1
|
Yavasoglu SI, Wood MJ, Bull JC, Alkış N, Doğan E, Alkhaibari AM, Butt TM. Novo plant-based mosquito repellent shows promise for exclusion of Aedes mosquitoes from "window" entry. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae137. [PMID: 39485014 DOI: 10.1093/jme/tjae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Mosquitoes threaten over half of the world's population through vectored diseases such as malaria, zika, yellow fever, dengue, and chikungunya. Mosquitoes have a highly developed olfactory system attuned to chemotaxis relating to host-seeking, mating, and oviposition behavior. In this study, we aimed to determine the spatial efficacy of 2 plant-based repellent blends (Blend3 and Blend4 that had previously been found to successfully repel Aedes, Anopheles and Culex mosquitoes in wind tunnel assays) in excluding Aedes aegypti from the window entry. A new cage system was developed for parallel "no-choice" and "choice" olfactometric assays. In the no-choice trial, Blends 3 and 4, as well as commercial products (N, N-diethyl-3-methylbenzamide, p-menthane-3,8-diol [PMD], 3-(N-n-butyl-N-acetyl)-amino-propionic acid ethyl ester, and 2-(2-hydroxyethyl)-1-methylpropylstyrene 1-piperidine carboxylate), were adsorbed into filter papers of different sizes and placed in a window created between 2 attached bug dorms. Then, the number of mosquitoes entering the window was counted through a 6-min period. In choice olfactometric assays, Blends 3, 4, and PMD were adsorbed into filter paper and the number of mosquitoes moving away from Blend 3 and PMD were compared. No-choice assays showed that Blend3 (P < 0.001) and Blend4 (P = 0.0012) were more repellent than the best commercial product PMD. Additionally, while Blend 4 was significantly more repellent than Blend 3 (P = 0.012) in the choice assay, overall, these 2 blends show promise as new repellents for the spatial exclusion of Aedes aegypti from window entry alone or as part of a "push-pull'' strategy.
Collapse
Affiliation(s)
- Sare I Yavasoglu
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Martyn J Wood
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - James C Bull
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Nergis Alkış
- Department of Biology, Institute of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Emrecan Doğan
- Department of Biology, Institute of Science, Aydın Adnan Menderes University, 09010 Aydın, Türkiye
| | - Abeer M Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabul 71491, Kingdom of Saudi Arabia
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
2
|
Ablorde A, Kroidl I, Wieser A, Kudom AA. Impact of the exposure of sublethal dose of mosquito coil on the development of insecticide resistance in Aedes aegypti (L.) (Diptera: Culicidae). MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:341-348. [PMID: 38739009 DOI: 10.1111/mve.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Mosquito coil is commonly used in many African households for protection against mosquito bites. The coil usually has semi-volatile pyrethroids as an active ingredient, which usually diffuse across open space, and the cloud either kills mosquitoes that are exposed, or mosquitoes can be exposed to sublethal doses of the insecticides. This study was conducted to assess the impact of sublethal doses of mosquito coil on the development of insecticide resistance in Aedes aegypti, a major vector for dengue fever and several other arboviral diseases. A laboratory colony of Ae. aegypti was exposed to sublethal doses of a meperfluthrin-based mosquito coil in a Peet-Grady chamber once per generation for 16 generations. The susceptibility of the exposed colony to a diagnostic dose of the mosquito coil as well as to three other insecticides was determined. Three different kdr mutations and five enzyme activities were evaluated in both the exposed and control colonies. After 16 generations of sublethal exposure to mosquito coils, the full diagnostic dose of the coil caused 68% mortality to the exposed colony compared to 100% mortality in the control colony. Mortality caused by deltamethrin (0.05%) was also significantly lower in the exposed colony. The frequency of 1016I kdr mutation as well as MFO and alpha esterase activities were higher in the exposed colony compared to the control colony. This study provides evidence of the development of pyrethroid resistance in an Ae. aegypti population due to sublethal exposure to mosquito coil for 16 generations. Given the large-scale use of mosquito coils in many African households, its role as a pyrethroid resistance selection source should be taken into consideration when designing resistance management strategies.
