1
|
Eghbali S, Heumann TR. Next-Generation Immunotherapy for Hepatocellular Carcinoma: Mechanisms of Resistance and Novel Treatment Approaches. Cancers (Basel) 2025; 17:236. [PMID: 39858016 PMCID: PMC11764197 DOI: 10.3390/cancers17020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, and, with only 15-20% of HCC patients being suitable for potentially curative treatments, the vast majority of patients with HCC ultimately require systemic therapy. For decades, the choice of effective systemic therapy for HCC remained sparse. In recent years, after the combination of atezolizumab and bevacizumab demonstrated superior overall survival over the first-line standard, sorafenib, there has been a major therapeutic paradigm shift to immunotherapy-based regimens for HCC. While representing a great leap forward for the treatment of this cancer, the reality is that less than one-third of patients achieve an objective response to immune checkpoint inhibitor-based therapy, so there remains a significant clinical need for further therapeutic optimization. In this review, we provide an overview of the current landscape of immunotherapy for unresectable HCC and delve into the tumor intrinsic and extrinsic mechanisms of resistance to established immunotherapies with a focus on novel therapeutic targets with strong translational potential. Following this, we spotlight emerging immunotherapy approaches and notable clinical trials aiming to optimize immunotherapy efficacy in HCC that include novel immune checkpoint inhibitors, tumor microenvironment modulators, targeted delivery systems, and locoregional interventions.
Collapse
Affiliation(s)
- Shabnam Eghbali
- Division of Internal Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thatcher Ross Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
3
|
Kouba S, Demaurex N. S-acylation of Ca 2+ transport proteins in cancer. Chronic Dis Transl Med 2024; 10:263-280. [PMID: 39429488 PMCID: PMC11483607 DOI: 10.1002/cdt3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024] Open
Abstract
Alterations in cellular calcium (Ca2+) signals have been causally associated with the development and progression of human cancers. Cellular Ca2+ signals are generated by channels, pumps, and exchangers that move Ca2+ ions across membranes and are decoded by effector proteins in the cytosol or in organelles. S-acylation, the reversible addition of 16-carbon fatty acids to proteins, modulates the activity of Ca2+ transporters by altering their affinity for lipids, and enzymes mediating this reversible post-translational modification have also been linked to several types of cancers. Here, we compile studies reporting an association between Ca2+ transporters or S-acylation enzymes with specific cancers, as well as studies reporting or predicting the S-acylation of Ca2+ transporters. We then discuss the potential role of S-acylation in the oncogenic potential of a subset of Ca2+ transport proteins involved in cancer.
Collapse
Affiliation(s)
- Sana Kouba
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| |
Collapse
|
4
|
Hao L, Li S, Hu X. Expression of lipid-metabolism genes is correlated with immune microenvironment and predicts prognosis of hepatocellular carcinoma. Sci Rep 2024; 14:25705. [PMID: 39463421 PMCID: PMC11514195 DOI: 10.1038/s41598-024-76578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This study was aimed to identify a lipid metabolism-related signature associated with the HCC microenvironment to improve the prognostic prediction of HCC patients. Clinical information and expression profile data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, including the GEO dataset GSE76427. The gene expression profile of lipid metabolism was downloaded from Molecular Signatures Database (MSigDB) database. The infiltrating immune cells were estimated by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE), MCP-counter, and TIMER algorithms. Functional analysis, including Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene set enrichment analysis (GSEA) were performed to elucidate the underlying mechanisms. The prognostic risk model was performed by Least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis. Two distinct subgroups of survival were identified. Better prognosis was associated with high immune score, high abundance of immune infiltrating cells, and high immune status. GO and KEGG analysis showed that differentially expressed genes (DEGs) between the two subgroups were mainly enriched in immune related pathways. GSEA analysis suggested that the expression of lipid metabolism related genes (LMRGs) was related to dysregulation of immune in the high-risk group. Risk models and clinical features based on LMRGs predicted HCC prognosis. This study indicated that the