1
|
Yamashita S, Uruma K, Yang C, Higa Y, Minakawa N, Cuamba N, Futami K. The origin and insecticide resistance of Aedes albopictus mosquitoes established in southern Mozambique. Parasit Vectors 2024; 17:292. [PMID: 38978086 PMCID: PMC11229193 DOI: 10.1186/s13071-024-06375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.
Collapse
Affiliation(s)
- Sarina Yamashita
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kawane Uruma
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chao Yang
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Noboru Minakawa
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nelson Cuamba
- Instituto Nacional de Saúde, Ministério da Saúde, C.P. 264, Maputo, Mozambique
| | - Kyoko Futami
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
3
|
Alafo C, Montoya LF, Martí-Soler H, Máquina M, Malheia A, Sacoor C, Abílio AP, Marrenjo D, Cuamba N, Galatas B, Aide P, Saúte F, Paaijmans KP. An evaluation of LLIN physical integrity and population attitudes towards net use, care and handling during the Magude project in southern Mozambique. Malar J 2024; 23:87. [PMID: 38532416 PMCID: PMC10967156 DOI: 10.1186/s12936-024-04910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Magude Project assessed the feasibility of eliminating malaria in Magude district, a low transmission setting in southern Mozambique, using a package of interventions, including long-lasting insecticidal nets (LLINs). As the efficacy of LLINs depends in part on their physical integrity, this metric was quantified for Olyset® Nets post mass-distribution, in addition to net use, care and handling practices and other risk factors associated with net physical integrity. METHODS Nets were collected during a cross-sectional net evaluation, nine months after the Magude project commenced, which was 2 years after the nets were distributed by the National Malaria Control Programme (NMCP). The physical integrity of the nets was assessed by counting and sizing the holes at different positions on each net. A structured questionnaire was administered to assess how the selected net was used and treated (care, wash and repair). Net bio-efficacy was assessed following the standard World Health Organization (WHO) cone bioassay procedures. RESULTS Out of the 170 Olyset® Nets included in the analysis, 63.5% had been used the night before. The main reason for not using a net was the notion that there were no mosquitoes present. The average number of people using each net was 1.79. Two thirds of the nets had only been washed once or twice since distribution. Most nets (80.9%) were holed and 18% were torn, but none of the risk factors were significantly associated with net integrity, except for presence of mice in the household. Less than half of the participants noticed holes in holed nets, and of those only 38.6% attempted to repair those. None of the six nets that were tested for bio-efficacy passed the WHO threshold of 80% mosquito mortality. CONCLUSION Overall the majority of Olyset® Nets were in serviceable condition two years post-distribution, but their insecticidal effect may have been lost. This study-together with previous evidence on suboptimal access to and use of LLINs in Magude district-highlights that LLINs as an intervention could have been optimized during the Magude project to achieve maximum intervention impact.
Collapse
Affiliation(s)
- Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
| | - Lucia Fernandez Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
| | | | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
| | - Ana Paula Abílio
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
- Global Malaria Program, World Health Organization, Geneva, Switzerland
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique
| | - Krijn P Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Maputo, Mozambique.
- ISGlobal, Barcelona, Spain.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
4
|
Máquina M, Opiyo MA, Cuamba N, Marrenjo D, Rodrigues M, Armando S, Nhate S, Luis F, Saúte F, Candrinho B, Lobo NF, Paaijmans KP. Multiple Anopheles species complicate downstream analysis and decision-making in a malaria pre-elimination area in southern Mozambique. Malar J 2024; 23:23. [PMID: 38238774 PMCID: PMC10797956 DOI: 10.1186/s12936-024-04842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Different anopheline species (even within a species group/complex) can differ in their feeding and resting behaviours, which impact both malaria transmission patterns as well as the efficacy of vector control interventions. While morphological identification of sampled specimens is an important first step towards understanding species diversity and abundance, misidentification can result in the implementation of less effective vector control measures, and consequently smaller reductions in the number of local malaria cases. Focusing on southern Mozambique, a malaria pre-elimination area where malaria remains persistent, the aims of this preliminary study were to use molecular identification (CO1 and ITS2 barcoding) to (1) validate the results from the morphological identification (with a particular focus on Anopheles pharoensis and Anopheles squamosus), and (2) have a closer look at the Anopheles coustani group (which includes Anopheles tenebrosus and Anopheles ziemanni). METHODS Female anopheline mosquitoes (n = 81) were identified morphologically and subsequently sequenced at the ribosomal DNA internal transcribed spacer region 2 (ITS2) and/or cytochrome oxidase subunit 1 (CO1) loci towards species determination. RESULTS Out of the 62 specimens that were identified morphologically to species, 4 (6.5%) were misidentified. Regarding the An. coustani group, morphological identification showed that several members are present in southern Mozambique, including An. coustani sensu lato (s.l.), An. ziemanni and An. tenebrosus. However, based on both ITS2 and CO1 sequences, the exact species remains unknown for the latter two members until voucher sequences are available for comparison. CONCLUSION The reason(s) for morphological misidentification of anopheline mosquitoes need to be mitigated. This is usually related to both the capacity (i.e. training) of the microscopist to identify anopheline species, and the information provided in the dichotomous identification key. As the An. coustani complex contributes to (residual) malaria transmission in sub-Saharan Africa, it may play a role in the observed persistent malaria in southern Mozambique. A better baseline characterizing of the local anophelines species diversity and behaviours will allow us to improve entomological surveillance strategies, better understand the impact of vector control on each local vector species, and identify new approaches to target those vector species.
