1
|
Yang J, Su Y, Wang Y, Gao K, Li C, Li M. The long noncoding RNA MIR4435-2HG enhances the migration, promotion, and glycolysis of nonsmall cell lung cancer cells by targeting the miR-371a-5p/SOX2/PI3K/Akt axis. SAGE Open Med 2024; 12:20503121241289290. [PMID: 39526092 PMCID: PMC11549703 DOI: 10.1177/20503121241289290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Nonsmall cell lung cancer is a leading cause of cancer-related death worldwide. The long noncoding RNA MIR4435-2HG has been shown to play a carcinogenic role in various cancers. The purpose of this study was to explore the role and regulatory mechanism of MIR4435-2HG in non-small cell lung cancer. Methods Quantitative real-time polymerase chain reaction was used to detect MIR4435-2HG and SRY-box transcription factor 2 in nonsmall cell lung cancer cells. Gain- or loss-of-function assays of MIR4435-2HG and SRY-box transcription factor 2 were subsequently conducted. Cell proliferation, apoptosis, migration, glycolysis, and invasion were tested. A nude mouse tumor model was constructed to determine the role of MIR4435-2HG and SRY-box transcription factor 2 in the growth of tumor cells in vivo. Furthermore, the interactions between MIR4435-2HG, miR-371a-5p and SRY-box transcription factor 2 were analyzed via a dual-luciferase reporter gene assay. Results Quantitative real-time polymerase chain reaction revealed that MIR4435-2HG and SRY-box transcription factor 2 were upregulated in nonsmall cell lung cancer cells. Forced MIR4435-2HG overexpression led to increased cell proliferation, migration, invasion, and glycolysis and repressed cell apoptosis. Overexpressing MIR4435-2HG promoted SRY-box transcription factor 2 expression and PI3K/Akt/mTOR pathway activation. Downregulating MIR4435-2HG had antitumor effects both in vitro and in vivo. SRY-box transcription factor 2 overexpression mostly reversed the suppressive effects of MIR4435-2HG downregulation. Mechanistic studies revealed that MIR4435-2HG, a competitive endogenous RNA, directly targeted and inhibited miR-371a-5p. Rescue assays revealed that miR-371a-5p overexpression or SRY-box transcription factor 2 downregulation significantly inhibited MIR4435-2HG-mediated oncogenic effects. Conclusion MIR4435-2HG promotes nonsmall cell lung cancer cell malignant behaviors and glycolysis by regulating the miR-371a-5p/SOX2 axis.
Collapse
Affiliation(s)
- Jin Yang
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yu Su
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuchen Wang
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kun Gao
- Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chuang Li
- Operating Theatre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mengmeng Li
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Chen Z, Du Y, Shi H, Dong S, He R, Zhou W. Long non-coding RNA MIR4435-2HG promotes pancreatic cancer progression by regulating ABHD17C through sponging miR-128-3p. Transl Cancer Res 2024; 13:4113-4130. [PMID: 39262472 PMCID: PMC11385540 DOI: 10.21037/tcr-24-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/07/2024] [Indexed: 09/13/2024]
Abstract
Background The recently identified carcinogenic long non-coding RNA (lncRNA) MIR4435-2HG has been validated to contribute to the initiation and progression of several malignancies. Nonetheless, its specific mechanistic function in pancreatic cancer (PC) is yet to be determined. This study aims to investigate the expression and functional role of MIR4435-2HG in PC and to elucidate its potential mechanism. Methods This study employed The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)-Pancreas datasets for the analysis of MIR4435-2HG expression in PC and normal pancreatic tissues and its relations with prognosis in PC. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was employed for analyzing MIR4435-2HG, miR-128-3p, and ABHD17C expressions within cells and tissues. Cell proliferation and apoptosis were detected in vitro through Cell Counting Kit 8 (CCK-8) assay and flow cytometry while utilizing transwell and wound healing assays to assess cell migration and invasion. Predicting miR-128-3p binding sites with MIR4435-2HG or ABHD17C was conducted via the online tool starBase and validated through a dual-luciferase reporter (DLR), RNA pull-down and RNA binding protein immunoprecipitation (RIP) assays. Herein, we deployed Western blot to assess protein expression levels. The in vivo role of MIR4435-2HG was studied using tumor xenografts. Results MIR4435-2HG overexpression exhibited a correlation with poor prognosis in PC. Knocking down MIR4435-2HG significantly hindered the proliferative, invading, and migrating PC cell abilities, accompanied by apoptosis induction, counteracted via a miR-128-3p inhibitor. Moreover, MIR4435-2HG could directly bind to miR-128-3p. Additionally, miR-128-3p directly targeted ABHD17C. Furthermore, in vitro as well as in vivo experiment results elucidated that knocking down MIR4435-2HG hindered PC progression by suppressing ABHD17C expression via miR-128-3p upregulation. Conclusions MIR4435-2HG can serve as a dependable target for PC diagnosis and treatment by modulating the miR-128-3p/ABHD17C axis to promote its progression.