lipid metabolism-related signature was important for the prognosis of HCC. The expression of LMRGs was related to the immune microenvironment of HCC patients and could be used to predict the prognosis of HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Xu H, Zhang Y, Xie Z, Xie XF, Qiao WL, Wang M, Zhao BB, Hua T. Investigating PPT2's role in ovarian cancer prognosis and immunotherapy outcomes. J Ovarian Res 2024; 17:198. [PMID: 39394143 PMCID: PMC11468411 DOI: 10.1186/s13048-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Ovarian cancer (OC) remains the primary cause of mortality among gynecological malignancies, and the identification of reliable molecular biomarkers to prognosticate OC outcomes is yet to be achieved. The gene palmitoyl protein thioesterase 2 (PPT2), which has been sparsely studied in OC, was closely associated with metabolism. This study aimed to determine the association between PPT2 expression, prognosis, immune infiltration, and potential molecular mechanisms in OC. We obtained the RNA-seq and clinical data from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases, then Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to assess and verify the role of PPT2. Gene set enrichment analysis (GSEA) was used to figure out the closely correlated pathways with PPT2. Overexpression experiment was performed to explore the function of PPT2. Our findings showed that PPT2 mRNA expression was apparent down-regulation in OC tissue compared to normal ovarian tissues in TCGA, GTEx datasets, and GEO datasets. This differential expression was also confirmed in our in-house datasets at both the mRNA and protein levels. Decreased PPT2 expression correlated with lower survival rates in TCGA, several GEO datasets, and our in-house datasets. Multivariate analysis revealed that PPT2 was an independent factor in predicting better outcomes for OC patients in TCGA and GEO. A negative correlation was revealed between immune infiltration and PPT2 expression through Single-sample GSEA (ssGSEA). Additionally, PPT2 was negatively correlated with an up-regulated immune score, stromal score, and estimate score, suggesting that patients with low PPT2 expression might benefit more from immunotherapy. Numerous chemical agents showed lower IC50 in patients with high PPT2 expression. In single-cell RNA sequencing (scRNA-seq) analysis of several OC datasets, we found PPT2 was mainly expressed in endothelial cells. Furthermore, we found that PPT2 inhibited OC cell proliferation in vitro. Our results demonstrated that PPT2 was considered a favorable prognostic biomarker for OC and may be vital in predicting response to immunotherapy and chemotherapy. Further research was needed to fully understand the relationship between PPT2 and immunotherapy efficacy in OC patients.
Collapse
Affiliation(s)
- Hui Xu
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Yan Zhang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Zhen Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Wen-Lan Qiao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Miao Wang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Bei-Bei Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China.
| |
Collapse
|
7
|
Sun Z, Liu H, Zhao Q, Li JH, Peng SF, Zhang Z, Yang JH, Fu Y. Immune-related cell death index and its application for hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:194. [PMID: 39245753 PMCID: PMC11381516 DOI: 10.1038/s41698-024-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Regulated cell death (RCD) plays a crucial role in the immune microenvironment, development, and progression of hepatocellular carcinoma (HCC). However, reliable immune-related cell death signatures have not been explored. In this study, we collected 12 RCD modes (e.g., apoptosis, ferroptosis, and cuproptosis), including 1078 regulators, to identify immune-related cell death genes based on HCC immune subgroups. Using a developed competitive machine learning framework, nine genes were screened to construct the immune-related cell death index (IRCDI), which is available for online application. Multi-omics data, along with clinical features, were analyzed to explore the HCC malignant heterogeneity. To validate the efficacy of this model, more than 18 independent cohorts, including survival and diverse treatment cohorts and datasets, were utilized. These findings were further validated using in-house samples and molecular biological experiments. Overall, the IRCDI may have a wide application in individual therapeutic decision-making and improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhao
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie-Han Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - San-Fei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Singh S, Ahmad F, Aruri H, Das S, Parajuli P, Gavande NS, Singh PK, Kumar A. Novel quinoline substituted autophagy inhibitors attenuate Zika virus replication in ocular cells. Virus Res 2024; 347:199419. [PMID: 38880335 PMCID: PMC11239713 DOI: 10.1016/j.virusres.2024.199419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Zika virus (ZIKV) is a re-emerging RNA virus that is known to cause ocular and neurological abnormalities in infants. ZIKV exploits autophagic processes in infected cells to enhance its replication and spread. Thus, autophagy inhibitors have emerged as a potent therapeutic target to combat RNA viruses, with Hydroxychloroquine (HCQ) being one of the most promising candidates. In this study, we synthesized several novel small-molecule quinoline derivatives, assessed their antiviral activity, and determined the underlying molecular mechanisms. Among the nine synthesized analogs, two lead candidates, labeled GL-287 and GL-382, significantly attenuated ZIKV replication in human ocular cells, primarily by inhibiting autophagy. These two compounds surpassed the antiviral efficacy of HCQ and other existing autophagy inhibitors, such as ROC-325, DC661, and GNS561. Moreover, unlike HCQ, these novel analogs did not exhibit cytotoxicity in the ocular cells. Treatment with compounds GL-287 and GL-382 in ZIKV-infected cells increased the abundance of LC3 puncta, indicating the disruption of the autophagic process. Furthermore, compounds GL-287 and GL-382 effectively inhibited the ZIKV-induced innate inflammatory response in ocular cells. Collectively, our study demonstrates the safe and potent antiviral activity of novel autophagy inhibitors against ZIKV.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
10
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
11
|
Puhl AC, Raman R, Havener TM, Minerali E, Hickey AJ, Ekins S. Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS OMEGA 2024; 9:11870-11882. [PMID: 38496939 PMCID: PMC10938339 DOI: 10.1021/acsomega.3c09607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Tammy M. Havener
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eni Minerali
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anthony J. Hickey
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Zhuang H, Tang C, Lin H, Zhang Z, Chen X, Wang W, Wang Q, Tan W, Yang L, Xie Z, Wang B, Chen B, Shang C, Chen Y. A novel risk score system based on immune subtypes for identifying optimal mRNA vaccination population in hepatocellular carcinoma. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00921-1. [PMID: 38315287 DOI: 10.1007/s13402-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Although mRNA vaccines have shown certain clinical benefits in multiple malignancies, their therapeutic efficacies against hepatocellular carcinoma (HCC) remains uncertain. This study focused on establishing a novel risk score system based on immune subtypes so as to identify optimal HCC mRNA vaccination population. METHODS GEPIA, cBioPortal and TIMER databases were utilized to identify candidate genes for mRNA vaccination in HCC. Subsequently, immune subtypes were constructed based on the candidate genes. According to the differential expressed genes among various immune subtypes, a risk score system was established using machine learning algorithm. Besides, multi-color immunofluorescence of tumor tissues from 72 HCC patients were applied to validate the feasibility and efficiency of the risk score system. RESULTS Twelve overexpressed and mutated genes associated with poor survival and APCs infiltration were identified as potential candidate targets for mRNA vaccination. Three immune subtypes (e.g. IS1, IS2 and IS3) with distinct clinicopathological and molecular profiles were constructed according to the 12 candidate genes. Based on the immune subtype, a risk score system was developed, and according to the risk score from low to high, HCC patients were classified into four subgroups on average (e.g. RS1, RS2, RS3 and RS4). RS4 mainly overlapped with IS3, RS1 with IS2, and RS2+RS3 with IS1. ROC analysis also suggested the significant capacity of the risk score to distinguish between the three immune subtypes. Higher risk score exhibited robustly predictive ability for worse survival, which was further independently proved by multi-color immunofluorescence of HCC samples. Notably, RS4 tumors exhibited an increased immunosuppressive phenotype, higher expression of the twelve potential candidate targets and increased genome altered fraction, and therefore might benefit more from vaccination. CONCLUSIONS This novel risk score system based on immune subtypes enabled the identification of RS4 tumor that, due to its highly immunosuppressive microenvironment, may benefit from HCC mRNA vaccination.