Collapse
Affiliation(s)
- Aikins Ablorde
- Vector Biology and Control Group, Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast, Ghana
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Andreas A Kudom
- Vector Biology and Control Group, Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Onen H, Kaddumukasa MA, Kayondo JK, Akol AM, Tripet F. A review of applications and limitations of using aquatic macroinvertebrate predators for biocontrol of the African malaria mosquito, Anopheles gambiae sensu lato. Parasit Vectors 2024; 17:257. [PMID: 38867296 PMCID: PMC11170859 DOI: 10.1186/s13071-024-06332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
Macroinvertebrate predators such as backswimmers (Heteroptera: Notonectidae), dragonflies (Odonata: Aeshnidae), and predatory diving beetles (Coleoptera: Dytiscidae) naturally inhabit aquatic ecosystems. Some aquatic ecosystems inhabited by these macroinvertebrate predator taxa equally form malaria vector larval habitats. The presence of these predators in malaria vector larval habitats can negatively impact on development, adult body size, fecundity, and longevity of the malaria vectors, which form important determinants of their fitness and future vectorial capacity. These potential negative impacts caused by aquatic macroinvertebrate predators on malaria vectors warrant their consideration as biocontrol agents in an integrated program to combat malaria. However, the use of these macroinvertebrate predators in malaria biocontrol is currently constrained by technical bottlenecks linked to their generalist predatory tendencies and often long life cycles, demanding complex rearing systems. We reviewed the literature on the use of aquatic macroinvertebrate predators for biocontrol of malaria vectors from the An. gambiae s.l. complex. The available information from laboratory and semi-field studies has shown that aquatic macroinvertebrates have the potential to consume large numbers of mosquito larvae and could thus offer an additional approaches in integrated malaria vector management strategies. The growing number of semi-field structures available in East and West Africa provides an opportunity to conduct ecological experimental studies to reconsider the potential of using aquatic macroinvertebrate predators as a biocontrol tool. To achieve a more sustainable approach to controlling malaria vector populations, additional, non-chemical interventions could provide a more sustainable approach, in comparison with the failing chemical control tools, and should be urgently considered for integration with the current mosquito vector control campaigns.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda.
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda.
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda.
| | - Martha A Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), P.O Box 49, Entebbe, Uganda
| | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, School of Biosciences, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frédéric Tripet
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Swai JK, Soto AC, Ntabaliba WS, Kibondo UA, Ngonyani HA, Mseka AP, Ortiz A, Chura MR, Mascari TM, Moore SJ. Efficacy of the spatial repellent product Mosquito Shield™ against wild pyrethroid-resistant Anopheles arabiensis in south-eastern Tanzania. Malar J 2023; 22:249. [PMID: 37649032 PMCID: PMC10466708 DOI: 10.1186/s12936-023-04674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Spatial repellents that create airborne concentrations of an active ingredient (AI) within a space offer a scalable solution to further reduce transmission of malaria, by disrupting mosquito behaviours in ways that ultimately lead to reduced human-vector contact. Passive emanator spatial repellents can protect multiple people within the treated space and can last for multiple weeks without the need for daily user touchpoints, making them less intrusive interventions. They may be particularly advantageous in certain use cases where implementation of core tools may be constrained, such as in humanitarian emergencies and among mobile at-risk populations. The purpose of this study was to assess the efficacy of Mosquito Shield™ deployed in experimental huts against wild, free-flying, pyrethroid-resistant Anopheles arabiensis mosquitoes in Tanzania over 1 month. METHODS The efficacy of Mosquito Shield™ transfluthrin spatial repellent in reducing mosquito lands and blood-feeding was evaluated using 24 huts: sixteen huts were allocated to Human Landing Catch (HLC) collections and eight huts to estimating blood-feeding. In both experiments, half of the huts received no intervention (control) while the remaining received the intervention randomly allocated to huts and remained fixed for the study duration. Outcomes measured were mosquito landings, blood-fed, resting and dead mosquitoes. Data were analysed by multilevel mixed effects regression with appropriate dispersion and link function accounting for volunteer, hut and day. RESULTS Landing inhibition was estimated to be 70% (57-78%) [IRR 0.30 (95% CI 0.22-0.43); p < 0.0001] and blood-feeding inhibition was estimated to be 69% (56-79%) [IRR 0.31 (95% CI 0.21-0.44; p < 0.0001] There was no difference in the protective efficacy estimates of landing and blood-feeding inhibition [IRR 0.98 (95% CI 0.53-1.82; p = 0.958]. CONCLUSIONS This study demonstrated that Mosquito Shield™ was efficacious against a wild pyrethroid-resistant strain of An. arabiensis mosquitoes in Tanzania for up to 1 month and could be used as a complementary or stand-alone tool where gaps in protection offered by core malaria vector control tools exist. HLC is a suitable technique for estimating bite reductions conferred by spatial repellents especially where direct blood-feeding measurements are not practical or are ethically limited.
Collapse
Affiliation(s)
- Johnson Kyeba Swai
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Alina Celest Soto
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Watson Samuel Ntabaliba
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hassan Ahamad Ngonyani
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Antony Pius Mseka
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | | | - Sarah Jane Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
- Department of Epidemiology and Public, Health Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- School of Life Sciences and Bio Engineering, The Nelson Mandela, African Institution of Science and Technology, Tengeru, Arusha, United Republic of Tanzania
| |
Collapse
|
5
|
Achee NL, Perkins TA, Moore SM, Liu F, Sagara I, Van Hulle S, Ochomo EO, Gimnig JE, Tissera HA, Harvey SA, Monroe A, Morrison AC, Scott TW, Reiner RC, Grieco JP. Spatial repellents: The current roadmap to global recommendation of spatial repellents for public health use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 3:100107. [PMID: 36590345 PMCID: PMC9801085 DOI: 10.1016/j.crpvbd.2022.100107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.
