-1197, and circ_0049271 in OS cells. Furthermore, RNA immunoprecipitation and dual luciferase assays were conducted to explore the targeted relationships among PTRF, miR-1197, and circ_0049271. Finally, a tumor formation assay was conducted to determine the effects of circ_0049271 on in vivo tumor growth in mice. RESULTS High expression levels of miR-1197 and low levels of circ_0049271 and PTRF were observed in OS cells. circ _0049271 targeted miR-1197 to mediate PTRF expression. Moreover, the proliferation and invasion of OS cells were repressed by circ_0049271 or PTRF overexpression and increased by miR-1197 upregulation. Enforced circ_0049271 also impeded tumor growth in vivo. Upregulation of miR-1197 reversed the antitumor effects of circ_0049271 on OS progression in vitro; however, PTRF overexpression attenuated the cancer-promoting effects of miR-1197 on OS in vitro. CONCLUSIONS Our findings revealed that circ_0049271 targeted the miR-1197/PTRF axis to attenuate the malignancy of OS, suggesting a potential target for its clinical treatment.
Collapse
Affiliation(s)
- Yixin Wen
- Orthopaedics Department, Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Feng Xu
- Orthopaedics Department, Fifth Hospital of Wuhan, Wuhan, Hubei, China
- Orthopaedics Department, Fifth Hospital of Wuhan, Wuhan, Hubei, China
| | - Hui Zhang
- Orthopaedics Department, Fifth Hospital of Wuhan, Wuhan, Hubei, China
| |
Collapse
|
5
|
Dong H, Zhou W, Han L, Zhao Q. Propofol inhibits the proliferation, invasion, migration, and angiogenesis of oral squamous cell carcinoma through circ_0008898-mediated pathway. Chem Biol Drug Des 2024; 103:e14393. [PMID: 37955304 DOI: 10.1111/cbdd.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Propofol has been shown to inhibit oral squamous cell carcinoma (OSCC) progression. However, it is not clear whether propofol mediates OSCC progression through regulating circular RNA (circRNA) network. Quantitative real-time PCR was used to detect circ_0008898, miR-545-3p, and CT10 regulator of kinase-like protein (CRKL) expression. Cell functions were determined using CCK8 assay, Edu staining, MTT assay, transwell assay, wound healing assay, tube formation assay, and flow cytometry. Protein levels were examined by western blot analysis. RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. Our data showed that propofol repressed OSCC cell proliferation, invasion, migration, angiogenesis, and promoted apoptosis. circ_0008898 was highly expressed in OSCC, and its expression could be decreased by propofol. circ_0008898 silencing aggravated the suppressive effect of propofol on OSCC progression. In the mechanism, circ_0008898 could target miR-545-3p to positively regulate CRKL. MiR-545-3p inhibitor abolished the regulation of circ_0008898 silencing on propofol-mediated OSCC cell progression. MiR-545-3p inhibited the progression of propofol-treated OSCC cells, and this effect was reversed by CRKL overexpression. Also, circ_0008898 knockdown reduced OSCC tumor growth by regulating miR-545-3p/CRKL. In conclusion, propofol suppressed OSCC progression, which was achieved through regulating the circ_0008898/miR-545-3p/CRKL axis.
Collapse
Affiliation(s)
- Hui Dong
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Weifu Zhou
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| | - Long Han
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Qingjun Zhao
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| |
Collapse
|
6
|
Zhang T, Zhou Y, Guan J, Cheng H. Circ_0058058 Knockdown Inhibits Acute Myeloid Leukemia Progression by Sponging miR-4319 to Regulate EIF5A2 Expression. Cancer Biother Radiopharm 2023; 38:738-748. [PMID: 33470895 DOI: 10.1089/cbr.2020.4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Circular RNAs (circRNAs) participate in the deterioration of many hominine cancers, including AML. In this study, the authors investigated the role and potential mechanism of circ_0058058 in AML progression. Methods: The expression of circ_0058058, microRNA-4319 (miR-4319), and eukaryotic initiation factor 5A2 (EIF5A2) was determined by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, migration, and invasion were evaluated by cell counting kit-8 (CCK-8), cell colony formation, flow cytometry, and transwell assay, respectively. Levels of the relative proteins were detected by Western blot. The connection among circ_0058058, miR-4319, and EIF5A2 was verified by dual-luciferase reporter assay. Results: Circ_0058058 and EIF5A2 were enhanced, whereas miR-4319 was declined in AML. Circ_0058058 knockdown inhibited cell proliferation, migration, and invasion, and facilitated cell apoptosis by targeting miR-4319 in AML cells. Moreover, as a target of miR-4319, EIF5A2 overexpression overturned the inhibitory effects of miR-4319 upregulation on AML progression. Besides, circ_0058058 sponged miR-4319 to upregulate EIF5A2 expression in AML cells. Conclusion: Circ_0058058 knockdown inhibited cell proliferation, migration, and invasion, but accelerated cell apoptosis by reducing EIF5A2 expression by targeting miR-4319, suggesting that circ_0058058 could be a therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Ying Zhou
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Guan
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| | - Hui Cheng
- Department of Hematology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
7
|
Huang Z, Yao H, Yang Z. Prognostic significance of TM4SF1 and DDR1 expression in epithelial ovarian cancer. Oncol Lett 2023; 26:448. [PMID: 37720676 PMCID: PMC10502932 DOI: 10.3892/ol.2023.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
Transmembrane 4 L6 family member 1 (TM4SF1) and discoidin domain receptor 1 (DDR1) are expressed in numerous types of cancer, but their expression in epithelial ovarian cancer and the association between their expression and patient prognosis are unclear. The present study aimed to explore the expression of TM4SF1 and DDR1 and their relationship with prognosis in epithelial ovarian cancer. Firstly, the Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) platforms were used to compare the expression levels of TM4SF1 and DDR1 in ovarian cancer and normal ovarian tissue, and Kaplan-Meier plotter was used to analyze the association between gene expression and patient prognosis. The proteins interacting with TM4SF1 and DDR1 were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), and enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways was conducted for the interacting proteins. Furthermore, immunohistochemical staining was performed to detect the expression of TM4SF1 and DDR1 protein in epithelial ovarian cancer tissue and to analyze the association between expression and prognosis. The Oncomine and GEPIA analyses showed that the expression levels of TM4SF1 and DDR1 were significantly higher in epithelial ovarian cancer than in normal ovarian tissue, and the analysis of clinical samples revealed that TM4SF1 and DDR1 were coexpressed in some cases. STRING analysis indicated that the TM4SF1 and DDR1 proteins interact with each other. The overall survival and progression-free survival of patients whose epithelial ovarian cancer coexpressed TM4SF1 and DDR1 were significantly shorter than those of patients lacking TM4SF1 and DDR1 coexpression. Multivariate analysis indicated that TM4SF1 and DDR1 protein coexpression was an independent prognostic factor. In summary, TM4SF1 and DDR1 proteins were coexpressed in some epithelial ovarian cancer tissues and appear to be adverse prognostic factors for epithelial ovarian cancer. In addition, TM4SF1 and DDR1 may have an interactive or mutual regulatory mechanism.