Collapse
Affiliation(s)
- Zhou Chen
- Department of General Surgery, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yan Du
- Department of General Surgery, The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- Department of General Surgery, The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- Department of General Surgery, The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ru He
- Department of General Surgery, The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Wang J, Luo H, Yang L, Yuan H. ARAP1-AS1: a novel long non-coding RNA with a vital regulatory role in human cancer development. Cancer Cell Int 2024; 24:270. [PMID: 39090630 PMCID: PMC11295494 DOI: 10.1186/s12935-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have garnered significant attention in biomedical research due to their pivotal roles in gene expression regulation and their association with various human diseases. Among these lncRNAs, ArfGAP With RhoGAP Domain, Ankyrin Repeat, And PH Domain 1 - Antisense RNA 1 (ARAP1-AS1) has recently emerged as an novel oncogenic player. ARAP1-AS1 is prominently overexpressed in numerous solid tumors and wields influence by modulating gene expression and signaling pathways. This regulatory impact is realized through dual mechanisms, involving both competitive interactions with microRNAs and direct protein binding. ARAP1-AS1 assumes an important role in driving tumorigenesis and malignant tumor progression, affecting biological characteristics such as tumor expansion and metastasis. This paper provides a concise review of the regulatory role of ARAP1-AS1 in malignant tumors and discuss its potential clinical applications as a biomarker and therapeutic target. We also address existing knowledge gaps and suggest avenues for future research. ARAP1-AS1 serves as a prototypical example within the burgeoning field of lncRNA studies, offering insights into the broader landscape of non-coding RNA molecules. This investigation enhances our comprehension of the complex mechanisms that govern the progression of cancer.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Lu Yang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi Province, 332007, P.R. China.
| |
Collapse
|
5
|
Torres-Llanos Y, Zabaleta J, Cruz-Rodriguez N, Quijano S, Guzmán PC, de los Reyes I, Poveda-Garavito N, Infante A, Lopez-Kleine L, Combita AL. MIR4435-2HG as a possible novel predictive biomarker of chemotherapy response and death in pediatric B-cell ALL. Front Mol Biosci 2024; 11:1385140. [PMID: 38745909 PMCID: PMC11091394 DOI: 10.3389/fmolb.2024.1385140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Although B-cell acute lymphoblastic leukemia (B-cell ALL) survival rates have improved in recent years, Hispanic children continue to have poorer survival rates. There are few tools available to identify at the time of diagnosis whether the patient will respond to induction therapy. Our goal was to identify predictive biomarkers of treatment response, which could also serve as prognostic biomarkers of death, by identifying methylated and differentially expressed genes between patients with positive minimal residual disease (MRD+) and negative minimal residual disease (MRD-). Methods: DNA and RNA were extracted from tumor blasts separated by immunomagnetic columns. Illumina MethlationEPIC and mRNA sequencing assays were performed on 13 bone marrows from Hispanic children with B-cell ALL. Partek Flow was used for transcript mapping and quantification, followed by differential expression analysis using DEseq2. DNA methylation analyses were performed with Partek Genomic Suite and Genome Studio. Gene expression and differential methylation were compared between patients with MRD-/- and MRD+/+ at the end of induction chemotherapy. Overexpressed and hypomethylated genes were selected and validated by RT-qPCR in samples of an independent validation cohort. The predictive ability of the genes was assessed by logistic regression. Survival and Cox regression analyses were