Collapse
Affiliation(s)
- Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA,Corresponding author. Department of Biological Sciences, Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - T. Alex Perkins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sean M. Moore
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Issaka Sagara
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Dentistry and Pharmacy at the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Eric O. Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E. Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | | | - Steven A. Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Robert C. Reiner
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
6
|
Ochomo EO, Gimnig JE, Bhattarai A, Samuels AM, Kariuki S, Okello G, Abong'o B, Ouma EA, Kosgei J, Munga S, Njagi K, Odongo W, Liu F, Grieco JP, Achee NL. Evaluation of the protective efficacy of a spatial repellent to reduce malaria incidence in children in western Kenya compared to placebo: study protocol for a cluster-randomized double-blinded control trial (the AEGIS program). Trials 2022; 23:260. [PMID: 35382858 PMCID: PMC8980512 DOI: 10.1186/s13063-022-06196-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatial repellents are widely used for prevention of mosquito bites and evidence is building on their public health value, but their efficacy against malaria incidence has never been evaluated in Africa. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a spatial repellent incorporating transfluthrin, was developed for implementation in Busia County, western Kenya where long-lasting insecticidal net coverage is high and baseline malaria transmission is moderate to high year-round. METHODS This trial is designed as a cluster-randomized, placebo-controlled, double-blinded clinical trial. Sixty clusters will be randomly assigned in a 1:1 ratio to receive spatial repellent or placebo. A total of 6120 children aged ≥6 months to 10 years of age will be randomly selected from the study clusters, enrolled into an active cohort (baseline, cohort 1, and cohort 2), and sampled monthly to determine time to first infection by smear microscopy. Each cohort following the implementation of the intervention will be split into two groups, one to estimate direct effect of the spatial repellent and the other to estimate degree of diversion of mosquitoes and malaria transmission to unprotected persons. Malaria incidence in each cohort will be estimated and compared (primary indicator) to determine benefit of using a spatial repellent in a high, year-round malaria transmission setting. Mosquitoes will be collected monthly using CDC light traps to determine if there are entomological correlates of spatial repellent efficacy that may be useful for the evaluation of new spatial repellents. Quarterly human landing catches will assess behavioral effects of the intervention. DISCUSSION Findings will serve as the first cluster-randomized controlled trial powered to detect spatial repellent efficacy to reduce malaria in sub-Saharan Africa where transmission rates are high, insecticide-treated nets are widely deployed, and mosquitoes are resistant to insecticides. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of spatial repellents in malaria control programs. TRIAL REGISTRATION ClinicalTrials.gov NCT04766879 . Registered February 23, 2021.
Collapse
Affiliation(s)
- Eric O Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Achuyt Bhattarai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Aaron M Samuels
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Okello
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Bernard Abong'o
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Eunice A Ouma
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Jackline Kosgei
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Stephen Munga
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Kiambo Njagi
- National Malaria Control Program, Ministry of Health, Kenyatta National Hospital, Nairobi, Kenya
| | - Wycliffe Odongo
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - John P Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Nicole L Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
7
|
Transfluthrin eave-positioned targeted insecticide (EPTI) reduces human landing rate (HLR) of pyrethroid resistant and susceptible malaria vectors in a semi-field simulated peridomestic space. Malar J 2021; 20:357. [PMID: 34461911 PMCID: PMC8404287 DOI: 10.1186/s12936-021-03880-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Volatile pyrethroids (VPs) are proven to reduce human–vector contact for mosquito vectors. With increasing resistance to pyrethroids in mosquitoes, the efficacy of VPs, such as transfluthrin, may be compromised. Therefore, experiments were conducted to determine if the efficacy of transfluthrin eave-positioned targeted insecticide (EPTI) depends on the resistance status of malaria vectors. Methods Ribbons treated with 5.25 g transfluthrin or untreated controls were used around the eaves of an experimental hut as EPTI inside a semi-field system. Mosquito strains with different levels of pyrethroid resistance were released simultaneously, recaptured by means of human landing catches (HLCs) and monitored for 24-h mortality. Technical-grade (TG) transfluthrin was used, followed by emulsifiable concentrate (EC) transfluthrin and additional mosquito strains. Generalized linear mixed models with binomial distribution were used to determine the impact of transfluthrin and mosquito strain on mosquito landing rates and 24-h mortality. Results EPTI treated with 5.25 g of either TG or EC transfluthrin significantly reduced HLR of all susceptible and resistant Anopheles mosquitoes (Odds Ratio (OR) ranging from 0.14 (95% Confidence Interval (CI) [0.11–0.17], P < 0.001) to 0.57, (CI [0.42–0.78] P < 0.001). Both TG and EC EPTI had less impact on landing for the resistant Anopheles arabiensis (Mbita strain) compared to the susceptible Anopheles gambiae (Ifakara strain) (OR 1.50 [95% CI 1.18–1.91] P < 0.001) and (OR 1.67 [95% CI 1.29–2.17] P < 0.001), respectively. The EC EPTI also had less impact on the resistant An. arabiensis (Kingani strain) (OR 2.29 [95% CI 1.78–2.94] P < 0.001) compared to the control however the TG EPTI was equally effective against the resistant Kingani strain and susceptible Ifakara strain (OR 1.03 [95% CI 0.82–1.32] P = 0.75). Finally the EC EPTI was equally effective against the susceptible An. gambiae (Kisumu strain) and the resistant An. gambiae (Kisumu-kdr strain) (OR 0.98 [95% CI 0.74–1.30] P = 0.90). Conclusions Transfluthrin-treated EPTI could be useful in areas with pyrethroid-resistant mosquitoes, but it remains unclear whether stronger resistance to pyrethroids will undermine the efficacy of transfluthrin. At this dosage, transfluthrin EPTI cannot be used to kill exposed mosquitoes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03880-2.