Collapse
Affiliation(s)
- Zhijiong Huang
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi 530021, P.R. China
| | - Hongyu Yao
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi 530021, P.R. China
| | - Zhijun Yang
- Department of Gynecological Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
8
|
Urlić I, Jovičić MŠ, Ostojić K, Ivković A. Cellular and Genetic Background of Osteosarcoma. Curr Issues Mol Biol 2023; 45:4344-4358. [PMID: 37232745 DOI: 10.3390/cimb45050276] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcoma describes a tumor of mesenchymal origin with an annual incidence rate of four to five people per million. Even though chemotherapy treatment has shown success in non-metastatic osteosarcoma, metastatic disease still has a low survival rate of 20%. A targeted therapy approach is limited due to high heterogeneity of tumors, and different underlying mutations. In this review, we will summarize new advances obtained by new technologies, such as next generation sequencing and single-cell sequencing. These new techniques have enabled better assessment of cell populations within osteosarcoma, as well as an understanding of the molecular pathogenesis. We also discuss the presence and properties of osteosarcoma stem cells-the cell population within the tumor that is responsible for metastasis, recurrence, and drug resistance.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijana Šimić Jovičić
- Department of Paediatric Orthopaedics, Children's Hospital Zagreb, 10000 Zagreb, Croatia
| | - Karla Ostojić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Alan Ivković
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Professional Study in Physiotherapy, University of Applied Health Sciences, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Liu H, Zhao H, Huang Y, Lei M. Circ_0002715 promotes the development of osteoarthritis through regulating LXN by sponging miR-127-5p. J Orthop Surg Res 2023; 18:230. [PMID: 36949500 PMCID: PMC10031964 DOI: 10.1186/s13018-023-03638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Our study aims to investigate the role and mechanism of circular RNA_0002715 (circ_0002715) in osteoarthritis (OA) progression. METHODS IL-1β-induced CHON-001 cells were used to mimic OA cell model. Circ_0002715, microRNA (miR)-127-5p and Latexin (LXN) expression was detected by quantitative real-time PCR. Cell functions were determined by MTT assay, flow cytometry and ELISA assay. Protein expression was examined by western blot. RESULTS Circ_0002715 was highly expressed in OA cartilage tissues. Circ_0002715 silencing inhibited inflammation, apoptosis, and ECM degradation in IL-1β-interfered CHON-001 cells. Circ_0002715 could sponge miR-127-5p, and miR-127-5p could target LXN. The effect of circ_0002715 down-regulation on chondrocyte injury was partially restored by miR-127-5p inhibitor. MiR-127-5p could suppress chondrocyte injury by inhibiting LXN expression. CONCLUSION Circ_0002715 might be a new therapeutic target for OA, which regulated miR-127-5p/LXN axis to promote IL-1β-induced chondrocyte injury.
Collapse
Affiliation(s)
- Hongbo Liu
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, No. 6, Panxi Qizhi Road, Jiangbei District, Chongqing, 400021, China
| | - Hongxia Zhao
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, No. 6, Panxi Qizhi Road, Jiangbei District, Chongqing, 400021, China
| | - Yin Huang
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Ming Lei
- Department of Rehabilitation, Chongqing Traditional Chinese Medicine Hospital, No. 6, Panxi Qizhi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
10
|
Pei L, Xu X, Yuan T. Circ_0101874 overexpression strengthens PDE4D expression by targeting miR-335-5p to promote neuronal injury in ischemic stroke. J Stroke Cerebrovasc Dis 2022; 31:106817. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
|
11
|
Yousuf S, Li A, Feng H, Lui T, Huang W, Zhang X, Xie L, Miao X. Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs. Cells 2022; 11:2638. [PMID: 36078046 PMCID: PMC9454643 DOI: 10.3390/cells11172638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiangyang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Li T, Xing G, Lu L, Kong X, Guo J. CircAGFG1 Promotes Osteosarcoma Progression and Stemness by Competing with miR-302a-3p to Upregulate the Expression of LATS2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6370766. [PMID: 35958928 PMCID: PMC9357677 DOI: 10.1155/2022/6370766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the effect of circRNA (circAGFG1) on the proliferation, migration, invasion, and cell stemness of osteosarcoma cells by targeting miR-302a to regulate LATS2. The expression of circAGFG1 in osteosarcoma cells and normal osteoblasts was detected by real-time fluorescent quantitative PCR (RT-qPCR). Cell proliferation, clone formation, and invasion were detected by CCK-8, clone formation, and cell invasion assays. In vivo tumor formation assay was used to detect the effect of circAGFG1 on tumor growth. The expression level of circAGFG1 was upregulated in osteosarcoma cells. The downregulation of circAGFG1 inhibited the proliferation, invasion, and migration of osteosarcoma cells. The overexpression of circAGFG1 enhanced the stemness of osteosarcoma cells. CircAGFG1 was specifically bound to miR-302a to regulate the expression activity of miR-302a. MiR-302a specifically bound to the 3'UTR of LATS2 and inhibited the expression of LATS2. The overexpression of miR-302a reversed the effect of circAGFG1 on the proliferation, invasion, and migration of osteosarcoma cells. CircAGFG1 regulated the expression of LATS2 by miR-302a, thereby regulating the proliferation, migration, and invasion of osteosarcoma cells.
Collapse
Affiliation(s)
- Tongchun Li
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Guangjie Xing
- Department of Orthopedics, Changle County People's Hospital, Weifang 262400, Shandong, China
| | - Liangliang Lu
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, Shandong, China
| | - Xiangzhen Kong
- Department of Oncology, Sishui County People's Hospital, Jining 273299, Shandong, China
| | - Jinwei Guo
- Department of Orthopedics, Chongqing University Jiangjin Hospital, Chongqing 402260, China
| |
Collapse
|
13
|
Ouyang X, Shi G, Wang S, Chen L, Xu J, Xie D. Hsa_circ_0010729 is Involved in Oxygen-Glucose Deprivation/Reoxygenation-Induced Human Microvascular Endothelial Cell Deprivation by Targeting miR-665/ING5. Biochem Genet 2022; 60:2455-2470. [PMID: 35482130 DOI: 10.1007/s10528-022-10225-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Ischemic stroke is a disease with high mortality. Circular RNA_0010729 (hsa_circ_0010729) has been reported to be involved in ischemic heart disease. However, it is not clear whether hsa_circ_0010729 is involved in the regulation of ischemic stroke. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R) to stimulate human brain microvascular endothelial cells (HBMECs) model to investigate the potential role of hsa_circ_0010729 in stroke in vitro. The expression levels of hsa_circ_0010729, miR-665, and ING5 in ischemic stroke were detected by quantitative real-time polymerase chain reaction (qRT-PCR). HBMECs proliferation was detected by CCK-8. Cell apoptosis was detected by flow cytometry. The levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the related protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to examine the target relationship between miR-665 and hsa_circ_0010729 or ING5. Compared with the control group, hsa_circ_0010729 and ING5 were highly expressed in OGD/R-induced HBMECs, while miR-665 was lowly expressed. Hsa_circ_0010729 silencing promoted OGD/R-induced cell proliferation and inhibited apoptosis. However, the effect of hsa_circ_0010729 down-regulation on OGD/R-induced cell was partially restored after co-transfection with miR-665 inhibitor. Overexpression of miR-665 can promote the proliferation and inhibit apoptosis of OGD/R-induced HBMECs by inhibiting ING5 expression. In OGD/R-induced HBMECs, hsa_circ_0010729 silencing decreased ING5 expression by upregulating miR-665. Hsa_circ_0010729 regulated miR-665/ING5 axis in OGD/R-induced HBMECs. Therefore, hsa_circ_0010729 may be a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xin Ouyang
- Neurology Department, The Affiliated Hospital of Medical School, Ningbo University, NO. 247 Renmin Road, Jiangbei District, Ningbo, 315000, China.