performed to determine the association of genes with death. Results: DAPK1, BOC, CNKSR3, MIR4435-2HG, CTHRC1, NPDC1, SLC45A3, ITGA6, and ASCL2 were overexpressed and hypomethylated in MRD+/+ patients. Overexpression was also validated by RT-qPCR. DAPK1, BOC, ASCL2, and CNKSR3 can predict refractoriness, but MIR4435-2HG is the best predictor. Additionally, higher expression of MIR4435-2HG increases the probability of non-response, death, and the risk of death. Finally, MIR4435-2HG overexpression, together with MRD+, are associated with poorer survival, and together with overexpression of DAPK1 and ASCL2, it could improve the risk classification of patients with normal karyotype. Conclusion: MIR4435-2HG is a potential predictive biomarker of treatment response and death in children with B-cell ALL.
Collapse
Affiliation(s)
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Sandra Quijano
- Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | - Ana Infante
- Department of Pediatrics, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Alba Lucía Combita
- Cancer Biology Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
7
|
Yuan LY, Chen X, Pan KW, He Y, Li HY, Yu DS. Bioinformatic analysis and verification of a lipid metabolism-related long noncoding RNA prognostic signature for head and neck squamous cell carcinoma. Cell Signal 2023; 112:110903. [PMID: 37813294 DOI: 10.1016/j.cellsig.2023.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Both lipid metabolism reprogramming and lncRNAs exert effects on tumor development. We aimed to predict the prognosis of head and neck squamous cell carcinoma (HNSCC) based on lipid metabolism-related (LR)-lncRNAs. METHODS LR-lncRNAs were determined from the RNA-ref profiles of HNSCC samples in The Cancer Genome Atlas (TCGA). The prognostic model was established by univariate Cox and Lasso regression analysis. Clinical relevance and predictive accuracy were investigated, and external validation was also performed in the Gene Expression Omnibus (GEO) cohort. Tumor immune infiltration and relevant functional analysis, including the association of autophagy with prognostic signatures, were conducted through single-sample gene set enrichment analysis (ssGSEA). The regulatory network of candidate LR-lncRNAs was investigated via coexpression, ceRNA and cis/trans acting interactions. Potential genes were selected through qRT-PCR analysis, and their effects on tumor biological activities and autophagic activity were explored after gene knockdown. RESULTS A total of 222 LR-lncRNAs were identified. Among the 41 genes with prognostic significance, 17 lncRNAs were eligible for the risk model. Patients in the high-risk group had a poorer prognosis than those in the low-risk group, and the risk score was found to be positively associated with tumor microenvironment infiltration via multiple algorithms. Furthermore, improved prognosis was found in patients with high autophagic scores and low risk scores, and autophagy-related genes such as PINK1 and CCL2 showed significantly lower expression in the low-risk group. The expression of immune checkpoint genes such as CD28, CTLA4 and PDCD1 decreased dramatically in the high-risk group. The target genes of candidate lncRNAs were confirmed, such as ENO2 and PPAR-gamma. Furthermore, MIR4435-2HG was the most significantly overexpressed lncRNA in HNSCC cell lines and tumor samples, which could promote proliferation and migration and inhibit apoptosis. Additionally, MIR4435-2HG silencing activated autophagy by increasing LC3B expression. CONCLUSION This study constructed an LR-lncRNA prognostic signature for HNSCC and indicated its relationships with tumor immunity and autophagy, which provides a promising future for LR-lncRNA-oriented prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Ling-Yu Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kuang-Wu Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dong-Sheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Ghasemian M, Babaahmadi‐Rezaei H, Khedri A, Selvaraj C. The oncogenic role of SAMMSON lncRNA in tumorigenesis: A comprehensive review with especial focus on melanoma. J Cell Mol Med 2023; 27:3966-3973. [PMID: 37772815 PMCID: PMC10746942 DOI: 10.1111/jcmm.17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023] Open