Collapse
|
8
|
Hellewell J, Sherrard-Smith E, Ogoma S, Churcher TS. Assessing the impact of low-technology emanators alongside long-lasting insecticidal nets to control malaria. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190817. [PMID: 33357051 PMCID: PMC7776935 DOI: 10.1098/rstb.2019.0817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 01/19/2023] Open
Abstract
Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Joel Hellewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Sheila Ogoma
- Ifakara Health Institute, Biomedical and Environmental Thematic Group, PO Box 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
9
|
Njoroge MM, Fillinger U, Saddler A, Moore S, Takken W, van Loon JJA, Hiscox A. Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit Vectors 2021; 14:42. [PMID: 33430963 PMCID: PMC7802213 DOI: 10.1186/s13071-020-04556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.![]()
Collapse
Affiliation(s)
- Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Alexandra Hiscox
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,London School of Hygiene and Tropical Medicine, ARCTEC, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
10
|
Buxton M, Machekano H, Gotcha N, Nyamukondiwa C, Wasserman RJ. Are Vulnerable Communities Thoroughly Informed on Mosquito Bio-Ecology and Burden? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8196. [PMID: 33171954 PMCID: PMC7672552 DOI: 10.3390/ijerph17218196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022]
Abstract
Mosquitoes account for a significant burden of morbidity and mortality globally. Despite evidence of (1) imminent anthropogenic climate and environmental changes, (2) vector-pathogen spatio-temporal dynamics and (3) emerging and re-emerging mosquito borne infections, public knowledge on mosquito bio-ecology remain scant. In particular, knowledge, attitude and practices (KAPs) on mosquitoes are often neglected despite otherwise expensive remedial efforts against consequent infections and other indirect effects associated with disease burden. To gather baseline KAPs that identify gaps for optimising vector-borne disease control, we surveyed communities across endemic and non-endemic malaria sub-districts (Botswana). The study revealed limited knowledge of mosquitoes and their infections uniformly across endemic and non-endemic areas. In addition, a significant proportion of respondents were concerned about mosquito burdens, although their level of personal, indoor and environmental protection practices varied significantly across sub-districts. Given the limited knowledge displayed by the communities, this study facilitates bridging KAP gaps to minimise disease burdens by strengthening public education. Furthermore, it provides a baseline for future studies in mosquito bio-ecology and desirable control practices across differential spheres of the rural-urban lifestyle, with implications for enhanced livelihoods as a consequence of improved public health.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana; (H.M.); (N.G.); (C.N.); (R.J.W.)
| | | | | | | | | |
Collapse
|
11
|
ten Bosch QA, Wagman JM, Castro-Llanos F, Achee NL, Grieco JP, Perkins TA. Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes. PLoS Comput Biol 2020; 16:e1008190. [PMID: 32976489 PMCID: PMC7541056 DOI: 10.1371/journal.pcbi.1008190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/07/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022] Open
Abstract
Spatial repellents (SRs) reduce human-mosquito contact by preventing mosquito entrance into human-occupied spaces and interfering with host-seeking and blood-feeding. A new model to synthesize experimental data on the effects of transfluthrin on Aedes aegypti explores how SR effects interact to impact the epidemiology of diseases vectored by these mosquitoes. Our results indicate that the greatest impact on force of infection is expected to derive from the chemical's lethal effect but delayed biting and the negative effect this may have on the mosquito population could elicit substantial impact in the absence of lethality. The relative contributions of these effects depend on coverage, chemical dose, and housing density. We also demonstrate that, through an increase in the number of potentially infectious mosquito bites, increased partial blood-feeding and reduced exiting may elicit adverse impacts, which could offset gains achieved by other effects. Our analysis demonstrates how small-scale experimental data can be leveraged to derive expectations of epidemiological impact of SRs deployed at larger scales.