Collapse
Affiliation(s)
- Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Mercy A Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
- ISGlobal, Barcelona, Spain
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisária Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | | | | | - Sheila Nhate
- Maputo Provincial Health Service, Matola, Mozambique
| | - Fabião Luis
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Baltazar Candrinho
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Neil F Lobo
- Malaria Elimination Initiative, University of California San Francisco, San Francisco, CA, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Krijn P Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique.
- ISGlobal, Barcelona, Spain.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Jones J, Matope A, Barreaux P, Gleave K, Steen K, Ranson H, McCall PJ, Foster GM. Video augmentation of the WHO cone assay to quantify mosquito behavioural responses to insecticide-treated nets. Parasit Vectors 2023; 16:420. [PMID: 37968752 PMCID: PMC10652617 DOI: 10.1186/s13071-023-06029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) using pyrethroids have been the main vector control tools deployed in malaria endemic countries and are responsible for the dramatic reduction in African malaria cases in the early 2000s. The World Health Organization (WHO) cone test was designed to assess the rapid toxicity effects of pyrethroid exposure on mosquito vectors but has yielded no insights beyond 60-min knockdown and 24-h mortality. As dual-active-ingredient (AI) ITNs become more widespread, bioassays that can provide realistic assessment of single- and dual-treated ITNs (i.e. nets with more than one active ingredient) are urgently needed. METHODS We present an augmentation of the cone test that enables accurate quantification of vector behavioural responses (specifically movement, spatial and temporal occupancy) to ITNs using video recording and bespoke software that uses background segmentation methods to detect spatial changes in the movement of mosquitoes within the cone. Four strains of Anopheles gambiae sensu lato (s.l.) were exposed to four ITNs (PermaNet 2.0, PermaNet 3.0, Olyset Net, Interceptor G2) and untreated nets in these modified cone tests. Life history data (post-exposure blood-feeding, blood meal weight, longevity) for individual mosquitoes were recorded. RESULTS All mosquitoes responded to the presence of ITNs, spending from 1.48 to 3.67 times more time in the upper region of the cone, depending on the ITN type. Of all ITNs, PermaNet 2.0 provoked the smallest change in behavioural response. Activity in the cone influenced observed post-exposure longevity, and in resistant strains exposed to Interceptor G2, the higher the activity, the greater the risk of dying, as long as the proportion of activity at the net surface was less than 50%. All ITNs inhibited blood-feeding, and smaller blood meals were taken when mosquitoes fed. CONCLUSIONS The additional mosquito behaviour data obtained by using this modification to the WHO cone test provides unique insight into the innate responses of different mosquito strains on untreated nets and the entomological mode of action of ITNs, important evidence when evaluating ITN characteristics.
