1
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
2
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
3
|
Dash R, Skillman KM, Pereira L, Mascarenhas A, Dass S, Walke J, Almeida A, Fernandes M, Gomes E, White J, Chery-Karschney L, Khandeparkar A, Rathod PK, Duraisingh MT, Kanjee U. Development of a Plasmodium vivax biobank for functional ex vivo assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533128. [PMID: 36993272 PMCID: PMC10055260 DOI: 10.1101/2023.03.17.533128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.
Collapse
|
4
|
Advances in Babesia Vaccine Development: An Overview. Pathogens 2023; 12:pathogens12020300. [PMID: 36839572 PMCID: PMC9962624 DOI: 10.3390/pathogens12020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. Since the current preventive measures against babesiosis are insufficient, there is increasing pressure to develop a vaccine. In this review, we survey the achievements and recent advances in the creation of antibabesiosis vaccine. The scope of this review includes the development of a vaccine against B. microti, B. bovis, B. bigemina, B. orientalis and B. divergens. Here, we present different strategies in their progress and evaluation. Scientists worldwide are still trying to find new targets for a vaccine that would not only reduce symptoms among animals but also prevent the further spread of the disease. Molecular candidates for the production of a vaccine against various Babesia spp. are presented. Our study also describes the current prospects of vaccine evolution for successful Babesia parasites elimination.
Collapse
|
5
|
Salkeld J, Themistocleous Y, Barrett JR, Mitton CH, Rawlinson TA, Payne RO, Hou MM, Khozoee B, Edwards NJ, Nielsen CM, Sandoval DM, Bach FA, Nahrendorf W, Ramon RL, Baker M, Ramos-Lopez F, Folegatti PM, Quinkert D, Ellis KJ, Poulton ID, Lawrie AM, Cho JS, Nugent FL, Spence PJ, Silk SE, Draper SJ, Minassian AM. Repeat controlled human malaria infection of healthy UK adults with blood-stage Plasmodium falciparum: Safety and parasite growth dynamics. Front Immunol 2022; 13:984323. [PMID: 36072606 PMCID: PMC9444061 DOI: 10.3389/fimmu.2022.984323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting.
Collapse
Affiliation(s)
- Jo Salkeld
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Jordan R. Barrett
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Mimi M. Hou
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Baktash Khozoee
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M. Nielsen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alison M. Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jee-Sun Cho
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E. Silk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Angela M. Minassian
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Angela M. Minassian,
| |
Collapse
|
6
|
Al-Nazal H, Low L, Kumar S, Good MF, Stanisic DI. A vaccine for human babesiosis: prospects and feasibility. Trends Parasitol 2022; 38:904-918. [PMID: 35933301 DOI: 10.1016/j.pt.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Babesiosis is a tick-borne disease caused by intraerythrocytic Babesia parasites. It is a well-known illness in companion animals and livestock, resulting in substantial economic losses in the cattle industry. Babesiosis is also recognized as an emerging zoonosis of humans in many countries worldwide. There is no vaccine against human babesiosis. Currently, preventive measures are focused on vector avoidance. Although not always effective, treatment includes antimicrobial therapy and exchange transfusion. In this review, we discuss the host's immune response to the parasite, vaccines being used to prevent babesiosis in animals, and lessons from malaria vaccine development efforts to inform the development of a human babesiosis vaccine. An effective human vaccine would be a significant advance towards curtailing this rapidly emerging disease.
Collapse
Affiliation(s)
- Hanan Al-Nazal
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Leanne Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Centre for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia.
| |
Collapse
|
7
|
Semimechanistic Pharmacokinetic and Pharmacodynamic Modeling of Piperaquine in a Volunteer Infection Study with Plasmodium falciparum Blood-Stage Malaria. Antimicrob Agents Chemother 2021; 65:AAC.01583-20. [PMID: 33468477 PMCID: PMC8097471 DOI: 10.1128/aac.01583-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for Plasmodium falciparum malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that might be useful when optimizing the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated with 1,800 blood-stage Plasmodium falciparum parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by quantitative PCR (qPCR), and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modeling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. The pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semimechanistic parasite dynamics model was developed to explain the maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with P. falciparum malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (E max) function. Treatment simulations (i.e., 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug-resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥102 per life cycle (38.8 h) with a duration of action of ≥2 weeks. The semimechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool for assessing and optimizing current and new antimalarial drug combination therapies containing piperaquine and the impact of these therapies on killing multidrug-resistant infections. (This study has been registered in the Australian and New Zealand Clinical Trials Registry under no. ANZCTRN12613000565741.).