Collapse
Affiliation(s)
- Quirine A. ten Bosch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joseph M. Wagman
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | | | - Nicole L. Achee
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John P. Grieco
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
12
|
Tambwe MM, Moore SJ, Chilumba H, Swai JK, Moore JD, Stica C, Saddler A. Semi-field evaluation of freestanding transfluthrin passive emanators and the BG sentinel trap as a "push-pull control strategy" against Aedes aegypti mosquitoes. Parasit Vectors 2020; 13:392. [PMID: 32736580 PMCID: PMC7395400 DOI: 10.1186/s13071-020-04263-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/05/2022] Open
Abstract
Background Spatial repellents that drive mosquitoes away from treated areas, and odour-baited traps, that attract and kill mosquitoes, can be combined and work synergistically in a push-pull system. Push-pull systems have been shown to reduce house entry and outdoor biting rates of malaria vectors and so have the potential to control other outdoor biting mosquitoes such as Aedes aegypti that transmit arboviral diseases. In this study, semi-field experiments were conducted to evaluate whether a push-pull system could be used to reduce bites from Aedes mosquitoes. Methods The push and pull under investigation consisted of two freestanding transfluthrin passive emanators (FTPE) and a BG sentinel trap (BGS) respectively. The FTPE contained hessian strips treated with 5.25 g of transfluthrin active ingredient. The efficacies of FTPE and BGS alone and in combination were evaluated by human landing catch in a large semi-field system in Tanzania. We also investigated the protection of FTPE over six months. The data were analyzed using generalized linear mixed models with binomial distribution. Results Two FTPE had a protective efficacy (PE) of 61.2% (95% confidence interval (CI): 52.2–69.9%) against the human landing of Ae. aegypti. The BGS did not significantly reduce mosquito landings; the PE was 2.1% (95% CI: −2.9–7.2%). The push-pull provided a PE of 64.5% (95% CI: 59.1–69.9%). However, there was no significant difference in the PE between the push-pull and the two FTPE against Ae. aegypti (P = 0.30). The FTPE offered significant protection against Ae. aegypti at month three, with a PE of 46.4% (95% CI: 41.1–51.8%), but not at six months with a PE of 2.2% (95% CI: −9.0–14.0%). Conclusions The PE of the FTPE and the full push-pull are similar, indicative that bite prevention is primarily due to the activity of the FTPE. While these results are encouraging for the FTPE, further work is needed for a push-pull system to be recommended for Ae. aegypti control. The three-month protection against Ae. aegypti bites suggests that FTPE would be a useful additional control tool during dengue outbreaks, that does not require regular user compliance.![]()
Collapse
Affiliation(s)
- Mgeni M Tambwe
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania. .,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Sarah J Moore
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Hassan Chilumba
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Johnson K Swai
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jason D Moore
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
| | - Caleb Stica
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Adam Saddler
- Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| |
Collapse
|
13
|
Briët OJT, Impoinvil DE, Chitnis N, Pothin E, Lemoine JF, Frederic J, Smith TA. Models of effectiveness of interventions against malaria transmitted by Anopheles albimanus. Malar J 2019; 18:263. [PMID: 31370901 PMCID: PMC6670173 DOI: 10.1186/s12936-019-2899-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most impact prediction of malaria vector control interventions has been based on African vectors. Anopheles albimanus, the main vector in Central America and the Caribbean, has higher intrinsic mortality, is more zoophilic and less likely to rest indoors. Therefore, relative impact among interventions may be different. Prioritizing interventions, in particular for eliminating Plasmodium falciparum from Haiti, should consider local vector characteristics. METHODS Field bionomics data of An. albimanus from Hispaniola and intervention effect data from southern Mexico were used to parameterize mathematical malaria models. Indoor residual spraying (IRS), insecticide-treated nets (ITNs), and house-screening were analysed by inferring their impact on the vectorial capacity in a difference-equation model. Impact of larval source management (LSM) was assumed linear with coverage. Case management, mass drug administration and vaccination were evaluated by estimating their effects on transmission in a susceptible-infected-susceptible model. Analogous analyses were done for Anopheles gambiae parameterized with data from Tanzania, Benin and Nigeria. RESULTS While LSM was equally effective against both vectors, impact of ITNs on transmission by An. albimanus was much lower than for An. gambiae. Assuming that people are outside until bedtime, this was similar for the impact of IRS with dichlorodiphenyltrichloroethane (DDT) or bendiocarb, and impact of IRS was less than that of ITNs. However, assuming people go inside when biting starts, IRS had more impact on An. albimanus than ITNs. While house-screening had less impact than ITNs or IRS on An. gambiae, it had more impact on An. albimanus than ITNs or IRS. The impacts of chemoprevention and chemotherapy were comparable in magnitude to those of strategies against An. albimanus. Chemo-prevention impact increased steeply as coverage approached 100%, whilst clinical-case management impact saturated because of remaining asymptomatic infections. CONCLUSIONS House-screening and repellent IRS are potentially highly effective against An. albimanus if people are indoors during the evening. This is consistent with historical impacts of IRS with DDT, which can be largely attributed to excito-repellency. It also supports the idea that housing improvements have played a critical role in malaria control in North America. For elimination planning, impact estimates need to be combined with feasibility and cost-analysis.