Abstract
LncRNA Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA (SAMMSON) is located on human chromosome 3p13, and its expression is upregulated in several tumours, including melanoma, breast cancer, glioblastoma and liver cancer and has an oncogenic role in malignancy disorders. It has been reported that SAMMSON impacts metabolic regulation, cell proliferation, apoptosis, EMT, drug resistance, invasion and migration. Also, SAMMSON is involved in regulating several pathways such as Wnt, MAPK, PI3K, Akt, ERK and p53. SAMMSON is considered a potential diagnostic and prognostic biomarker in several types of cancer and a suitable therapeutic target. In addition, the highly expressed SAMMSON is closely associated with clinicopathological features of various cancers. SAMMSON has a significant role in regulating epigenetic processes by regulating histone protein or the status of DNA methylation. Herein for the first time, we comprehensively summarized the currently available SAMMSON, molecular regulatory pathways, and clinical significance. We believe that clarifying all the molecular aspects of this lncRNA can be a good guide for cancer studies in the future.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Babaahmadi‐Rezaei
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and HospitalsSaveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha UniversityChennaiTamil NaduIndia
| |
Collapse
|
9
|
Chen Z, Guan D, Zhu Q, Wang Z, Han F, Zhou W. Biological Roles and Pathogenic Mechanisms of LncRNA MIR4435-2HG in Cancer: A Comprehensive Review. Curr Issues Mol Biol 2023; 45:8864-8881. [PMID: 37998733 PMCID: PMC10670187 DOI: 10.3390/cimb45110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The long non-coding RNA MIR4435-2HG has been confirmed to play a crucial regulatory role in various types of tumors. As a novel type of non-coding RNA, MIR4435-2HG plays a key role in regulating the expression of tumor-related genes, interfering with cellular signaling pathways, and affecting tumor immune evasion. Its unique structure allows it to regulate the expression of various tumor-related genes through different pathways, participating in the regulation of tumor signaling pathways, such as regulating the expression of oncogenes and tumor suppressor genes, influencing the biological behaviors of proliferation, metastasis, and apoptosis in tumors. Numerous studies have found a high expression of MIR4435-2HG in various tumor tissues, closely related to the clinical pathological characteristics of tumors, such as staging, lymph node metastasis and prognosis. Some studies have discovered that MIR4435-2HG can regulate the sensitivity of tumor cells to chemotherapy drugs, affecting tumor cell drug resistance. This provides new insights into overcoming tumor drug resistance by regulating MIR4435-2HG. Therefore, studying its molecular mechanisms, expression regulation, and its relationship with the clinical features of tumors is of great significance for revealing the mechanisms of tumor occurrence and developing new therapeutic targets.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Defeng Guan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiangping Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Zhengfeng Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
10
|
Bryja A, Zadka Ł, Farzaneh M, Zehtabi M, Ghasemian M, Dyszkiewicz-Konwińska M, Mozdziak P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Piotrowska-Kempisty H, Kempisty B. Small extracellular vesicles - A host for advanced bioengineering and "Trojan Horse" of non-coding RNAs. Life Sci 2023; 332:122126. [PMID: 37769803 DOI: 10.1016/j.lfs.2023.122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.