Collapse
Affiliation(s)
- Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Han Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Xinming Chen
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516400, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenliang Tan
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiqin Xie
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo Chen
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Luo Q, Hu S, Tang Y, Yang D, Chen Q. PPT1 Promotes Growth and Inhibits Ferroptosis of Oral Squamous Cell Carcinoma Cells. Curr Cancer Drug Targets 2024; 24:1047-1060. [PMID: 38299399 DOI: 10.2174/0115680096294098240123104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers with poor prognosis in the head and neck. Elucidating molecular mechanisms underlying OSCC occurrence and development is important for the therapy. Dysregulated palmitoylation-related enzymes have been reported in several cancers but OSCC. OBJECTIVES To explore the role of palmitoyl-protein thioesterase 1 (PPT1) in OSCC. METHODS Differentially expressed genes (DEGs) and related protein-protein interaction networks between normal oral epithelial and OSCC tissues were screened and constructed via different online databases. Tumor samples from 70 OSCC patients were evaluated for the relationship between PPT1 expression level and patients'clinic characteristics. The role of PPT1 in OSCC proliferation and metastasis was studied by functional experiments including MTT, colony formation, EdU incorporation and transwell assays. Lentivirus-based constructs were used to manipulate gene expression. FerroOrange probe and malondialdehyde assay were used to determine ferroptosis. Growth of OSCC cells in vivo was investigated by a xenograft mouse model. RESULTS A total of 555 DEGs were obtained, and topological analysis revealed that PPT1 and GPX4 might play critical roles in OSCC. Increased PPT1 expression was found to be correlated with poor prognosis of OSCC patients. PPT1 effectively promoted the proliferation, migration and invasion while inhibited the ferroptosis of OSCC cells. PPT1 affected the expression of glutathione peroxidase 4 (GPX4). CONCLUSION PPT1 promoted growth and inhibited ferroptosis of OSCC cells. PPT1 might be a potential target for OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yijie Tang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Dandan Yang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qilong Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| |
Collapse
|
14
|
Li H, Li J, Qu X, Dai H, Liu J, Ma M, Wang J, Dong W, Wang W. Establishment and validation of a novel lysosome-related gene signature for predicting prognosis and immune landscape in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:17543-17557. [PMID: 37903936 DOI: 10.1007/s00432-023-05477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Recent studies have shown that lysosomes not only provide energy for tumor cell growth, but also participate in the occurrence and development of malignant tumors by regulating various ways of tumor cell death. However, the role of lysosome associated genes (LSAGs) in hepatocellular carcinoma (HCC) remains unclear. METHODS Transcriptome data and clinical data of HCC were downloaded from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. We identified differential expression of LSAGs by comparing tumor tissue with normal liver tissue. Subsequently, we used univariate COX analysis and least absolute shrinkage and selection operator (LASSO) COX regression to construct the prognostic feature of LSAGs. Kaplan-Meier survival curve and receiver operating characteristic curve were used to evaluate the predictive ability of LSAGs feature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional enrichment analysis of risk differential genes. The relationship between LSAGs score and tumor microenvironment and chemotherapy drug sensitivity was analyzed. Finally, the cellular communication of tumor cells with high and low expression of model LSAGs was explored. RESULTS We identified sixteen prognostic associated LSAGs, four of which were selected to construct prognostic feature of LSAGs. Patients in the low LSAGs group had a better prognosis than those in the high LSAGs group. GO and KEGG analyses showed that risk differential genes were enriched in leukocyte migration, cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. The group with low LSAGs score had lower immune score. Patients in the high LSAGs group were more sensitive to drugs for chemotherapy. In addition, tumor cells with high expression of model LSAGs showed stronger association with immune cells through the interleukin-2 (IL2), fibroblast growth factor (FGF), adiponectin, and bone morphogenetic proteins (BMP) signaling pathways. CONCLUSION We established a LSAGs signature that had the ability to predict clinical prognosis and immune landscape, proposing potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Haoling Li
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, 233030, China
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Xiangyu Qu
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Hengwen Dai
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Junjie Liu
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Mengxi Ma
- Department of Clinical Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Wei Dong
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, 233030, China.