Collapse
Affiliation(s)
- Olivier J T Briët
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | - Daniel E Impoinvil
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria/Entomology Branch, 1600 Clifton Road, Mail Stop-G49, Atlanta, GA, 30329, USA
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | - Emilie Pothin
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland
| | | | - Joseph Frederic
- Programme National de Contrôle de la Malaria, Port-au-Prince, Haiti
| | - Thomas A Smith
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, Petersplatz 1, Basel, Switzerland.
| |
Collapse
|
14
|
Abstract
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John Greico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
15
|
Wallingford AK, Cha DH, Loeb GM. Evaluating a push-pull strategy for management of Drosophila suzukii Matsumura in red raspberry. PEST MANAGEMENT SCIENCE 2018; 74:120-125. [PMID: 28714131 DOI: 10.1002/ps.4666] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/25/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Drosophila suzukii Matsumura is a serious pest of small fruits that lays its eggs in growing fruit. Current management strategies rely on an unsustainable schedule of foliar applications of chemical insecticides. Alternative approaches to suppressing oviposition are under investigation, such as attract-and-kill and the use of oviposition deterrents. Here, we evaluated two behavioral control approaches in combination as a push-pull strategy using laboratory and field assays. RESULTS In laboratory caged assays, both an attractive mass trapping device (pull) and an oviposition deterrent (push: 1-octen-3-ol) reduced oviposition by D. suzukii, and the combination of the two (push-pull) resulted in significantly greater reduction than either treatment alone. In field experiments, oviposition reduction was observed in fruit from plots treated with oviposition deterrent (push) or a combination of mass trapping devices and deterrent (push-pull) compared with fruit from control plots. However, oviposition in plots with mass trapping devices (pull) was higher than observed in all other treatments. Additionally, the protection provided by the deterrent in push plots extended to the entire plot rather than just in fruit closest to deterrent dispensers. CONCLUSION Push-pull treatments negatively affected D. suzukii infestation in both laboratory and field experiments. The reduction in oviposition observed in laboratory experiments was based on the additive effect of push and pull components acting on a finite population, while the reduction observed in field experiments appeared to be mainly based on the effect of pull components. We discuss potential underlying reasons for the discrepancy results and suggest potential improvements. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anna K Wallingford
- Cornell University, New York Agricultural Experiment Station, Geneva, NY, USA
| | - Dong H Cha
- USDA-ARS, US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Gregory M Loeb
- Cornell University, New York Agricultural Experiment Station, Geneva, NY, USA
| |
Collapse
|
16
|
Salazar FV, Chareonviriyaphap T, Grieco JP, Prabaripai A, Polsomboon S, Gimutao KA, Bangs MJ, Achee NL. BG-Sentinel™ Trap Efficacy As A Component of Proof-Of-Concept For Push-Pull Control Strategy For Dengue Vector Mosquitoes. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:293-300. [PMID: 29369029 DOI: 10.2987/16-6552.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The efficacy of the BG-Sentinel™ (BGS) trap as a "pull" component of a "push-pull" system (PPS) for management of the dengue vector, Aedes aegypti, was evaluated using local households in Pu Tuey, Kanchanaburi, Thailand. The pull component was the concluding phase of a 3-part investigation using a PPS combination spatial repellent (SR) and BGS trap to capture adult vector mosquitoes. Two sentinel households were selected for evaluation of BGS trap efficacy based on the highest pretrial indoor resting densities of Ae. aegypti using Centers for Disease Control and Prevention (CDC) mechanical backpack collections. Potential Ae. aegypti resting sites around the selected houses were identified as possible competing sites that might influence the BGS trap capture efficiency. Results showed that BGS traps were productive in capturing Ae. aegypti females (93.4% of all Aedes collected) in the presence of competing man-made, artificial resting sites. The CDC backpack aspirator collections provided an indirect measure of local Aedes population, although technically not comparable for supporting productivity of BGS traps due to different collection days and households sampled. The predominant competing resting sites were water containers found within 3 m around the outside of sentinel households. The most productive BGS collections between houses differed by location. The most productive period of operation for Ae. aegypti BGS trapping was between 1330 and 1730 h. The BGS trap appears an effective "pull" device in the PPS strategy in natural settings.