Collapse
Affiliation(s)
- Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, Wrocław, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA
| | - Maciej Zabel
- Division of Ultrastructural Research, Wroclaw Medical University, Wrocław, Poland; Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland; Division of Anatomy and Histology, University of Zielona Gora, Zielona Góra, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic; Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Toruń, Poland.
| |
Collapse
|
11
|
Li Z, Cao Z, Li N, Wang L, Fu C, Huo R, Xu G, Tian C, Bi J. M2 Macrophage-Derived Exosomal lncRNA MIR4435-2HG Promotes Progression of Infantile Hemangiomas by Targeting HNRNPA1. Int J Nanomedicine 2023; 18:5943-5960. [PMID: 37881607 PMCID: PMC10596068 DOI: 10.2147/ijn.s435132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Infantile hemangiomas (IHs) are commonly observed benign tumors that can cause serious complications. M2-polarized macrophages in IHs promote disease progression. In this study, we investigated the role of M2 macrophage-derived exosomal lncRNA MIR4435-2HG in IHs. Patients and Methods Exosomes derived from M2 polarized macrophages were extracted. Next, using cell co-culture or transfection, we investigated whether M2 polarized macrophage-derived exosomes (M2-exos) can transport MIR4435-2HG to regulate the proliferation, migration, invasion, and angiogenesis of hemangioma-derived endothelial cells (HemECs). RNA-seq and RNA pull-down assays were performed to identify targets and regulatory pathways of MIR4435-2HG. We explored the possible mechanisms through which MIR4435-2HG regulates the biological function of HemECs. Results M2-exos significantly enhanced the proliferation, migration, invasion, and angiogenesis of HemECs. Thus, HemECs uptake M2-exos and promote biological functions through the inclusion of MIR4435-2HG. RNA-seq and RNA pull-down experiments confirmed that MIR4435-2HG regulates of HNRNPA1 expression and directly binds to HNRNPA1, consequently affecting the NF-κB signal pathway. Conclusion MIR4435-2HG of M2-exos promotes the progression of IHs and enhances the proliferation, migration, invasion, and angiogenesis of HemECs by directly binding to HNRNPA1. This study not only reveals the mechanism of interaction between M2 macrophages and HemECs, but also provides a promising therapeutic target for IHs.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Zhongying Cao
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Nanxi Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Luying Wang
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Cong Fu
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Guangqi Xu
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Chonglin Tian
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jianhai Bi
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| |
Collapse
|
12
|
Sheykhi-Sabzehpoush M, Ghasemian M, Khojasteh Pour F, Mighani M, Moghanibashi M, Mohammad Jafari R, Zabel M, Dzięgiel P, Farzaneh M, Kempisty B. Emerging roles of long non-coding RNA FTX in human disorders. Clin Transl Oncol 2023; 25:2812-2831. [PMID: 37095425 DOI: 10.1007/s12094-023-03163-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells.
Collapse
Affiliation(s)
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046, Zielona Góra, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical, University, Wrocław, Poland.
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland.
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Ghasemian M, Poodineh J. A review on the biological roles of LncRNA PTCSC3 in cancerous and non-cancerous disorders. Cancer Cell Int 2023; 23:184. [PMID: 37644548 PMCID: PMC10466698 DOI: 10.1186/s12935-023-03037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Long non-coding RNA papillary thyroid carcinoma susceptibility candidate 3 (LncRNA PTCSC3) is located on human chromosome 14q13.3. PTCSC3 functions as a tumor suppressor lncRNA to regulate essential cellular processes such as apoptosis, cell proliferation, migration, invasion, angiogenesis, and epithelial-to-mesenchymal transition. PTCSC3 is also involved in the regulation of the Wnt/β-catenin signaling pathway, aerobic glycolysis, and p53 pathways. Downregulation of PTCSC3 has been associated with an increased risk of many tumors such as thyroid, gastric, laryngeal, breast, cervical, oral, lung, and glioma cancers. In addition, dysregulation of PTCSC3 has been reported in non-cancerous disorders notably osteoporosis and periodontitis. However, a number of single nucleotide polymorphisms at PTCSC3 have been linked to a higher risk of human diseases. This literature review summarizes the diagnostic, prognostic, and the clinical value of abnormal expression of PTCSC3 in cancerous and non-cancerous disorders and comprehensively analyzes potential molecular regulatory mechanism related to PTCSC3, which is expected to provide clear guidance for future PTCSC3 research.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Jafar Poodineh