| | - Guangbin Shi
- Neurology Department, Medical Center Lihuili Hospital Ning Bo, Ningbo, 315000, China
| | - Shaomin Wang
- Department of Urology and Oncology, Ningbo Yinzhou NO.2 Hospital, Ningbo, 315000, China
| | - Li Chen
- Neurology Department, The Affiliated Hospital of Medical School, Ningbo University, NO. 247 Renmin Road, Jiangbei District, Ningbo, 315000, China
| | - Jinyan Xu
- Neurology Department, The Affiliated Hospital of Medical School, Ningbo University, NO. 247 Renmin Road, Jiangbei District, Ningbo, 315000, China
| | - Donglin Xie
- Neurology Department, The Affiliated Hospital of Medical School, Ningbo University, NO. 247 Renmin Road, Jiangbei District, Ningbo, 315000, China
| |
Collapse
|
14
|
Zhou Z, Liu T, Li Z, Wang L. Circ_0003732 promotes osteosarcoma progression through regulating miR-377-3p/CPEB1 axis and Wnt/β-catenin signaling pathway. Anticancer Drugs 2022; 33:e299-e310. [PMID: 34407049 DOI: 10.1097/cad.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Osteosarcoma is a prevalent malignant bone cancer. This study aimed to explore the biologic role and potential mechanism of circ_0003732 in osteosarcoma carcinogenesis. Quantitative real-time PCR was implemented to detect the RNA expression of circ_0003732, microRNA-377-3p (miR-377-3p) and cytoplasmic polyadenylation element-binding protein 1 (CPEB1). Cell proliferation was evaluated by cell counting kit-8 assay and colony formation assay. Transwell, wound healing and flow cytometry assays were employed to assess cell migration, invasion and apoptosis. In addition, the interaction between miR-377-3p and circ_0003732 or CPEB1 was validated by dual-luciferase reporter assay. The protein expression was detected by western blot assay or immunohistochemistry assay. Xenograft tumor assay was performed to explore the regulation of circ_0003732 on osteosarcoma tumor growth in vivo. Circ_0003732 was upregulated in osteosarcoma tissues and cells. Knockdown of circ_0003732 suppressed osteosarcoma cell proliferation, migration, invasion and triggered cell apoptosis in vitro, as well as reduced osteosarcoma tumor growth in vivo. Meanwhile, miR-377-3p could bind to circ_0003732 and CPEB1 and miR-377-3p inhibitor could reverse the effects of circ_0003732 silence on osteosarcoma cell progression. Furthermore, CPEB1 overexpression could overturn the suppressive impacts of miR-377-3p on osteosarcoma progression. In addition, circ_0003732 silence restrained Wnt/β-catenin signaling pathway via regulating miR-377-3p in osteosarcoma cells. Circ_0003732 might play a positive role in the malignant progression of osteosarcoma by regulating the miR-377-3p/CPEB1 axis and activating the Wnt/β-catenin signaling pathway, which might provide new insights for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zheng Zhou
- Department Of Orthopedics, The Second Xiangya Hospital Of Central South University, China
| | | | | | | |
Collapse
|
15
|
Wang F, Sun H, Li K, Yang K, Xiang Y, Tian X. CircRASSF2 promotes IGF1R and osteosarcoma metastasis via sponging miR-6838-5p. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:11. [PMID: 35242856 PMCID: PMC8825558 DOI: 10.21037/atm-21-6123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Osteosarcoma (OS) often occurs in children and adolescents and is highly malignant. Analyzing the pathogenesis of OS has great significance for prognosis and the discovery of new treatment strategies. METHODS The effects and mechanism of circular RNA (circRNA) on OS were analyzed, as was the correlation between circRASSF2 and insulin-like growth factor 1 receptor (IGF1R) in data from The Cancer Genome Atlas (TCGA). The expression levels of microRNA (miR)-6838-5p and circRASSF2 in OS cells and osteoblasts were detected. The dual luciferase report was used to verify the targeting relationship. OS cells overexpressing circRASSF2, miR-6838-5p and/or IGF1R were constructed. The expression level of IGF1R and the biological behavior of the cells were detected. Eighty-two pairs of OS tissue and adjacent normal tissue samples were collected, and the levels of circRASSF2, miR-6838-5p, and IGF1R mRNA were detected by reverse transcription-quantitative PCR (RT-qPCR). RESULTS Compared with osteoblasts, OS cells showed lower expression of miR-6838-5p and higher expression of circRASSF2. The dual luciferase report confirmed that miR-6838-5p targeted IGF1R. Overexpression of IGF1R significantly blocked the anticancer effects of miR-6838-5p. The dual luciferase report verified that circRASSF2 targeted miR-6838-5p, and promoted the expression of IGF1R. Overexpression of circRASSF2 not only promoted the malignant biological behavior of OS cells, but also blocked the anticancer effects of miR-6838-5p. In OS tissue, circRASSF2 and IGF1R were upregulated, and the two were positively correlated. MiR-6838-5p was downregulated, which negatively correlated with both circRASSF2 and IGF1R. High levels of circRASSF2 were associated with higher stage and metastasis of OS. CONCLUSIONS In conclusion, the promoting effects of IGF1R on OS are targeted by miR-6838-5p. CircRASSF2 restored the expression of IGF1R by sponging miR-6838-5p, thereby promoting the progression of OS.
Collapse
Affiliation(s)
- Fengyan Wang
- School of Medicine, Soochow University, Suzhou, China
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ke Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Kun Yang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Xiang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaobin Tian
- School of Medicine, Soochow University, Suzhou, China
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Wang T, Zhang C, Wang S. Ginsenoside Rg3 inhibits osteosarcoma progression by reducing circ_0003074 expression in a miR-516b-5p/KPNA4-dependent manner. J Orthop Surg Res 2021; 16:724. [PMID: 34930332 PMCID: PMC8686618 DOI: 10.1186/s13018-021-02868-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previous data have suggested that ginsenoside Rg3 (Rg3), isolated from the roots of Panax ginseng, plays a repressing role in multiple cancers, including osteosarcoma (OS). However, there is no any literature available about the role of circular RNA (circRNA) in Rg3-mediated OS development. The study aimed to explore the function of circ_0003074 in the anti-cancer effects of Rg3 on OS. Methods RNA expression of circ_0003074, miR-516b-5p and karyopherin subunit alpha 4 (KPNA4) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blotting or immunohistochemistry assay. Cell viability, proliferation, apoptosis, migration and invasion were investigated by cell counting kit-8, 5-ethynyl-29-deoxyuridine (EdU), flow cytometry analysis, wound-healing and transwell invasion assays, respectively. Dual-luciferase reporter and/or RNA immunoprecipitation assay was performed to confirm the interplay between miR-516b-5p and circ_0003074 or KPNA4. Xenograft mouse model assay was conducted to reveal the effect of Rg3 treatment on tumor formation. Results Circ_0003074 and KPNA4 expression was significantly upregulated, while miR-516b-5p was downregulated in OS tissues and cells compared with controls. Rg3 treatment dramatically decreased circ_0003074 expression in OS cells. Rg3 treatment led to decreased cell proliferation, migration and invasion but increased cell apoptosis, which was attenuated after circ_0003074 overexpression. Besides, miR-516b-5p was a target miRNA of circ_0003074 and partially restored circ_0003074-mediated action under Rg3 treatment. Decreasing miR-516b-5p expression also promoted Rg3-treated OS cell malignancy through KPNA4, which was identified as a target mRNA of miR-516b-5p. Besides, circ_0003074 induced KPNA4 production owing to the decrease of miR-516b-5p expression. Furthermore, Rg3 treatment inhibited tumor formation by regulating circ_0003074 in vivo. Conclusion Rg3 inhibited OS progression through circ_0003074/miR-516b-5p/KPNA4 axis, showing the potential of Rg3 as a therapeutic agent for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02868-7. Circ_0003074 expression was upregulated in OS tissues and cells. Rg3 treatment significantly decreased circ_0003074 expression in OS cells. Circ_0003074 overexpression rescued Rg3-induced inhibition in OS progression. Circ_0003074 induced KPNA4 production through miR-516b-5p under Rg3 treatment.