Collapse
|
17
|
Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, Schlein Y, Traore SF, Doumbia S, Beier JC. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J 2017; 16:266. [PMID: 28673298 PMCID: PMC5496196 DOI: 10.1186/s12936-017-1920-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022] Open
Abstract
Background Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. Methods A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. Results In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. Conclusions The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Günter C Müller
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Whitney A Qualls
- Zoonosis Control Branch, Texas Department of State Health Services, Austin, TX, USA
| | - WayWay M Hlaing
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yosef Schlein
- Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Sekou F Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Bamako, BP 1805, Bamako, Mali
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, Govella NJ. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Glob Health 2017; 2:e000212. [PMID: 28589023 PMCID: PMC5444085 DOI: 10.1136/bmjgh-2016-000212] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 11/04/2022] Open
Abstract
Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment.
Collapse
Affiliation(s)
- Gerry F Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, USA
| | - Samson S Kiware
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | | | - Lucy S Tusting
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Prosper P Chaki
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara and Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
19
|
Muema JM, Bargul JL, Njeru SN, Onyango JO, Imbahale SS. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasit Vectors 2017; 10:184. [PMID: 28412962 PMCID: PMC5392979 DOI: 10.1186/s13071-017-2122-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Malaria presents an overwhelming public health challenge, particularly in sub-Saharan Africa where vector favourable conditions and poverty prevail, potentiating the disease burden. Behavioural variability of malaria vectors poses a great challenge to existing vector control programmes with insecticide resistance already acquired to nearly all available chemical compounds. Thus, approaches incorporating plant-derived compounds to manipulate semiochemical-mediated behaviours through disruption of mosquito olfactory sensory system have considerably gained interests to interrupt malaria transmission cycle. The combination of push-pull methods and larval control have the potential to reduce malaria vector populations, thus minimising the risk of contracting malaria especially in resource-constrained communities where access to synthetic insecticides is a challenge. In this review, we have compiled information regarding the current status of knowledge on manipulation of larval ecology and chemical-mediated behaviour of adult mosquitoes with plant-derived compounds for controlling mosquito populations. Further, an update on the current advancements in technologies to improve longevity and efficiency of these compounds for field applications has been provided.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.,Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sospeter N Njeru
- Department of Medicine, Faculty of Health Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.,Present Address: Fritz Lipmann Institute (FLI) - Leibniz Institute of Aging Research, D-07745, Jena, Germany
| | - Joab O Onyango
- Department of Chemical Science and Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Susan S Imbahale
- Department of Applied and Technical Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
20
|
Menger DJ, Omusula P, Wouters K, Oketch C, Carreira AS, Durka M, Derycke JL, Loy DE, Hahn BH, Mukabana WR, Mweresa CK, van Loon JJA, Takken W, Hiscox A. Eave Screening and Push-Pull Tactics to Reduce House Entry by Vectors of Malaria. Am J Trop Med Hyg 2016; 94:868-78. [PMID: 26834195 DOI: 10.4269/ajtmh.15-0632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/31/2015] [Indexed: 11/07/2022] Open
Abstract
Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area.
Collapse
Affiliation(s)
- David J Menger
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Philemon Omusula
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Karlijn Wouters
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles Oketch
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Ana S Carreira
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxime Durka
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Jean-Luc Derycke
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Dorothy E Loy
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Beatrice H Hahn
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R Mukabana
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Collins K Mweresa
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Alexandra Hiscox
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands; International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal; Devan-Micropolis, Tecmaia-Parque da Ciência e Tecnologia da Maia, Maia, Portugal; Devan Chemicals NV, Ronse, Belgium; Utexbel NV, Ronse, Belgium; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
21
|
Birget PLG, Koella JC. An Epidemiological Model of the Effects of Insecticide-Treated Bed Nets on Malaria Transmission. PLoS One 2015; 10:e0144173. [PMID: 26636568 PMCID: PMC4670222 DOI: 10.1371/journal.pone.0144173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/13/2015] [Indexed: 11/21/2022] Open
Abstract
Insecticide-treated bed nets (ITNs) have become a central tool for malaria control because they provide personal and community-wide protection through their repellent and insecticidal properties. Here we propose a model that allows to assess the relative importance of those two effects in different epidemiological contexts and we show that these two levels of protection may oppose each other. On the one hand, repellency offers personal protection to the users of ITNs. The repellent action, however, is a two-edged sword, for it diverts infectious mosquitoes to non-users, thereby increasing their risk. Furthermore, with increasing ITN coverage, the personal protection effect of repellency decreases as mosquitoes are forced to perform multiple feeding attempts even on ITN users. On the other hand, the insecticidal property, which offers community-wide protection by killing mosquitoes, requires that mosquitoes contact the insecticide on the ITN and is thus counteracted by the repellency. Our model confirms that ITNs are an effective intervention method by reducing total malaria prevalence in the population, but that there is a conflict between personal protection, offered by repellency, and community-wide protection, which relies on the ITN’s insecticidal properties. Crucially, the model suggests that weak repellency allows disease elimination at lower ITN coverage levels.