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
14
|
Song GY, Guo XN, Yao J, Lu ZN, Xie JH, Wu F, He J, Fu ZL, Han J. Differential expression profiles and functional analysis of long non-coding RNAs in calcific aortic valve disease. BMC Cardiovasc Disord 2023; 23:326. [PMID: 37369992 DOI: 10.1186/s12872-023-03311-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
AIM To evaluate the expression profile of long non-coding RNAs (lncRNAs) in calcific aortic valve disease (CAVD) and explore their potential mechanism of action. METHODS The gene expression profiles (GSE153555, GSE148219, GSE199718) were downloaded from the Gene Expression Omnibus (GEO) database and FastQC was run for quality control checks. After filtering and classifying candidate lncRNAs by differentially expressed genes (DEGs) and weighted co-expression networks (WGCNA) in GSE153555, we predicted the potential cis- or trans-regulatory target genes of differentially expressed lncRNAs (DELs) by using FEELnc and established the competitive endogenous RNA (ceRNA) network by miRanda, more over functional enrichment was analyzed using the ClusterProfiler package in R Bioconductor. The hub cis- or trans-regulatory genes were verified in GSE148219 and GSE199718 respectively. RESULTS There were 340 up-regulated lncRNAs identified in AS group compared with the control group (|log2Fold Change| ≥ 1.0 and Padj ≤ 0.05), and 460 down-regulated lncRNAs. Based on target gene prediction and co-expression network construction, twelve Long non-coding RNAs (CDKN2B-AS1, AC244453.2, APCDD1L-DT, SLC12A5-AS1, TGFB3, AC243829.4, MIR4435-2HG, FAM225A, BHLHE40-AS1, LINC01614, AL356417.2, LINC01150) were identified as the hub cis- or trans-regulatory genes in the pathogenesis of CAVD which were validated in GSE148219 and GSE19971. Additionally, we found that MIR4435-2HG was the top hub trans-acting lncRNA which also plays a crucial role by ceRNA pattern. CONCLUSION LncRNAs may play an important role in CAVD and may provide a new perspective on the pathogenesis, diagnosis, and treatment of this disease. Further studies are required to illuminate the underlying mechanisms and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Guang-Yuan Song
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| | - Xu-Nan Guo
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Yao
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhi-Nan Lu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jia-Hong Xie
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Fang Wu
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing He
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhao-Lin Fu
- Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jie Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
ZHAO J, WANG L, CAO AL, WANG YM, CHI YF, WANG Y, WANG H, PENG W. Huangqi decoction attenuates renal interstitial fibrosis transforming growth factor-β1/mitogen-activated protein kinase signaling pathways in 5/6 nephrectomy mice. J TRADIT CHIN MED 2022; 42:723-731. [PMID: 36083479 PMCID: PMC9924711 DOI: 10.19852/j.cnki.jtcm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To investigate the effect of Huangqi decoction on renal interstitial fibrosis and its association with the transforming growth factor-β1 (TGF-β1) / mitogen-activated protein kinase (MAPK) signaling pathway. METHODS 120 C57/BL mice were randomly divided into six groups: sham group, Enalapril (20 mg/kg) group, 5/6 nephrectomy model group, and 5/6 nephrectomy model plus Huangqicoction (0.12, 0.36 and 1.08 g/kg respectively) groups. Detecting 24hours urinary protein, blood pressure, serum creatinine, urea nitrogen content changes. Periodic Acid-Schiff stain (PAS) and Masson's trichrome staining was used to observe the renal tissue pathological changes. Protein expression of TGF-β1, Phosphorylated P38 mitogen activated protein kinases (P-P38), Phosphorylated c-jun N-terminal kinase (P-JNK), Phosphorylated extracellular regulated proteinhnase (P-ERK), Fibroblast-specific protein-1 (FSP-1), Alpha smooth muscle actin (α-SMA), Type III collagen (Collagen III), Connective tissue growth factor (CTGF), Bcl-2 Assaciated X protein (Bax) and B cell lymphoma 2 (Bcl-2) were measured with western blot and immunohistochemical. RESULTS Both Huangqi decoction and Enalapril improved the kidney function, 24 h urinary protein and the fibrosis in 5/6 nephrectomy mice, Huangqi decoction downregulated the expressions of TGF-β1, FSP-1, α-SMA, Collagen III and CTGF in a dose-dependent manner, and it has a significant difference ( 0.01) compared with model group.Huangqi decoction downregulated the expressions of P-P38, P-JNK, P-ERK and Bcl-2 in a dose-dependent manner, while upregulated the expression of Bax. CONCLUSIONS The protective effect of Huangqi decoction for renal interstitial fibrosis in 5/6 nep-hrectomized mice the inhibition of Epithelial-Mesenchymal Transitions and downregulating the TGF-β1/ MAPK signaling pathway.