Collapse
Affiliation(s)
- Tehasi Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengguang Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Shuren Wang
- Department of Tramotology and Orthopedics, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
17
|
Yue F, Peng K, Zhang L, Zhang J. Circ_0004104 Accelerates the Progression of Gastric Cancer by Regulating the miR-539-3p/RNF2 Axis. Dig Dis Sci 2021; 66:4290-4301. [PMID: 33449226 DOI: 10.1007/s10620-020-06802-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circular RNA (circRNA) has been shown to be closely associated with cancer progression, including gastric cancer (GC). However, the function of circ_0004104 in GC progression has not been clarified. AIMS The purpose of this study was to explore the role of circ_0004104 in GC progression. METHODS The expression levels of circ_0004104, miR-539-3p, and ring finger protein 2 (RNF2) were assessed using quantitative real-time polymerase chain reaction. Cell proliferation was measured by 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and cell migration and invasion were detected using transwell assay. The levels of glutamine, glutamate, and α-ketoglutarate were determined to evaluate the glutaminolysis of cells, and the protein levels of glutaminolysis-related markers and RNF2 were detected using western blot analysis. Furthermore, Dual-Luciferase Reporter Assay was employed to assess the interaction between miR-539-3p and circ_0004104 or RNF2. Animal experiments were carried out to evaluate the effect of circ_0004104 silencing on GC tumor growth in vivo. RESULTS Circ_0004104 was upregulated in GC, and its knockdown repressed the proliferation, metastasis, and glutaminolysis of GC cells in vitro and reduced GC tumor growth in vivo. Furthermore, we discovered that circ_0004104 could sponge miR-539-3p and miR-539-3p could target RNF2. The rescue experiments suggested that miR-539-3p inhibitor could reverse the suppressive effect of circ_0004104 silencing on GC progression, and RNF2 overexpression also reversed the inhibition effect of miR-539-3p mimic on GC progression. CONCLUSION Circ_0004104 accelerated GC progression via regulating the miR-539-3p/RNF2 axis, indicating that circ_0004104 might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Furong Yue
- Department of Oncology, Chongqing Three Gorges Central Hospital and Chongqing University Three Gorges Hospital, No. 165, Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | - Keyu Peng
- Department of Oncology, Chongqing Three Gorges Central Hospital and Chongqing University Three Gorges Hospital, No. 165, Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | - Li Zhang
- Department of Oncology, Chongqing Three Gorges Central Hospital and Chongqing University Three Gorges Hospital, No. 165, Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | - Jun Zhang
- Department of Oncology, Chongqing Three Gorges Central Hospital and Chongqing University Three Gorges Hospital, No. 165, Xin Cheng Road, Wanzhou District, Chongqing, 404000, China.
| |
Collapse
|
18
|
Man G, Duan A, Liu W, Cheng J, Liu Y, Song J, Zhou H, Shen K. Circular RNA-Related CeRNA Network and Prognostic Signature for Patients with Osteosarcoma. Cancer Manag Res 2021; 13:7527-7541. [PMID: 34629900 PMCID: PMC8494289 DOI: 10.2147/cmar.s328559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Osteosarcoma (OSA) is characterized by its relatively high morbidity in children and adolescents. Patients usually have advanced disease at the time of diagnosis, resulting in poor outcomes. This study focused on building a circular RNA-based ceRNA network to develop a reliable model for OSA risk prediction. Methods We used the Gene Expression Omnibus (GEO) datasets to explore the expression patterns of circRNA, miRNA, and mRNA in OSA. The prognostic value of circRNA host genes was assessed with data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database using Kaplan–Meier survival analysis. We established a circRNA-related ceRNA network and annotated its biological functions. Next, we developed a prognostic risk signature based on mRNAs extracted from the ceRNA network. We also developed a prognostic model and constructed a nomogram to enhance the prediction of OSA prognosis. Results We identified 166 DEcircRNAs, 233 DEmiRNAs, and 1317 DEmRNAs and used them to create a circRNA-related ceRNA network. We then established a prognostic risk model consisting of four genes (MLLT11, TNFRSF11B, SLC7A7, and PARVA). Moreover, we found that inhibition of MLLT11 and SLC7A7 blocked OSA cell proliferation and migration in in vitro experiments. Conclusion Our study identifies crucial prognostic genes and provides a circRNA-related ceRNA network for OSA, which will contribute to the elucidation of the molecular mechanisms underlying the oncogenesis and development of OSA.
Collapse
Affiliation(s)
- Gu Man
- Department of Orthopedics, Nanjing Lishui District Traditional Chinese Medicine Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Ao Duan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wanshun Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiangqi Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Haisen Zhou
- Department of Pathology, Nanjing Lishui District Traditional Chinese Medicine Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Zhang HJ, Chen G, Chen SW, Fu ZW, Zhou HF, Feng ZB, Mo JX, Li CB, Liu J. Overexpression of cyclin-dependent kinase 1 in esophageal squamous cell carcinoma and its clinical significance. FEBS Open Bio 2021; 11:3126-3141. [PMID: 34586751 PMCID: PMC8564100 DOI: 10.1002/2211-5463.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin‐dependent kinase 1 (CDK1) plays a significant role in certain malignancies. However, it remains unclear whether CDK1 plays a role in esophageal squamous cell carcinoma (ESCC). The aim of this study was to analyze the expression and clinical value of CDK1 in ESCC. CDK1 protein in 151 ESCC tissues and 138 normal esophageal tissues was detected by immunohistochemistry. RNA‐seq of eight pairs of ESCC and adjacent esophageal specimens was performed to evaluate the levels of CDK1 mRNA. Microarray and external RNA‐seq data from 664 cases of ESCC and 1733 cases of control tissues were used to verify the difference in CDK1 expression between the two groups. A comprehensive analysis of all data was performed to evaluate the difference in CDK1 between ESCC tissues and control tissues. Further, functional enrichment analyses were performed based on differentially expressed genes (DEGs) of ESCC and co‐expressed genes (CEGs) of CDK1. In addition, a lncRNA‐miRNA‐CDK1 network was constructed. The expression of CDK1 protein was obviously increased in ESCC tissues (3.540 ± 2.923 vs. 1.040 ± 1.632, P < 0.001). RNA‐seq indicated that the mRNA level of CDK1 was also highly expressed in ESCC tissues (5.261 ± 0.703 vs. 2.229 ± 1.161, P < 0.0001). Comprehensive analysis revealed consistent up‐regulation of CDK1 (SMD = 1.41; 95% CI 1.00–1.83). Further, functional enrichment analyses revealed that the functions of these genes were mainly concentrated in the cell cycle. A triple regulatory network of PVT1‐hsa‐miR‐145‐5p/hsa‐miR‐30c‐5p‐CDK1 was constructed using in silico analysis. In summary, overexpression of CDK1 is closely related to ESCC tumorigenesis.
Collapse
Affiliation(s)
- Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zong-Wang Fu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Cheng L, Cao H, Xu J, Xu M, He W, Zhang W, Dong L, Chen D. Circ_RPL23A acts as a miR-1233 sponge to suppress the progression of clear cell renal cell carcinoma by promoting ACAT2. J Bioenerg Biomembr 2021; 53:415-428. [PMID: 34036483 DOI: 10.1007/s10863-021-09901-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a prevalent urological carcinoma with high metastatic risk. Circular RNAs (circRNAs) have been identified as effective diagnostic and therapeutic biomarkers for ccRCC. This research aims to disclose the effect and regulatory mechanism of circRNA ribosomal protein L23a (circ_RPL23A) in ccRCC. We performed quantitative real-time polymerase chain reaction (qRT-PCR) to examine circ_RPL23A, microRNA-1233 (miR-1233) and acetyl-coenzyme A acetyltransferase 2 (ACAT2). Cell cycle progression, apoptosis, cell viability, invasion and migration, which were respectively conducted by using flow cytometry, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), transwell assays. The levels of ACAT2 protein and cell cycle proteins, proliferation-associated protein, and epithelial-mesenchymal transition (EMT) associated proteins were measured by western blot. Target relationship was analyzed via dual-luciferase reporter assay and RNA pull down assay. The animal model was used to study how circ_RPL23A affects in vivo. Circ_RPL23A was lower expressed in ccRCC tissues and cells. The elevated circ_RPL23A suppressed cell cycle progression, proliferation, migration and invasion but promoted apoptosis in ccRCC cells. MiR-1233 was a target of circ_RPL23A and direct targeted to ACAT2. Besides, circ_RPL23A exerted its anti-tumor effect by sponging miR-1233, and then relieved the inhibition effect of miR-1233 on ACAT2. Overexpression of circ_RPL23A also curbed ccRCC tumor growth in vivo. Circ_RPL23A inhibited ccRCC progression by upregulating ACAT2 expression by competitively binding miR-1233, which might provide an in-depth cognition for ccRCC pathogenesis and circ_RPL23A might be a promising biomarker in ccRCC diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Huifeng Cao
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Jianbo Xu
- Department of Critical Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mo Xu
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Wenjie He
- Department of Outpatient, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wenjing Zhang
- Department of Operating Room, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Longxin Dong
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Dayin Chen
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China.
- Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
21
|
He Y, Zhou H, Wang W, Xu H, Cheng H. Construction of a circRNA-miRNA-mRNA Regulatory Network Reveals Potential Mechanism and Treatment Options for Osteosarcoma. Front Genet 2021; 12:632359. [PMID: 34079579 PMCID: PMC8166411 DOI: 10.3389/fgene.2021.632359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma is a common malignant primary bone tumor in adolescents and children. Numerous studies have shown that circRNAs were involved in the proliferation and invasion of various tumors. However, the role of circRNAs in osteosarcoma remains unclear. Here, we aimed to explore the regulatory network among circRNA-miRNA-mRNA in osteosarcoma. Methods The circRNA (GSE140256), microRNA (GSE28423), and mRNA (GSE99671) expression profiles of osteosarcoma were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed circRNAs, miRNAs and mRNAs were identified. CircRNA-miRNA interactions and miRNA-mRNA interactions were determined by Circular RNA Interactome (CircInteractome) database and microRNA Data Integration Portal (mirDIP) database, respectively. Then, we constructed a regulatory network. Function enrichment analysis of miRNA and mRNA was performed by DIANA-miRPath v3.0 and Metascape database, respectively. mRNAs with significant prognostic value were identified based on expression profiles from The Cancer Genome Atlas (TCGA) database, and we constructed a subnetwork for them. To make the most of the network, we used the CLUE database to predict potential drugs for the treatment of osteosarcoma based on mRNA expression in the network. And we used the STITCH database to analyze and validate the interactions among these drugs and mRNAs, and to further screen for potential drugs. Results A total of 9 circRNAs, 19 miRNAs, 67 mRNAs, 54 pairs of circRNA-miRNA interactions and 110 pairs of miRNA-mRNA interactions were identified. A circRNA-miRNA-mRNA network was constructed. Function enrichment analysis indicated that these miRNAs and mRNAs in the network were involved in the process of tumorigenesis and immune response. Among these mRNAs, STC2 and RASGRP2 with significantly prognostic value were identified, and we constructed a subnetwork for them. Based on mRNA expression in the network, three potential drugs, quinacridine, thalidomide and zonisamide, were screened for the treatment of osteosarcoma. Among them, quinacridine and thalidomide have been proved to have anti-tumor effects in previous studies, while zonisamide has not been reported. And a corresponding drug-protein interaction network was constructed. Conclusion Overall, we constructed a circRNA-miRNA-mRNA regulatory network to investigate the possible mechanism in osteosarcoma, and predicted that quinacridine, thalidomide and zonisamide could be potential drugs for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Hu R, Chen S, Yan J. Blocking circ-CNST suppresses malignant behaviors of osteosarcoma cells and inhibits glycolysis through circ-CNST-miR-578-LDHA/PDK1 ceRNA networks. J Orthop Surg Res 2021; 16:300. [PMID: 33962616 PMCID: PMC8103765 DOI: 10.1186/s13018-021-02427-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background CircRNA CNST (circ-CNST) is a newly identified biomarker for prognosis of osteosarcoma (OS). However, its role in OS progression remains to be well documented. Methods Expression of circ-CNST, microRNA (miR)-578, lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) was detected by quantitative real-time polymerase chain reaction and Western blotting. The physical interaction was confirmed by dual-luciferase reporter assay. Cell behaviors and glycolysis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry, transwell assays, xenograft experiment, and commercial kits. Results Circ-CNST was upregulated in human OS tissues and cells, accompanied with downregulation of miR-578 and upregulation of LDHA and PDK1. There were negative correlations between miR-578 expression and circ-CNST or LDHA/PDK1 in OS tissues. Moreover, high circ-CNST/LDHA/PDK1 or low miR-578 might predict shorter overall survival, advanced TNM stages, and lymph node metastasis. Physically, miR-578 was targeted by circ-CNST, and miR-578 could target LDHA/PDK1. Functionally, blocking circ-CNST and restoring miR-578 enhanced apoptosis rate and suppressed cell proliferation, colony formation, migration, and invasion in 143B and U2OS cells, accompanied with decreased glucose consumption, lactate production, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio. Furthermore, in vivo growth of U2OS cells was retarded by silencing circ-CNST. Depletion of miR-578 could counteract the suppressive role of circ-CNST deficiency in 143B and U2OS cells, and restoring LDHA or PDK1 partially reversed the role of miR-578 inhibition as well. Conclusion Circ-CNST knockdown could antagonize malignant behaviors and glycolysis of OS cells by regulating miR-578-LDHA/PDK1 axes. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02427-0.
Collapse
Affiliation(s)
- Rui Hu
- Department of Spine Surgery Clinic, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Jianxin Yan
- Department of Joint Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, Enshi City, 445000, Hubei Province, China.
| |
Collapse
|
23
|
Jiao K, Walsh LJ, Ivanovski S, Han P. The Emerging Regulatory Role of Circular RNAs in Periodontal Tissues and Cells. Int J Mol Sci 2021; 22:ijms22094636. [PMID: 33924932 PMCID: PMC8124626 DOI: 10.3390/ijms22094636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5' cap and a 3' tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA-miRNA-mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.
Collapse
Affiliation(s)
- Kexin Jiao
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Laurence J. Walsh
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Sašo Ivanovski
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| | - Pingping Han
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| |
Collapse
|
24
|
Lu Z, Wang C, Lv X, Dai W. Hsa_circ_0010220 regulates miR-198/Syntaxin 6 axis to promote osteosarcoma progression. J Bone Oncol 2021; 28:100360. [PMID: 33996428 PMCID: PMC8105664 DOI: 10.1016/j.jbo.2021.100360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
hsa_circ_0010220 expression is increased in osteosarcoma. hsa_circ_0010220 knockdown represses cell proliferation, migration and invasion. hsa_circ_0010220 regulates Syntaxin 6 via miR-198. hsa_circ_0010220 silence decreases xenograft tumor growth.
Background Circular RNAs (circRNAs) are a class of endogenous RNAs that are involved in osteosarcoma progression. Hsa_circ_0010220 (circ_0010220) is a circRNA generated by gene Rho Guanine Nucleotide Exchange Factor 10 Like (ARHGEF10L) and is upregulated in osteosarcoma, but its functional role in osteosarcoma is limited studied. This study aimed to illustrate the regulatory mechanism underlying circ_0010220 in osteosarcoma. Methods 51 paired tumor and normal tissues were obtained from osteosarcoma patients. circ_0010220, microRNA (miR)-198 and Syntaxin 6 (STX6) abundances were examined by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, cell cycle, apoptosis, migration and invasion were analyzed via Cell Counting Kits-8 (CCK-8), colony formation, flow cytometry and transwell analyses. Target relationship was verified via dual-luciferase reporter analysis, RNA immunoprecipitation and pull-down. The in vivo function was analyzed using a xenograft model. Results Circ_0010220 was elevated in osteosarcoma tissues and cells, and was related to the lower survival rate of osteosarcoma patients. Circ_0010220 knockdown inhibited cell proliferation, migration and invasion, but induced cell cycle arrest and apoptosis in vitro. Besides, circ_0010220 silence curbed the growth of xenograft osteosarcoma tumors in vivo. Mechanistic research revealed that miR-198 is a target of circ_0010220, and directly targets STX6. Moreover, circ_0010220 upregulated the expression of STX6 by sponging miR-198 to regulate cell proliferation, migration, invasion, cell cycle, and apoptosis. Conclusion Circ_0010220 contributes to osteosarcoma progression through mediating miR-198/STX6 axis, which might be a novel therapeutic target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhaoan Lu
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Chuanwen Wang
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Xiaolong Lv
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| | - Wen Dai
- Department of Orthopedics, the First People's Hospital of Shangqiu City, Shangqiu 476100, Henan, China
| |
Collapse
|
25
|
Zheng W, Hou G, Li Y. Circ_0116061 regulated the proliferation, apoptosis, and inflammation of osteoarthritis chondrocytes through regulating the miR-200b-3p/SMURF2 axis. J Orthop Surg Res 2021; 16:253. [PMID: 33849596 PMCID: PMC8045261 DOI: 10.1186/s13018-021-02391-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
Background Circular RNA (circRNA) has been shown to be associated with osteoarthritis (OA) progression. Circ_0116061 has been found to be highly expressed in OA cartilage tissues, but its role and mechanism in OA progression remain unclear. Methods Expression levels of circ_0116061, microRNA (miR)-200b-5p, and Smad ubiquitin regulatory factor 2 (SMURF2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay, colony formation assay, and flow cytometry. Furthermore, the protein levels of proliferation-related marker, apoptosis-related markers, inflammatory factors, and SMURF2 were tested using western blot (WB) analysis. In addition, the interaction between miR-200b-3p and circ_0116061 or SMURF2 was examined using dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Results Circ_0116061 and SMURF2 were highly expressed, and miR-200b-3p was lowly expressed in OA cartilage tissues. Knockdown of circ_0116061 could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. MiR-200b-3p could be sponged by circ_0116061, and its inhibitor could reverse the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes. SMURF2 was a target of miR-200b-3p, and its expression was positively regulated by circ_0116061. Silencing of SMURF2 also could enhance the proliferation and suppress the apoptosis and inflammation of OA chondrocytes. Furthermore, the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes also could be reversed by SMURF2 overexpression. Conclusion Our data showed that circ_0116061 might regulate the miR-200b-3p/SMURF2 axis to promote the progression of OA.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Joint Surgery, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Guanhua Hou
- Department of Orthopedics, Peking University Medical Zibo Hospital, Zibo, 255069, Shandong, China
| | - Yong Li
- Department of Spine, Central People's Hospital of Tengzhou, 181 Xingtan Road, Tengzhou, 277500, Shandong, China.