- Department of Biotechnology, School of Life Sciences, Bengbu Medical College, Anhui, 233030, China.
| |
Collapse
|
15
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
17
|
Weng J, Liu S, Zhou Q, Xu W, Xu M, Gao D, Shen Y, Yi Y, Shi Y, Dong Q, Zhou C, Ren N. Intratumoral PPT1-positive macrophages determine immunosuppressive contexture and immunotherapy response in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e006655. [PMID: 37385725 PMCID: PMC10314632 DOI: 10.1136/jitc-2022-006655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignancy with limited treatment options and poor prognosis. Macrophages are enriched in the HCC microenvironment and have a significant impact on disease progression and therapy efficacy. We aim to identify critical macrophages subsets involved in HCC development. METHODS Macrophage-specific marker genes were identified through single-cell RNA sequencing analyses. The clinical significance of macrophages with palmitoyl-protein thioesterase 1 (PPT1) positive was investigated in 169 patients with HCC from Zhongshan Hospital using immunohistochemistry and immunofluorescence. The immune microenvironment of HCC and the functional phenotype of PPT1+ macrophages were explored using cytometry by time-of-flight (CyTOF) and RNA sequencing. RESULTS Single-cell RNA sequencing analyses revealed that PPT1 was predominantly expressed in macrophages in HCC. Intratumoral PPT1+ macrophages abundance was associated with inferior survival durations of patients and an independent risk factor of prognosis for HCC. High throughput analyses of immune infiltrates showed that PPT1+ macrophage-enriched HCCs were characterized by high infiltration of CD8+ T cells with increased programmed death-1 (PD-1) expression. PPT1+ macrophages exhibited higher galectin-9, CD172a, and CCR2 levels but lower CD80 and CCR7 levels than PPT1- macrophages. Pharmacological inhibition of PPT1 by DC661 suppressed mitogen-activated protein kinase (MAPK) pathway activity but activated nuclear factor kappa B (NF-κB) pathway in macrophages. In addition, DC661 enhanced the therapeutic efficacy of anti-PD-1 antibody in the HCC mouse model. CONCLUSIONS PPT1 is mainly expressed in macrophages in HCC and promotes immunosuppressive transformation of macrophages and tumor microenvironment. PPT1+ macrophage infiltration is associated with poor prognosis of patients with HCC. Targeting PPT1 may potentiate the efficacy of immunotherapy for HCC.
Collapse
Affiliation(s)
- Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dongmei Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Lee MJ, Park JS, Jo SB, Joe YA. Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomol Ther (Seoul) 2023; 31:1-15. [PMID: 36579459 PMCID: PMC9810440 DOI: 10.4062/biomolther.2022.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Bin Jo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-3147-8406, Fax: +82-2-593-2522
| |
Collapse
|
19
|
Sun R, Wang X, Chen J, Teng D, Chan S, Tu X, Wang Z, Zuo X, Wei X, Lin L, Zhang Q, Zhang X, Tang K, Zhang H, Chen W. Development and validation of a novel cellular senescence-related prognostic signature for predicting the survival and immune landscape in hepatocellular carcinoma. Front Genet 2022; 13:949110. [PMID: 36147502 PMCID: PMC9485671 DOI: 10.3389/fgene.2022.949110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background: Cellular senescence is a typical irreversible form of life stagnation, and recent studies have suggested that long non-coding ribonucleic acids (lncRNA) regulate the occurrence and development of various tumors. In the present study, we attempted to construct a novel signature for predicting the survival of patients with hepatocellular carcinoma (HCC) and the associated immune landscape based on senescence-related (sr) lncRNAs. Method: Expression profiles of srlncRNAs in 424 patients with HCC were retrieved from The Cancer Genome Atlas database. Lasso and Cox regression analyses were performed to identify differentially expressed lncRNAs related to senescence. The prediction efficiency of the signature was checked using a receiver operating characteristic (ROC) curve, Kaplan–Meier analysis, Cox regression analyses, nomogram, and calibration. The risk groups of the gene set enrichment analysis, immune analysis, and prediction of the half-maximal inhibitory concentration (IC50) were also analyzed. Quantitative real-time polymerase chain reaction (qPCR) was used to confirm the levels of AC026412.3, AL451069.3, and AL031985.3 in normal hepatic and HCC cell lines. Results: We identified 3 srlncRNAs (AC026412.3, AL451069.3, and AL031985.3) and constructed a new risk model. The results of the ROC curve and Kaplan–Meier analysis suggested that it was concordant with the prediction. Furthermore, a nomogram model was constructed to accurately predict patient prognosis. The risk score also correlated with immune cell infiltration status, immune checkpoint expression, and chemosensitivity. The results of qPCR revealed that AC026412.3 and AL451069.3 were significantly upregulated in hepatoma cell lines. Conclusion: The novel srlncRNA (AC026412.3, AL451069.3, and AL031985.3) signatures may provide insights into new therapies and prognosis predictions for patients with HCC.