Collapse
|
8
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
9
|
Odedra A, McCarthy JS. Safety Considerations for Malaria Volunteer Infection Studies: A Mini-Review. Am J Trop Med Hyg 2020; 102:934-939. [PMID: 32189610 DOI: 10.4269/ajtmh.19-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria clinical studies entailing the experimental infection of healthy volunteers with Plasmodium parasites by bites from infected mosquitos, injection of cryopreserved sporozoites, or injection of blood-stage parasites provide valuable information for vaccine and drug development. Success of these studies depends on maintaining safety. In this mini-review, we discuss the safety risks and associated mitigation strategies of these three types of experimental malaria infection. We aimed to inform researchers and regulators who are currently involved in or are planning to establish experimental malaria infection studies in endemic or non-endemic settings.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Herston, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James S McCarthy
- The University of Queensland, St Lucia, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
10
|
Mannosylated liposomes formulated with whole parasite P. falciparum blood-stage antigens are highly immunogenic in mice. Vaccine 2020; 38:1494-1504. [DOI: 10.1016/j.vaccine.2019.11.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/03/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
|
11
|
Yap XZ, McCall MBB, Sauerwein RW. Fast and fierce versus slow and smooth: Heterogeneity in immune responses to Plasmodium in the controlled human malaria infection model. Immunol Rev 2020; 293:253-269. [PMID: 31605396 PMCID: PMC6973142 DOI: 10.1111/imr.12811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Controlled human malaria infection (CHMI) is an established model in clinical malaria research. Upon exposure to Plasmodium falciparum parasites, malaria-naive volunteers differ in dynamics and composition of their immune profiles and subsequent capacity to generate protective immunity. CHMI volunteers are either inflammatory responders who have prominent cellular IFN-γ production primarily driven by adaptive T cells, or tempered responders who skew toward antibody-mediated humoral immunity. When exposed to consecutive CHMIs under antimalarial chemoprophylaxis, individuals who can control parasitemia after a single immunization (fast responders) are more likely to be protected against a subsequent challenge infection. Fast responders tend to be inflammatory responders who can rapidly induce long-lived IFN-γ+ T cell responses. Slow responders or even non-responders can also be protected, but via a more diverse range of responses that take a longer time to reach full protective efficacy, in part due to their tempered phenotype. The latter group can be identified at baseline before CHMI by higher expression of inhibitory ligands CTLA-4 and TIM-3 on CD4+ T cells. Delineating heterogeneity in human immune responses to P. falciparum will facilitate rational design and strategy towards effective malaria vaccines.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthew B. B. McCall
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Robert W. Sauerwein
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
12
|
Good MF, Stanisic DI. Whole parasite vaccines for the asexual blood stages ofPlasmodium. Immunol Rev 2019; 293:270-282. [DOI: 10.1111/imr.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Michael F. Good
- Institute for Glycomics Griffith University Gold Coast Qld. Australia
| | | |
Collapse
|
13
|
Cooper MM, Loiseau C, McCarthy JS, Doolan DL. Human challenge models: tools to accelerate the development of malaria vaccines. Expert Rev Vaccines 2019; 18:241-251. [PMID: 30732492 DOI: 10.1080/14760584.2019.1580577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Malaria challenge models, where healthy human volunteers are intentionally infected with Plasmodium species parasites under controlled conditions, can be undertaken in several well-defined ways. These challenge models enable evaluation of the kinetics of parasite growth and clearance, host-pathogen interactions and the host immune response. They can facilitate discovery of candidate diagnostic biomarkers and novel vaccine targets. As translational tools they can facilitate testing of candidate vaccines and drugs and evaluation of diagnostic tests. AREAS COVERED Until recently, malaria human challenge models have been limited to only a few Plasmodium falciparum strains and used exclusively in malaria-naïve volunteers in non-endemic regions. Several recent advances include the use of alternate P. falciparum strains and other species of Plasmodia, as well as strains attenuated by chemical, radiation or genetic modification, and the conduct of studies in pre-exposed individuals. Herein, we discuss how this diversification is enabling more thorough vaccine efficacy testing and informing rational vaccine development. EXPERT OPINION The ability to comprehensively evaluate vaccine efficacy in controlled settings will continue to accelerate the translation of candidate malaria vaccines to the clinic, and inform the development and optimisation of potential vaccines that would be effective against multiple strains in geographically and demographically diverse settings.