| |
Collapse
|
26
|
Li T, Xian HC, Dai L, Tang YL, Liang XH. Tip of the Iceberg: Roles of CircRNAs in Cancer Glycolysis. Onco Targets Ther 2021; 14:2379-2395. [PMID: 33854335 PMCID: PMC8039208 DOI: 10.2147/ott.s297140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
Warburg effect reflects that tumor cells tend to generate energy by aerobic glycolysis rather than oxidative phosphorylation (OXPHOS), thus promoting the development of malignant tumors. As a kind of non-coding RNA, circular RNA (circRNA) is characterized by a closed ring structure and emerges as a regulator of cancer metabolism. Mounting studies revealed that circRNA can regulate the cancer metabolism process through affecting the expression of glycolysis relevant enzymes, transcription factors (TFs), and signaling pathways. In this review, we comprehensively analyzed and concluded the mechanism of circRNA regulating glycolysis, hoping to deepen the cognition of the cancer metabolic regulatory network and to reap huge fruits in targeted cancer treatment.
Collapse
Affiliation(s)
- Tan Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Silencing circSLAMF6 represses cell glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in gastric cancer under hypoxia. Biosci Rep 2021; 40:225161. [PMID: 32496549 PMCID: PMC7313448 DOI: 10.1042/bsr20201275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a malignant tumor of the digestive tract. Hypoxia plays an important role in the development of cancer, including GC. The present study aimed to investigate the role of circular RNA SLAMF6 (circSLAMF6) in the progression of GC under hypoxia. Methods: The expression of circSLAMF6, microRNA-204-5p (miR-204-5p) and myosin heavy chain 9 (MYH9) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). GC cells were maintained under hypoxia (1% O2) for experiments in vitro. Glucose consumption and lactate production were determined by a Glucose Assay Kit and a Lactate Assay Kit, respectively. Levels of all protein were detected by Western blot. Cell migration and invasion were examined by Transwell assay. The interaction between miR-204-5p and circSLAMF6 or MYH9 was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Murine xenograft model was established to explore the role of circSLAMF6 in vivo. Results: CircSLAMF6 expression was increased in GC cells under hypoxia. Hypoxia promoted glycolysis, migration, and invasion in GC cells, which were reversed by circSLAMF6 knockdown. CircSLAMF6 was validated as a miR-204-5p sponge, and MYH9 was a target of miR-204-5p. Functionally, miR-204-5p inhibitor weakened the inhibition of circSLAMF6 knockdown on GC cell progression under hypoxia. Besides, MYH9 depletion suppressed glycolysis, migration, and invasion in GC cells under hypoxia. Importantly, circSLAMF6 deficiency inhibited tumor growth in vivo by regulating the miR-204-5p/MYH9 axis. Conclusion: CircSLAMF6 was involved in glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in GC cells under hypoxia.
Collapse
|
28
|
Yang J, Jia Y, Wang B, Yang S, Du K, Luo Y, Li Y, Zhu B. Circular RNA CHST15 Sponges miR-155-5p and miR-194-5p to Promote the Immune Escape of Lung Cancer Cells Mediated by PD-L1. Front Oncol 2021; 11:595609. [PMID: 33777742 PMCID: PMC7991744 DOI: 10.3389/fonc.2021.595609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background The effects of up-regulated CircCHST15 on lung cancer remained unclear. In this study, the role of CircCHST15 in lung cancer was investigated. Methods Dual-luciferase reporter verified the bioinformatics prediction that CircCHST15 targeted miR-155-5p and miR-194-5p. The correlation between CircCHST15 and PD-L1 was analyzed by Pearson analysis. CCK-8 and colony formation was performed to determine the viability and proliferation of lung cancer cells. After the lung cancer (subcutaneous-xenotransplant) model was established in mice, the T cell subtype and related cytokines in mouse tumor tissues were detected by flow cytometry and ELISA. Moreover, the expressions of CircCHST15, miR-155-5p, miR-194-5p, immune-related, and proliferation-related factors of the lung cancer cells or mice tumor tissues were detected by immunohistochemistry, RT-qPCR, or Western blot. Results CircCHST15 and PD-L1 were high-expressed in lung cancer, and the two was positively correlated. CircCHST15 targeted miR-155-5p and miR-194-5p, the later further targeted PD-L1. Lung cancer cell viability and proliferation were increased by miR-155-5p and inhibited by miR-194-5p. CircCHST15 located in the cytoplasm promoted tumor growth, down-regulated the expressions of miR-155-5p and miR-194-5p, and up-regulated the expressions of PD-L1, Ki-67, PCNA, CCL17, CCL22, IFN-γ, TNF-β, and IL-10. Also, CircCHST15 decreased the CD8+ cells in mouse blood and tumor, but increased the Tregs in mouse tumor. PD-L1 inhibitor showed an opposite effect to CircCHST15 on mouse tumors. Conclusion CircCHST15 sponged miR-155-5p and miR-194-5p to promote the PD-L1-mediated immune escape of lung cancer cells.
Collapse
Affiliation(s)
- Jianru Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Jia
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengrong Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Du
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Luo
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhe Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Li H, Liu Q, Chen Z, Wu M, Zhang C, Su J, Li Y, Zhang C. Hsa_circ_0110757 upregulates ITGA1 to facilitate temozolomide resistance in glioma by suppressing hsa-miR-1298-5p. Cell Death Dis 2021; 12:252. [PMID: 33674567 PMCID: PMC7935991 DOI: 10.1038/s41419-021-03533-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Temozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Zihua Chen
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Chao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Jun Su
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
30
|
Huang H, Tan M, Zheng L, Yan G, Li K, Lu D, Cui X, He S, Lei D, Zhu B, Zhao J. Prognostic Implications of the Complement Protein C1Q and Its Correlation with Immune Infiltrates in Osteosarcoma. Onco Targets Ther 2021; 14:1737-1751. [PMID: 33707956 PMCID: PMC7943548 DOI: 10.2147/ott.s295063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most widespread bone tumour among childhood cancers, and distant metastasis is the dominant factor in poor prognosis for patients with OS. Therefore, it is necessary to identify new prognostic biomarkers for identifying patients with aggressive disease. METHODS Two OS datasets (GSE21257 and GSE33383) were downloaded from the Gene Expression Omnibus (GEO) and subsequently subjected to weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis (DGE) to screen candidate genes. A prognostic model was constructed using OS data derived from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) program to further screen key genes and perform gene ontology (GO) analysis. The prognostic values of key genes were assessed using the Kaplan-Meier (KM) plotter. The GEO dataset was used for immune infiltration analysis and association analysis of key genes. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the expression levels of potentially crucial genes in OS cell lines. RESULTS In the present study, we found 114 genes with a highly significant correlation in the module and 44 downregulated genes; 25 candidate genes overlapped in the two parts of the genes. Among these, three key genes, C1QA, C1QB, and C1QC, were the most significant hub genes, which had the highest node degrees, were clustered into one group, and implicated in most significant biological processes (regulation of immune effector process). Moreover, these three key genes were negatively associated with the prognosis of OS and positively associated with three immune cells (follicular helper T cells, memory B cells, and CD8 T cells). Additionally, compared to non-metastatic OS cell lines, the expression of three key genes was significantly downregulated in metastatic OS cell lines. CONCLUSION Our results revealed that three key genes (C1QA, C1QB, and C1QC) were implicated in tumour immune infiltration and may be promising biomarkers for predicting metastasis and prognosis of patients with OS.