Collapse
Affiliation(s)
| | - Jacob C. Koella
- Institute of Biology, Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
22
|
Abstract
Mosquitoes use their sense of smell to find hosts, nectar, and oviposition sites, and to avoid repellents. A small number of mosquito species are adapted to feed on humans and have a major impact on public health by transmitting diseases such as malaria, dengue and filariasis. The application of odorants for behavioral control has not been fully realized yet due to complexity of the mosquito olfactory system. Recent progress in molecular and computational tools has enabled rigorous investigations of the mosquito olfactory system function and has started to reveal how specific receptors contribute to attractive and aversive behaviors. Here we discuss recent advances in linking odors to receptors and in exploiting this knowledge in finding attractants and repellents for mosquitoes.
Collapse
Affiliation(s)
- Anandasankar Ray
- Department of Entomology, Center for Disease Vector Research, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Wagman JM, Achee NL, Grieco JP. Insensitivity to the spatial repellent action of transfluthrin in Aedes aegypti: a heritable trait associated with decreased insecticide susceptibility. PLoS Negl Trop Dis 2015; 9:e0003726. [PMID: 25879206 PMCID: PMC4400042 DOI: 10.1371/journal.pntd.0003726] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/30/2015] [Indexed: 12/01/2022] Open
Abstract
Background New vector control paradigms expanding the use of spatial repellents are promising, but there are many gaps in our knowledge about how repellents work and how their long-term use might affect vector populations over time. Reported here are findings from a series of in vitro studies that investigated the plasticity and heritability of spatial repellent (SR) behaviors in Aedes aegypti exposed to airborne transfluthrin, including results that indicate a possible link between repellent insensitivity and insecticide resistance. Methodology/principal findings A dual-choice chamber system was used to observe directional flight behaviors in Aedes aegypti mosquitoes exposed to passively emanating transfluthrin vapors (1.35 mg/m3). Individual SR responder and SR non-responder mosquitoes were identified, collected and maintained separately according to their observed phenotype. Subsequent testing included re-evaluation of behavioral responses in some mosquito cohorts as well as testing the progeny of selectively bred responder and non-responder mosquito strains through nine generations. At baseline (F0 generation), transfluthrin actively repelled mosquitoes in the assay system. F0 mosquitoes repelled upon initial exposure to transfluthrin vapors were no more likely to be repelled again by subsequent exposure 24h later, but repelled mosquitoes allowed to rest for 48h were subsequently repelled at a higher proportion than was observed at baseline. Selective breeding of SR responders for nine generations did not change the proportion of mosquitoes repelled in any generation. However, selective breeding of SR non-responders did produce, after four generations, a strain of mosquitoes that was insensitive to the SR activity of transfluthrin. Compared to the SR responder strain, the SR insensitive strain also demonstrated decreased susceptibility to transfluthrin toxicity in CDC bottle bioassays and a higher frequency of the V1016Ikdr mutation. Conclusions/significance SR responses to volatile transfluthrin are complex behaviors with multiple determinants in Ae. aegypti. Results indicate a role for neurotoxic irritation of mosquitoes by sub-lethal doses of airborne chemical as a mechanism by which transfluthrin can produce SR behaviors in mosquitoes. Accordingly, how prolonged exposure to sub-lethal doses of volatile pyrethroids might impact insecticide resistance in natural vector populations, and how already resistant populations might respond to a given repellent in the field, are important considerations that warrant further monitoring and study. Results also highlight the critical need to develop new repellent active ingredients with novel mechanisms of action. There is growing evidence to support the expanded use of spatial repellents for vector control, but there are still many uncertainties about how repellents work and how their long term use may impact vector populations over time. Here, we conducted a series of in vitro experiments that investigated spatial repellent (SR) behaviors in Aedes aegypti mosquitoes exposed to airborne transfluthrin, a volatile pyrethroid commonly used in repellent products. We were able to show that repellent insensitivity is linked to reduced insecticide susceptibility and increased knock down resistance allele frequency, indicating that sub-lethal doses of airborne transfluthrin can elicit SR behaviors in mosquitoes by inducing an agitated state via neurotoxic pathways independent of olfactory stimulation. This raises questions about how the use of volatile pyrethroid repellents may impact insecticide resistance in target vectors over time, highlighting the need to further understand all of the physiological drivers of SR behaviors and emphasizing the requirement to develop new repellent active ingredients with novel, non-toxic mechanisms of action.
Collapse
Affiliation(s)
- Joseph M. Wagman
- Department of Preventive Medicine and Biometrics, Division of Tropical Public Health, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| | - Nicole L. Achee
- College of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - John P. Grieco
- College of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|