Collapse
Affiliation(s)
- Martha M Cooper
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - Claire Loiseau
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| | - James S McCarthy
- b Infectious Diseases Programme , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Denise L Doolan
- a Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine , James Cook University , Cairns , Australia
| |
Collapse
|
14
|
Yap XZ, Lundie RJ, Feng G, Pooley J, Beeson JG, O'Keeffe M. Different Life Cycle Stages of Plasmodium falciparum Induce Contrasting Responses in Dendritic Cells. Front Immunol 2019; 10:32. [PMID: 30766530 PMCID: PMC6365426 DOI: 10.3389/fimmu.2019.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/08/2019] [Indexed: 12/02/2022] Open
Abstract
Dendritic cells are key linkers of innate and adaptive immunity. Efficient dendritic cell activation is central to the acquisition of immunity and the efficacy of vaccines. Understanding how dendritic cells are affected by Plasmodium falciparum blood-stage parasites will help to understand how immunity is acquired and maintained, and how vaccine responses may be impacted by malaria infection or exposure. This study investigates the response of dendritic cells to two different life stages of the malaria parasite, parasitized red blood cells and merozoites, using a murine model. We demonstrate that the dendritic cell responses to merozoites are robust whereas dendritic cell activation, particularly CD40 and pro-inflammatory cytokine expression, is compromised in the presence of freshly isolated parasitized red blood cells. The mechanism of dendritic cell suppression by parasitized red blood cells is host red cell membrane-independent. Furthermore, we show that cryopreserved parasitized red blood cells have a substantially reduced capacity for dendritic cell activation.
Collapse
Affiliation(s)
- Xi Zen Yap
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Pooley
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Controlled Infection Immunization Using Delayed Death Drug Treatment Elicits Protective Immune Responses to Blood-Stage Malaria Parasites. Infect Immun 2018; 87:IAI.00587-18. [PMID: 30323025 PMCID: PMC6300636 DOI: 10.1128/iai.00587-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/23/2018] [Indexed: 01/27/2023] Open
Abstract
Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Evidence suggests that apoptosis of immune lymphocytes due to uncontrolled parasite growth contributes to the slow acquisition of immunity. To hasten and augment the development of natural immunity, we studied controlled infection immunization (CII) using low-dose exposure to different parasite species (Plasmodium chabaudi, P. yoelii, or P. falciparum) in two rodent systems (BALB/c and C57BL/6 mice) and in human volunteers, with drug therapy commencing at the time of initiation of infection. CIIs with infected erythrocytes and in conjunction with doxycycline or azithromycin, which are delayed death drugs targeting the parasite’s apicoplast, allowed extended exposure to parasites at low levels. In turn, this induced strong protection against homologous challenge in all immunized mice. We show that P. chabaudi/P. yoelii infection initiated at the commencement of doxycycline therapy leads to cellular or antibody-mediated protective immune responses in mice, with a broad Th1 cytokine response providing the best correlate of protection against homologous and heterologous species of Plasmodium. P. falciparum CII with doxycycline was additionally tested in a pilot clinical study (n = 4) and was found to be well tolerated and immunogenic, with immunological studies primarily detecting increased cell-associated immune responses. Furthermore, we report that a single dose of the longer-acting drug, azithromycin, given to mice (n = 5) as a single subcutaneous treatment at the initiation of infection controlled P. yoelii infection and protected all mice against subsequent challenge.