Collapse
Affiliation(s)
- Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Guohua Yan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Kanglu Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Dejie Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiaofei Cui
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Danqing Lei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- The Medical and Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
31
|
Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of Circular RNA-MicroRNA-Messenger RNA Regulatory Network of Recurrent Implantation Failure to Explore Its Potential Pathogenesis. Front Genet 2021; 11:627459. [PMID: 33664765 PMCID: PMC7924221 DOI: 10.3389/fgene.2020.627459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Many studies on circular RNAs (circRNAs) have recently been published. However, the function of circRNAs in recurrent implantation failure (RIF) is unknown and remains to be explored. This study aims to determine the regulatory mechanisms of circRNAs in RIF. Methods: Microarray data of RIF circRNA (GSE147442), microRNA (miRNA; GSE71332), and messenger RNA (mRNA; GSE103465) were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed circRNA, miRNA, and mRNA. The circRNA–miRNA–mRNA network was constructed by Cytoscape 3.8.0 software, then the protein–protein interaction (PPI) network was constructed by STRING database, and the hub genes were identified by cytoHubba plug-in. The circRNA–miRNA–hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in RIF. Finally, the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the hub genes were performed by clusterProfiler package of Rstudio software, and Reactome Functional Interaction (FI) plug-in was used for reactome analysis to comprehensively analyze the mechanism of hub genes in RIF. Results: A total of eight upregulated differentially expressed circRNAs (DECs), five downregulated DECs, 56 downregulated differentially expressed miRNAs (DEmiRs), 104 upregulated DEmiRs, 429 upregulated differentially expressed genes (DEGs), and 1,067 downregulated DEGs were identified regarding RIF. The miRNA response elements of 13 DECs were then predicted. Seven overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 56 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of seven miRNAs with 1,496 DEGs. The circRNA–miRNA–mRNA network and PPI network were constructed through six circRNAs, seven miRNAs, and 56 mRNAs; and four hub genes (YWHAZ, JAK2, MYH9, and RAP2C) were identified. The circRNA–miRNA–hub gene regulatory subnetwork with nine regulatory axes was formed in RIF. Functional enrichment analysis and reactome analysis showed that these four hub genes were closely related to the biological functions and pathways of RIF. Conclusion: The results of this study provide further understanding of the potential pathogenesis from the perspective of circRNA-related competitive endogenous RNA network in RIF.
Collapse
Affiliation(s)
- Jiahuan Luo
- Clinical Medical College, Dali University, Dali, China
| | - Li Zhu
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ning Zhou
- Clinical Medical College, Dali University, Dali, China
| | | | - Lirong Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| | - Ruopeng Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, China.,Institute of Reproductive Medicine, Dali University, Dali, China
| |
Collapse
|
32
|
Yin H, Zhang S, Shen M, Zhang Z, Huang H, Zhao Z, Guo X, Wu P. Integrative analysis of circRNA/miRNA/mRNA regulatory network reveals the potential immune function of circRNAs in the Bombyx mori fat body. J Invertebr Pathol 2021; 179:107537. [PMID: 33472087 DOI: 10.1016/j.jip.2021.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Bombyx mori nucleopolyhedrosis virus (BmNPV) is one of the greatest threats to sustainable development of the sericulture industry. Circular RNA (circRNA), a type of non-coding RNA, has been shown to play important roles in gene expression regulation, immune response, and diseases. The fat body is a tissue with both metabolic and immune functions. To explore the potential immune function of circRNAs, we analyzed differentially expressed (DE)circRNAs, microRNAs(miRNAs), and mRNAs in the B. mori fat body in response to BmNPV infection using high-throughput RNA sequencing. A total of 77 DEcircRNAs, 32 DEmiRNAs, and 730 DEmRNAs that are associated with BmNPV infection were identified. We constructed a DEcircRNA/DEmiRNA/DEmRNA and DEcircRNA/DEmiRNA/BmNPV gene regulatory network and validated the differential expression of circ_0001432 and its corresponding miRNA (miR-2774c and miR-3406-5p) and mRNA (778467 and 101745232) in the network. Tissue-specific expression of circ_0001432 and its expression at different time points were also examined. KEGG pathway analysis of DEmRNAs, target genes of DEmiRNAs, and host genes of DEcircRNAs in the network showed that these genes were enriched in several metabolic pathways and signaling pathways, which could play important roles in insect immune responses. Our results suggest that circRNA could be involved in immune responses of the B. mori fat body and help in understanding the molecular mechanisms underlying silkworm-pathogen interactions.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhengdong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Zhimeng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
33
|
Zhang K, Hu H, Xu J, Qiu L, Chen H, Jiang X, Jiang Y. Circ_0001421 facilitates glycolysis and lung cancer development by regulating miR-4677-3p/CDCA3. Diagn Pathol 2020; 15:133. [PMID: 33109222 PMCID: PMC7592370 DOI: 10.1186/s13000-020-01048-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer (LC) is a malignant tumor originating in the bronchial mucosa or gland of the lung. Circular RNAs (circRNAs) are proved to be key regulators of tumor progression. However, the regulatory effect of circ_0001421 on lung cancer tumorigenesis remains unclear. METHODS The expression levels of circ_0001421, microRNA-4677-3p (miR-4677-3p) and cell division cycle associated 3 (CDCA3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methyl thiazolyl tetrazolium (MTT), Transwell and Tumor formation assays were performed to explore the role of circ_0001421 in LC. Glucose consumption and lactate production were examined by a Glucose assay kit and a Lactic Acid assay kit. Western blot was utilized to examine the protein levels of Hexokinase 2 (HK2) and CDCA3. The interaction between miR-4677-3p and circ_0001421 or CDCA3 was confirmed by dual-luciferase reporter assay. RESULTS Circ_0001421 was increased in LC tissues and cells, and knockdown of circ_0001421 repressed cell proliferation, migration, invasion and glycolysis in vitro. Meanwhile, circ_0001421 knockdown inhibited LC tumor growth in vivo. Mechanistically, circ_0001421 could bind to miR-4677-3p, and CDCA3 was a target of miR-4677-3p. Rescue assays manifested that silencing miR-4677-3p or CDCA3 overexpression reversed circ_0001421 knockdown-mediated suppression on cell proliferation, migration, invasion and glycolysis in LC cells. CONCLUSION Circ_0001421 promoted cell proliferation, migration, invasion and glycolysis in LC by regulating the miR-4677-3p/CDCA3 axis, which providing a new mechanism for LC tumor progression.