Collapse
Affiliation(s)
- Jie ZHAO
- 1 Department of Chinese Medicine/Department of Chinese Integrative Medicine, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, China
- 3 Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Li WANG
- 3 Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Ai-li CAO
- 3 Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Yun-man WANG
- 2 Department of Nephrology, Putuo Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Yang-feng CHI
- 2 Department of Nephrology, Putuo Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Yi WANG
- 2 Department of Nephrology, Putuo Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Hao WANG
- 2 Department of Nephrology, Putuo Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai 200062, China
- 3 Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Chinese Medicine, Shanghai 200062, China
| | - Wen PENG
- 2 Department of Nephrology, Putuo Hospital affiliated to Shanghai University of Chinese Medicine, Shanghai 200062, China
- 3 Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
16
|
Cai H, Liang J, Jiang Y, Tan R, Hou C, Hou J. Integrative Analysis of N6-Methyladenosine-Related Enhancer RNAs Identifies Distinct Prognosis and Tumor Immune Micro-Environment Patterns in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:4657. [PMID: 36230580 PMCID: PMC9563840 DOI: 10.3390/cancers14194657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
At present, the prognostic value of N6-methyladenosine (m6A)-related enhancer RNAs (eRNAs) for head and neck squamous cell carcinoma (HNSCC) still remains unclear. Our study aims to explore the prognostic value of m6A-related eRNAs in HNSCC patients and their potential significance in immune infiltration and immunotherapy. We constructed a 5 m6A-related eRNAs risk model from The Cancer Genome Atlas (TCGA) HNSCC dataset, using univariate and multivariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Based on the SRAMP website and in vitro experiments, it was verified that these 5 m6A-related eRNAs had m6A sites, the expression of which was regulated by corresponding m6A regulators. Moreover, we constructed a nomogram base on 5 m6A-related eRNAs and confirmed the consistency and robustness of an internal TCGA testing set. Further analysis found that the risk score was positively associated with low overall survival (OS), tumor cell metastasis, metabolic reprogramming, low immune surveillance, lower expression of immune-related genes, and higher expression of targeted genes. Finally, we verified that silencing MIR4435-2HG inhibited HNSCC cell migration and invasion. This study contributes to the understanding of the characteristics of m6A-related eRNAs in HNSCC and provides a reference for effective immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Rukeng Tan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
17
|
Farzaneh M, Ghasemian M, Ghaedrahmati F, Poodineh J, Najafi S, Masoodi T, Kurniawan D, Uddin S, Azizidoost S. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci 2022; 308:120974. [PMID: 36126725 DOI: 10.1016/j.lfs.2022.120974] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) or hepatoma is malignant cancer that starts from the main liver cells. Although various classical methods have been used for patients with HCC, various molecular mechanisms involved in HCC progression should be invested. Previous studies demonstrated that abnormal expression of long non-coding RNAs (lncRNAs) presented important roles in the pathogenesis of HCC cells. LncRNA TUG1 was found to mediate HCC cell growth, EMT, and metastasis. Therefore, targeting TUG1 and its downstream genes may be a suitable approach for patients with HCC. In this review, we summarized the potential roles of TUG1 in HCC.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Dedy Kurniawan
- Laboratory Animal and Stem Cells, PT Bio Farma (Persero), Bandung 40161, West Java, Indonesia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|