Collapse
|
16
|
Stanisic DI, Fink J, Mayer J, Coghill S, Gore L, Liu XQ, El-Deeb I, Rodriguez IB, Powell J, Willemsen NM, De SL, Ho MF, Hoffman SL, Gerrard J, Good MF. Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naïve volunteers: a pilot study. BMC Med 2018; 16:184. [PMID: 30293531 PMCID: PMC6174572 DOI: 10.1186/s12916-018-1173-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The continuing morbidity and mortality associated with infection with malaria parasites highlights the urgent need for a vaccine. The efficacy of sub-unit vaccines tested in clinical trials in malaria-endemic areas has thus far been disappointing, sparking renewed interest in the whole parasite vaccine approach. We previously showed that a chemically attenuated whole parasite asexual blood-stage vaccine induced CD4+ T cell-dependent protection against challenge with homologous and heterologous parasites in rodent models of malaria. METHODS In this current study, we evaluated the immunogenicity and safety of chemically attenuated asexual blood-stage Plasmodium falciparum (Pf) parasites in eight malaria-naïve human volunteers. Study participants received a single dose of 3 × 107 Pf pRBC that had been treated in vitro with the cyclopropylpyrolloindole analogue, tafuramycin-A. RESULTS We demonstrate that Pf asexual blood-stage parasites that are completely attenuated are immunogenic, safe and well tolerated in malaria-naïve volunteers. Following vaccination with a single dose, species and strain transcending Plasmodium-specific T cell responses were induced in recipients. This included induction of Plasmodium-specific lymphoproliferative responses, T cells secreting the parasiticidal cytokines, IFN-γ and TNF, and CD3+CD45RO+ memory T cells. Pf-specific IgG was not detected. CONCLUSIONS This is the first clinical study evaluating a whole parasite blood-stage malaria vaccine. Following administration of a single dose of completely attenuated Pf asexual blood-stage parasites, Plasmodium-specific T cell responses were induced while Pf-specific antibodies were not detected. These results support further evaluation of this chemically attenuated vaccine in humans. TRIAL REGISTRATION Trial registration: ACTRN12614000228684 . Registered 4 March 2014.
Collapse
Affiliation(s)
- Danielle I Stanisic
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia.
| | - James Fink
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Johanna Mayer
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Sarah Coghill
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Letitia Gore
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Xue Q Liu
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Ibrahim El-Deeb
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Ingrid B Rodriguez
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Jessica Powell
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Nicole M Willemsen
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Sai Lata De
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | | | - John Gerrard
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia.
| |
Collapse
|
17
|
Pawliw R, Farrow R, Sekuloski S, Jennings H, Healer J, Phuong T, Sathe P, Pasay C, Evans K, Cowman AF, Schofield L, Chen N, McCarthy J, Trenholme K. A bioreactor system for the manufacture of a genetically modified Plasmodium falciparum blood stage malaria cell bank for use in a clinical trial. Malar J 2018; 17:283. [PMID: 30081913 PMCID: PMC6080485 DOI: 10.1186/s12936-018-2435-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background Although the use of induced blood stage malaria infection has proven to be a valuable tool for testing the efficacy of vaccines and drugs against Plasmodium falciparum, a limiting factor has been the availability of Good Manufacturing Practice (GMP)—compliant defined P. falciparum strains for in vivo use. The aim of this study was to develop a cost-effective method for the large-scale production of P. falciparum cell banks suitable for use in clinical trials. Methods Genetically-attenuated parasites (GAP) were produced by targeted deletion of the gene encoding the knob associated histidine rich protein (kahrp) from P. falciparum strain 3D7. A GAP master cell bank (MCB) was manufactured by culturing parasites in an FDA approved single use, closed system sterile plastic bioreactor. All components used to manufacture the MCB were screened to comply with standards appropriate for in vivo use. The cryopreserved MCB was subjected to extensive testing to ensure GMP compliance for a phase 1 investigational product. Results Two hundred vials of the GAP MCB were successfully manufactured. At harvest, the GAP MCB had a parasitaemia of 6.3%, with 96% of parasites at ring stage. Testing confirmed that all release criteria were met (sterility, absence of viral contaminants and endotoxins, parasite viability following cryopreservation, identity and anti-malarial drug sensitivity of parasites). Conclusion Large-scale in vitro culture of P. falciparum parasites using a wave bioreactor can be achieved under GMP-compliant conditions. This provides a cost-effective methodology for the production of malaria parasites suitable for administration in clinical trials.