Collapse
Affiliation(s)
- Rui Sun
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Teng
- Department of Hepatopancreatobiliary Surgery, Affiliated Chuzhou Hospital of Anhui Medical University, First People’s Hospital of Chuzhou, Chuzhou, China
| | - Shixin Chan
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xucan Tu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenglin Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaomin Zuo
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Li Lin
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, China
- Affiliated Chuzhou Hospital of Anhui Medical University, First People’s Hospital of Chuzhou, Chuzhou, China
- *Correspondence: Huabing Zhang, ; Wei Chen, ,
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huabing Zhang, ; Wei Chen, ,
| |
Collapse
|
20
|
Luo D, Liao S, Liu Y, Lin Y, Li Y, Liao X. Holliday Cross-Recognition Protein HJURP: Association With the Tumor Microenvironment in Hepatocellular Carcinoma and With Patient Prognosis. Pathol Oncol Res 2022; 28:1610506. [PMID: 35783358 PMCID: PMC9248293 DOI: 10.3389/pore.2022.1610506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
Background: Hepatocellular carcinoma is the most common type of primary liver cancer, and it is associated with poor prognosis. It often fails to respond to immunotherapy, highlighting the need to identify genes that are associated with the tumor microenvironment and may be good therapeutic targets. We and others have shown that the Holliday cross-recognition protein HJURP can promote the proliferation, migration, and invasion by hepatocellular carcinoma cells, and that HJURP overexpression is associated with poor survival. Here we explored the potential relationship between HJURP and the tumor microenvironment in hepatocellular carcinoma. Methods: We used the Immuno-Oncology-Biological-Research (IOBR) software package to analyze the potential roles of HJURP in the tumor microenvironment. Using single-cell RNA sequencing data, we identified the cell clusters expressing abundant HJURP, then linked some of these clusters to certain bioprocesses using Gene Set Enrichment Analysis (GSEA). We validated the differential expression of HJURP in tumor-infiltrating CD8+ T cells, sorted by flow cytometry into populations based on the expression level of PD-1. We used weighted gene co-expression network analysis (WGCNA) to identify immunity-related genes whose expression strongly correlated with that of HJURP. The function of these genes was validated based on enrichment in Gene Ontology (GO) terms, and they were used to establish a prognosis prediction model. Results: IOBR analysis suggested that HJURP is significantly related to the immunosuppressive tumor microenvironment and was significantly related to T cells, dendritic cells, and B cells. Based on single-cell RNA sequencing, HJURP was strongly expressed in T cells, erythrocytes, and B cells from normal liver tissues, as well as in CD8+ T cells, dendritic cells, and one cluster of hepatocytes in hepatocellular carcinoma tissues. Malignant hepatocytes strongly expressing HJURP were associated with the downregulation of immune bioprocesses. HJURP expression was significantly higher in CD8+ T cells strongly expressing PD-1 than in those expressing no or intermediate levels of PD1. WGCNA identified two module eigengenes (comprising 397 and 84 genes) related to the tumor microenvironment. We identified 24 hub genes and confirmed that they were related to immune regulation. A prognostic risk score model based on expression of HJURP, PPT1, PML, and CLEC7A showed moderate ability to predict survival. Conclusion:HJURP is associated with tumor-infiltrating immune cells, immune checkpoints, and immune suppression in hepatocellular carcinoma. HJURP-related genes involved in immune responses may be useful for predicting patient prognosis.
Collapse
Affiliation(s)
- Dongcheng Luo
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sina Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu Liu
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Youzhi Lin
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - XiaoLi Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: XiaoLi Liao,
| |
Collapse
|