Collapse
Affiliation(s)
- Koudong Zhang
- Department of Respiratory and Critical Medicine, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, No.66 Renmin South Road, Yancheng, 224000, Jiangsu, China
| | - Hang Hu
- Department of Respiratory and Critical Medicine, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, No.66 Renmin South Road, Yancheng, 224000, Jiangsu, China
| | - Juan Xu
- Department of Respiratory and Critical Medicine, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, No.66 Renmin South Road, Yancheng, 224000, Jiangsu, China
| | - Limin Qiu
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Haitao Chen
- Department of Pathology, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, Yancheng, 224000, Jiangsu, China
| | - Xingzhi Jiang
- Department of Respiratory and Critical Medicine, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, No.66 Renmin South Road, Yancheng, 224000, Jiangsu, China
| | - Yongqian Jiang
- Department of Respiratory and Critical Medicine, The Fourth Affiliated Hospital of Nantong University; The First People's Hospital of Yancheng, No.66 Renmin South Road, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
34
|
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV, Wu WKK. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2020; 54:e12936. [PMID: 33103338 PMCID: PMC7791175 DOI: 10.1111/cpr.12936] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and is a neoplasm thought to be derived from the bone‐forming mesenchymal stem cells. Aberrant activation of oncogenes and inactivation of tumour suppressor genes by somatic mutations and epigenetic mechanisms play a pivotal pathogenic role in osteosarcoma. Aside from alterations in these protein‐coding genes, it has now been realized that dysregulation of non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs) and the recently discovered circular RNAs (circRNAs), is crucial to the initiation and progression of osteosarcoma. CircRNAs are single‐stranded RNAs that form covalently closed loops and function as an important regulatory element of the genome through multiple machineries. Recently, an increasing number of studies suggested that circRNAs also played critical roles in osteosarcoma. This review summarizes recent development and progression in circRNA transcriptome analysis and their functions in the modulation of osteosarcoma progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
35
|
Li Z, Huang X, Liu A, Xu J, Lai J, Guan H, Ma J. Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci 2020; 264:118622. [PMID: 33203523 DOI: 10.1016/j.lfs.2020.118622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
AIMS In the present study, we aimed to uncover the potential functions of circular RNA (circRNA) pleckstrin and Sec7 domain containing 3 (circ_PSD3) in papillary thyroid carcinoma (PTC) development. MAIN METHODS The abundance of circ_PSD3, PSD3 messenger RNA (mRNA), microRNA-637 (miR-637) and hemogen (HEMGN; EDAG-1) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Flow cytometry was employed to measure cell cycle progression and cell apoptosis. Western blot assay was used to examine protein expression. The proliferation ability and motility of PTC cells were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays, respectively. The interaction between miR-637 and circ_PSD3 or HEMGN was tested by dual-luciferase reporter assay. Animal experiments were used to explore the role of circ_PSD3 in PTC progression in vivo. KEY FINDINGS Circ_PSD3 was aberrantly up-regulated in PTC tumor tissues compared with adjacent normal tissues. Circ_PSD3 and HEMGN promoted the cell cycle progression, proliferation and metastasis and impeded the apoptosis of PTC cells. MiR-637 was a direct target of circ_PSD3, and miR-637 directly interacted with HEMGN mRNA in PTC cells. Circ_PSD3 silencing-induced effects in PTC cells were partly attenuated by the addition of anti-miR-637 or HEMGN overexpression plasmid. Circ_PSD3/miR-637/HEMGN regulated the activity of PI3K/Akt signal pathway in PTC cells. Circ_PSD3 silencing inhibited the tumor growth in vivo. SIGNIFICANCE Circ_PSD3 promoted the progression of PTC through regulating miR-637/HEMGN axis and activating PI3K/Akt signaling. Circ_PSD3/miR-637/HEMGN signaling axis might be a potential target for PTC therapy.
Collapse
Affiliation(s)
- Zongyu Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Huang
- Department of General Surgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Aru Liu
- Department of Respiratory Medicine, Xi'an Union Hospital, Xi'an, China
| | - Jinkai Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyue Lai
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Guan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiancang Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
36
|
Guo WP, Tang D, Pang YY, Li XJ, Chen G, Huang ZG, Tang XZ, Lai QQ, Gan JY, Huang XL, Liu XF, Wei ZX, Ma W. Immunohistochemical basigin expression level in thyroid cancer tissues. World J Surg Oncol 2020; 18:240. [PMID: 32891152 PMCID: PMC7487720 DOI: 10.1186/s12957-020-01975-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy; basigin (also known as BSG) plays a crucial role in tumor cell invasion, metastasis, and angiogenesis. This study was designed to identify the change of BSG expression in TC and its possible potential mechanism. METHODS The BSG expression levels in TC were demonstrated using data collected from in-house immunohistochemical (IHC), RNA-sequencing (RNA-seq), microarrays, and literatures. Integrated analysis was performed to determined BSG expression levels in TC comprehensively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed with the integration of BSG co-expressed genes and differentially expressed genes (DEGs) in TC tissues to explore the potential mechanisms of BSG in TC. RESULTS The protein expression level of BSG was significantly higher in TC cases based on the IHC experiments. In addition, the combined SMD for BSG expression was 0.39 (p < 0.0001), the diagnostic odds ratio was 3.69, and the AUC of the sROC curve was 0.6986 using 1182 TC cases and 437 non-cancerous cases from 17 independent datasets. Furthermore, BSG co-expressed genes tended to be enriched in gene terms of the extracellular matrix (ECM), cell adhesion, and cell-cell interactions. The expression levels of nine hub BSG co-expressed genes were markedly upregulated in TC cases. CONCLUSION BSG expression levels were closely correlated with the progression of TC and may affect the signals of the ECM, cell adhesion, and cell-cell interactions.
Collapse
Affiliation(s)
- Wan-Ping Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Jiao Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qin-Qiao Lai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Yan Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Li Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Fan Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Xiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Wei Ma
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
37
|
Li C, Liu H, Niu Q, Gao J. Circ_0000376, a Novel circRNA, Promotes the Progression of Non-Small Cell Lung Cancer Through Regulating the miR-1182/NOVA2 Network. Cancer Manag Res 2020; 12:7635-7647. [PMID: 32922073 PMCID: PMC7455537 DOI: 10.2147/cmar.s258340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxia has been shown to induce the malignant progression of cancer, including non-small cell lung cancer (NSCLC). Circular RNA (circRNA) is considered to be an important regulator of cancer progression. However, the role of a newly discovered circRNA, circ_0000376, in the progression of NSCLC is unclear. Methods The relative expression levels of circ_0000376, miR-1182 and neuro-oncological ventral antigen 2 (NOVA2) were detected via quantitative real-time polymerase chain reaction (qRT-PCR). Glucose consumption and lactate production were determined using Glucose Assay Kit and Lactate Assay Kit, respectively. Moreover, the protein levels of glycolysis markers and NOVA2 were measured using Western blot (WB) analysis. Furthermore, 3-(4, 5-dimethyl-2 thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was performed to assess cell viability, and transwell assay was employed to evaluate cell migration and invasion. The interaction between miR-1182 and circ_0000376 or NOVA2 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In addition, animal experiments were conducted to assess the influence of circ_0000376 silencing on NSCLC tumor growth in vivo. Results Circ_0000376 was upregulated in NSCLC, and its high expression was related to the poor overall survival of NSCLC patients. Hypoxia could enhance circ_0000376 expression and promote the glycolysis, viability, migration, and invasion of NSCLC cells. However, silencing of circ_0000376 could inhibit the glycolysis, viability, migration, and invasion of hypoxia-induced NSCLC cells. Additionally, circ_0000376 could sponge miR-1182, and miR-1182 could target NOVA2. MiR-1182 silencing could reverse the inhibitory effect of circ_0000376 knockdown on NSCLC progression, and NOVA2 overexpression also could reverse the suppressive effect of miR-1182 overexpression on NSCLC progression. Meanwhile, miR-1182 inhibitor could invert the negative regulation effect of circ_0000376 silencing on NOVA2 expression. In addition, circ_0000376 knockdown inhibited the NSCLC tumor growth via regulating the miR-1182 and NOVA2 expression in vivo. Conclusion Circ_0000376 promoted NSCLC progression by regulating the miR-1182/NOVA2 axis, suggesting that circ_0000376 might be a potential biomarker for NSCLC treatment.
Collapse
Affiliation(s)
- Cui Li
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Hai Liu
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Qin Niu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Jia Gao
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|