Collapse
Affiliation(s)
- Rebecca Pawliw
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Rebecca Farrow
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Silvana Sekuloski
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Helen Jennings
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Thuan Phuong
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Pri Sathe
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Cielo Pasay
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia
| | - Krystal Evans
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nanhua Chen
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Katharine Trenholme
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD, Australia. .,School of Medicine, University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Roestenberg M, Hoogerwerf MA, Ferreira DM, Mordmüller B, Yazdanbakhsh M. Experimental infection of human volunteers. THE LANCET. INFECTIOUS DISEASES 2018; 18:e312-e322. [PMID: 29891332 DOI: 10.1016/s1473-3099(18)30177-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 12/13/2022]
Abstract
Controlled human infection (CHI) trials, in which healthy volunteers are experimentally infected, can accelerate the development of novel drugs and vaccines for infectious diseases of global importance. The use of CHI models is expanding from around 60 studies in the 1970s to more than 120 publications in this decade, primarily for influenza, rhinovirus, and malaria. CHI trials have provided landmark data for several registered drugs and vaccines, and have generated unprecedented scientific insights. Because of their invasive nature, CHI studies demand critical ethical review according to established frameworks. CHI-associated serious adverse events are rarely reported. Novel CHI models need standardised safety data from comparable CHI models to facilitate evidence-based risk assessments, as well as funds to produce challenge inoculum according to regulatory requirements. Advances such as the principle of controlled colonisation, the expansion of models to endemic areas, and the use of genetically attenuated strains will further broaden the scope of CHI trials.
Collapse
Affiliation(s)
| | | | | | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, partner site Tübingen, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
19
|
Ssemaganda A, Low LM, Verhoeft KR, Wambuzi M, Kawoozo B, Nabasumba SB, Mpendo J, Bagaya BS, Kiwanuka N, Stanisic DI, Berners-Price SJ, Good MF. Gold(i) phosphine compounds as parasite attenuating agents for malaria vaccine and drug development. Metallomics 2018; 10:444-454. [DOI: 10.1039/c7mt00311k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The asexual blood-stagePlasmodiumparasite attenuating properties of gold(i) phosphine compounds are exploited in a novel strategy for malaria vaccine development.
Collapse
Affiliation(s)
| | | | | | - Mathias Wambuzi
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Barbarah Kawoozo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | - Juliet Mpendo
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | - Bernard S. Bagaya
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
- Department of Immunology and Molecular Biology
| | - Noah Kiwanuka
- UVRI-IAVI HIV Vaccine Program
- Uganda Virus Research Institute
- Entebbe
- Uganda
| | | | | | | |
Collapse
|
20
|
Abstract
Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax-specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration.
Collapse
|
21
|
Roestenberg M, Mordmüller B, Ockenhouse C, Mo A, Yazdanbakhsh M, Kremsner PG. The frontline of controlled human malaria infections: A report from the controlled human infection models Workshop in Leiden University Medical Centre 5 May 2016. Vaccine 2017; 35:7065-7069. [PMID: 29153778 DOI: 10.1016/j.vaccine.2017.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
Controlled Human Malaria Infection (CHMI) is the most practiced controlled human infection model nowadays and there is an exponential increase in implementation of the model worldwide. During the Controlled Human Infection Models Workshop in Leiden, one day was dedicated to the discussion of the advances made and gaps in Controlled Human Malaria Infection (CHMI) trials. Factors contributing to this impressive expansion in the number of CHMI trials have been related to the ability to perform CHMI using injectable cryopreserved sporozoites (a product from Sanaria Inc. - PfSPZ Challenge), the development of a transmission blocking CHMI model and the need to test more vaccine candidates particularly in the field of whole-sporozoite vaccine development. However, with an increasing number of CHMI trials being undertaken, in an ever-growing number of trial sites, heterogeneity in trial design may compromise universal interpretation of results and require an ongoing dialogue on the need and feasibility of standardization. At the workshop, CHMI investigators convened to share their experiences in CHMI trials and discuss the possibilities for future trials.
Collapse
Affiliation(s)
| | - Benjamin Mordmüller
- Universitätsklinikum Tübingen, Germany and Centre de Recherches Médicales de Lambaréné, Gabon
| | | | - Annie Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | | | - Peter G Kremsner
- Universitätsklinikum Tübingen, Germany and Centre de Recherches Médicales de Lambaréné, Gabon
| |
Collapse
|
22
|
Abstract
Malaria vaccine development has been dominated by the subunit approach; however, many subunit vaccine candidates have had limited efficacy in settings of malaria endemicity. As our search for an efficacious malaria vaccine continues, the development of a whole-organism vaccine is now receiving much scrutiny. One strategy currently being explored in the development of a whole-organism vaccine involves chemical attenuation of the malaria parasite. In vivo and in vitro chemical attenuation of both liver-stage and blood-stage Plasmodium parasites has been investigated. Here, we discuss both approaches of chemical attenuation in the development of a whole-organism vaccine against malaria.
Collapse
|
23
|
Wang KK, Jang JW, Shin EP, Song HW, Hwang JW, Kim YK, Lim CS, Kim YR. Eradication of Plasmodium falciparum from Erythrocytes by Controlled Reactive Oxygen Species via Photodynamic Inactivation Coupled with Photofunctional Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12975-12981. [PMID: 28351138 DOI: 10.1021/acsami.6b16793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the antimalarial effect of photodynamic inactivation (PDI) coupled with magnetic nanoparticles (MNPs) as a potential strategy to combat the emergence of drug-resistant malaria and resurgence of malaria after treatment. Because the malarial parasite proliferates within erythrocytes, PDI agents need to be taken up by erythrocytes to eradicate the parasite. We used photofunctional MNPs as the PDI agent because nanosized particles were selectively taken up by Plasmodium-infected erythrocytes and remained within the intracellular space due to the enhanced permeability and retention effect. Also, the magnetism of Fe3O4 nanoparticles can easily be utilized for the collection of photofunctional nanoparticles (PFNs), and the uptaken PFNs infected the erythrocytes after photodynamic treatment with external magnetics. Photofunctionality was provided by a photosensitizer, namely, pheophorbide A, which generates reactive oxygen species (ROS) under irradiation. PAs were covalently bonded to the surface of the MNPs. The morphology and structural characteristics of the MNPs were investigated by scanning electron microscopy and X-ray diffraction (XRD), whereas the photophysical properties of the PFNs were studied with Fourier transform infrared, absorption, and emission spectroscopies. Generation of singlet oxygen, a major ROS, was directly confirmed with time-resolved phosphorescence spectroscopy. To evaluate the ability of PFNs to kill malarial parasites, the PDI effect of PFNs was evaluated within the infected erythrocytes. Furthermore, malarial parasites were completely eradicated from the erythrocytes after PDI treatment using PFNs on the basis of an 8 day erythrocyte culture test.
Collapse
Affiliation(s)
- Kang-Kyun Wang
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Jin Woo Jang
- Department of Laboratory Medicine, Korea University Guro Hospital , Seoul 08308, Republic of Korea
| | - Eon Pil Shin
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Hyung Wan Song
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Jeong Wook Hwang
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University , Seoul 02841, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital , Seoul 08308, Republic of Korea
| | - Yong-Rok Kim
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Payne RO, Griffin PM, McCarthy JS, Draper SJ. Plasmodium vivax Controlled Human Malaria Infection - Progress and Prospects. Trends Parasitol 2017; 33:141-150. [PMID: 27956060 PMCID: PMC5270241 DOI: 10.1016/j.pt.2016.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Modern controlled human malaria infection (CHMI) clinical trials have almost entirely focussed on Plasmodium falciparum, providing a highly informative means to investigate host-pathogen interactions as well as assess potential new prophylactic and therapeutic interventions. However, in recent years, there has been renewed interest in Plasmodium vivax, with CHMI models developed by groups in Colombia, the USA, and Australia. This review summarizes the published experiences, and examines the advantages and disadvantages of the different models that initiate infection either by mosquito bite or using a blood-stage inoculum. As for P. falciparum, CHMI studies with P. vivax will provide a platform for early proof-of-concept testing of drugs and vaccines, accelerating the development of novel interventions.
Collapse
Affiliation(s)
- Ruth O Payne
- The Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK; The Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, OX3 7LE, UK.
| | - Paul M Griffin
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia; Q-Pharm Pty Ltd, Brisbane, Australia; Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia; The University of Queensland, Brisbane, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia; The University of Queensland, Brisbane, Australia
| | - Simon J Draper
- The Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
25
|
Burrows JN, Duparc S, Gutteridge WE, Hooft van Huijsduijnen R, Kaszubska W, Macintyre F, Mazzuri S, Möhrle JJ, Wells TNC. New developments in anti-malarial target candidate and product profiles. Malar J 2017; 16:26. [PMID: 28086874 PMCID: PMC5237200 DOI: 10.1186/s12936-016-1675-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.
Collapse
Affiliation(s)
- Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | | | | | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | | | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland
| | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva 15, Switzerland.
| |
Collapse
|
26
|
McCarthy JS, Rückle T, Djeriou E, Cantalloube C, Ter-Minassian D, Baker M, O'Rourke P, Griffin P, Marquart L, Hooft van Huijsduijnen R, Möhrle JJ. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar J 2016; 15:469. [PMID: 27624471 PMCID: PMC5022189 DOI: 10.1186/s12936-016-1511-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/31/2016] [Indexed: 01/13/2023] Open
Abstract
Background Ferroquine (SSR97193) is a candidate anti-malarial currently undergoing clinical trials for malaria. To better understand its pharmacokinetic (PK) and pharmacodynamic (PD) parameters the compound was tested in the experimentally induced blood stage malaria infection model in volunteers. Methods Male and non-pregnant female aged 18–50 years were screened for this phase II, controlled, single-centre clinical trial. Subjects were inoculated with ~1800 viable Plasmodium falciparum 3D7A-infected human erythrocytes, and treated with a single-dose of 800 mg ferroquine. Blood samples were taken at defined time-points to measure PK and PD parameters. The blood concentration of ferroquine and its active metabolite, SSR97213, were measured on dry blood spot samples by ultra-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Parasitaemia and emergence of gametocytes were monitored by quantitative PCR. Safety was determined by recording adverse events and monitoring clinical laboratory assessments during the course of the study. Results Eight subjects were enrolled into the study, inoculated with infected erythrocytes and treated with 800 mg ferroquine. Ferroquine was rapidly absorbed with maximal exposure after 4–8 and 4–12 h exposure for SSR97213. Non-compartmental PK analysis resulted in estimates for half-lives of 10.9 and 23.8 days for ferroquine and SSR97213, respectively. Parasite clearance as reported by parasite reduction ratio was 162.9 (95 % CI 141–188) corresponding to a parasite clearance half-life of 6.5 h (95 % CI: 6.4–6.7 h). PK/PD modelling resulted in a predicted minimal parasiticidal concentration of 20 ng/mL, and the single dosing tested in this study was predicted to maintain an exposure above this threshold for 454 h (37.8 days). Although ferroquine was overall well tolerated, transient elevated transaminase levels were observed in three subjects. Paracetamol was the only concomitant treatment among the two out of these three subjects that may have played a role in the elevated transaminases levels. No clinically significant ECG abnormalities were observed. Conclusions The parameters and PK/PD model derived from this study pave the way to the further rational development of ferroquine as an anti-malarial partner drug. The safety of ferroquine has to be further explored in controlled human trials. Trial registration anzctr.org.au (registration number: ACTRN12613001040752), registered 18/09/2013 Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1511-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Thomas Rückle
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland
| | - Elhadj Djeriou
- Sanofi Aventis Recherche Développement, Chilly-Mazarin, France
| | | | | | - Mark Baker
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland.,Novartis Consumer Health SA, 2 route de l'Etraz, Case Postale 1279, 1260, Nyon, Switzerland
| | - Peter O'Rourke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,University of Queensland, Brisbane, Australia.,Mater Health Services, Brisbane, Australia.,Q-Pharm Pty Ltd, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré-Bois 20, 1215, Meyrin, Geneva, Switzerland.
| |
Collapse
|
27
|
Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite. Infect Immun 2016; 84:2689-96. [PMID: 27382019 DOI: 10.1128/iai.00414-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence.
Collapse
|
28
|
Lead Selection of a New Aminomethylphenol, JPC-3210, for Malaria Treatment and Prevention. Antimicrob Agents Chemother 2016; 60:3115-8. [PMID: 26856849 DOI: 10.1128/aac.03066-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
Structure-activity relationship studies of trifluoromethyl-substituted pyridine and pyrimidine analogues of 2-aminomethylphenols (JPC-2997, JPC-3186, and JPC-3210) were conducted for preclinical development for malaria treatment and/or prevention. Of these compounds, JPC-3210 [4-(tert-butyl)-2-((tert-butylamino)methyl)-6-(5-fluoro-6-(trifluoromethyl)pyridin-3-yl)phenol] was selected as the lead compound due to superior in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, lower in vitro cytotoxicity in mammalian cell lines, longer plasma elimination half-life, and greater in vivo efficacy against murine malaria.
Collapse
|
29
|
Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, Silk SE, Biswas S, Miura K, Roberts R, Rampling TW, Venkatraman N, Hodgson SH, Labbé GM, Halstead FD, Poulton ID, Nugent FL, de Graaf H, Sukhtankar P, Williams NC, Ockenhouse CF, Kathcart AK, Qabar AN, Waters NC, Soisson LA, Birkett AJ, Cooke GS, Faust SN, Woods C, Ivinson K, McCarthy JS, Diggs CL, Vekemans J, Long CA, Hill AVS, Lawrie AM, Dutta S, Draper SJ. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis 2016; 213:1743-51. [PMID: 26908756 DOI: 10.1093/infdis/jiw039] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/21/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODS Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTS FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONS FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATION NCT02044198.
Collapse
Affiliation(s)
- Ruth O Payne
- Jenner Institute Laboratories Centre for Clinical Vaccinology and Tropical Medicine
| | | | | | | | | | | | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | | | - Thomas W Rampling
- Jenner Institute Laboratories Centre for Clinical Vaccinology and Tropical Medicine
| | - Navin Venkatraman
- Jenner Institute Laboratories Centre for Clinical Vaccinology and Tropical Medicine
| | - Susanne H Hodgson
- Jenner Institute Laboratories Centre for Clinical Vaccinology and Tropical Medicine
| | | | | | - Ian D Poulton
- Centre for Clinical Vaccinology and Tropical Medicine
| | | | - Hans de Graaf
- National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility, University Hospital Southampton National Health Service (NHS) Foundation Trust Faculty of Medicine, University of Southampton
| | - Priya Sukhtankar
- National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility, University Hospital Southampton National Health Service (NHS) Foundation Trust Faculty of Medicine, University of Southampton
| | - Nicola C Williams
- Centre for Statistics in Medicine Botnar Research Centre, University of Oxford
| | - Christian F Ockenhouse
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland PATH Malaria Vaccine Initiative
| | - April K Kathcart
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Aziz N Qabar
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Norman C Waters
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | - Graham S Cooke
- NIHR Wellcome Trust Clinical Research Facility, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Saul N Faust
- National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility, University Hospital Southampton National Health Service (NHS) Foundation Trust Faculty of Medicine, University of Southampton
| | | | | | | | | | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | | | | | - Sheetij Dutta
- Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | |
Collapse
|
30
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
31
|
Whole organism blood stage vaccines against malaria. Vaccine 2015; 33:7469-75. [DOI: 10.1016/j.vaccine.2015.09.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022]
|
32
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
33
|
Viebig NK, D'Alessio F, Draper SJ, Sim BKL, Mordmüller B, Bowyer PW, Luty AJF, Jungbluth S, Chitnis CE, Hill AVS, Kremsner P, Craig AG, Kocken CHM, Leroy O. Workshop report: Malaria vaccine development in Europe--preparing for the future. Vaccine 2015; 33:6137-44. [PMID: 26431986 DOI: 10.1016/j.vaccine.2015.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap.
Collapse
Affiliation(s)
- Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Simon J Draper
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Paul W Bowyer
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006 Paris, France; COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270 Paris, France
| | - Stefan Jungbluth
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Chetan E Chitnis
- Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Peter Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Clemens H M Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|