Collapse
Affiliation(s)
- Jeff Jones
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Agnes Matope
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Priscille Barreaux
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Katherine Gleave
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Keith Steen
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Hilary Ranson
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Philip J McCall
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Geraldine M Foster
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
6
|
Barreaux P, Ranson H, Foster GM, McCall PJ. Pyrethroid-treated bed nets impair blood feeding performance in insecticide resistant mosquitoes. Sci Rep 2023; 13:10055. [PMID: 37344580 DOI: 10.1038/s41598-023-35958-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
The blood feeding performance of female mosquitoes directly impacts their ability to transmit malaria. Yet their host seeking and blood feeding behaviours in the presence of insecticide-treated nets (ITNs) are still poorly understood. This work explores how both insecticide resistant and susceptible Anopheles gambiae s.l. mosquitoes interact with pyrethroid nets (PermaNet 2.0 or Olyset net) or an untreated net (UTN) while attempting to blood feed on a human arm. Regardless of mosquito resistance status, the ITNs did not efficiently prevent host searching but reduced blood feeding success by 34.1 (29.31-38.95) %. The Permanet and Olyset net reduced to 227.5 (208.19-246.77) sec and 235.9 (214.03-257.74) sec the average blood feeding duration from 369.9 (342.78-397.04) sec with the UTN. The ingested blood volume was on average 22% lower for all mosquitoes exposed to insecticide. When feeding through ITNs, the blood volume flow rate of the susceptible strain increased by 35%, but no significant difference was found in the resistant strain. Thus, whilst the presence of the insecticide in ITNs reduced mosquito blood feeding success and blood volume, the mosquito's ability to respond by accelerating her rate of blood ingestion may further reduce the impact of ITNs on resistant mosquitoes.
Collapse
Affiliation(s)
- Priscille Barreaux
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
7
|
Das S, Máquina M, Phillips K, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP, Huijben S. Fine-scale spatial distribution of deltamethrin resistance and population structure of Anopheles funestus and Anopheles arabiensis populations in Southern Mozambique. Malar J 2023; 22:94. [PMID: 36915131 PMCID: PMC10010967 DOI: 10.1186/s12936-023-04522-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Insecticide resistance in malaria vectors can be spatially highly heterogeneous, yet population structure analyses frequently find relatively high levels of gene flow among mosquito populations. Few studies have contemporaneously assessed phenotypic, genotypic and population structure analysis on mosquito populations and none at fine geographical scales. In this study, genetic diversity, population structure, and insecticide resistance profiles of Anopheles funestus and Anopheles arabiensis were examined across mosquito populations from and within neighbouring villages. METHODS Mosquitoes were collected from 11 towns in southern Mozambique, as well as from different neighbourhoods within the town of Palmeira, during the peak malaria transmission season in 2016. CDC bottle bioassay and PCR assays were performed with Anopheles mosquitoes at each site to determine phenotypic and molecular insecticide resistance profiles, respectively. Microsatellite analysis was conducted on a subsample of mosquitoes to estimate genetic diversity and population structure. RESULTS Phenotypic insecticide resistance to deltamethrin was observed in An. funestus sensu stricto (s.s.) throughout the area, though a high level of mortality variation was seen. However, 98% of An. funestus s.s. were CYP6P9a homozygous resistant. An. arabiensis was phenotypically susceptible to deltamethrin and 99% were kdr homozygous susceptible. Both Anopheles species exhibited high allelic richness and heterozygosity. Significant deviations from Hardy-Weinberg equilibrium were observed, and high linkage disequilibrium was seen for An. funestus s.s., supporting population subdivision. However, the FST values were low for both anophelines (- 0.00457 to 0.04213), Nm values were high (9.4-71.8 migrants per generation), AMOVA results showed almost 100% genetic variation among and within individuals, and Structure analysis showed no clustering of An. funestus s.s. and An. arabiensis populations. These results suggest high gene flow among mosquito populations. CONCLUSION Despite a relatively high level of phenotypic variation in the An. funestus population, molecular analysis shows the population is admixed. These data indicate that CYP6P9a resistance markers do not capture all phenotypic variation in the area, but also that resistance genes of high impact are likely to easily spread in the area. Conversely, other strategies, such as transgenic mosquito release programmes will likely not face challenges in this locality.
Collapse
Affiliation(s)
- Smita Das
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- PATH, Seattle, WA, USA
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Keeley Phillips
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Dulcisaria Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Fundação Manhiça, Manhica, Mozambique
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
8
|
Wang L, Soto A, Remue L, Rosales Rosas AL, De Coninck L, Verwimp S, Bouckaert J, Vanwinkel M, Matthijnssens J, Delang L. First Report of Mutations Associated With Pyrethroid (L1014F) and Organophosphate (G119S) Resistance in Belgian Culex (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2072-2079. [PMID: 36130161 DOI: 10.1093/jme/tjac138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.
Collapse
Affiliation(s)
- Lanjiao Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Alina Soto
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Laure Remue
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Sam Verwimp
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Johanna Bouckaert
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mathias Vanwinkel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
9
|
Fernández Montoya L, Máquina M, Martí-Soler H, Sherrard-Smith E, Alafo C, Opiyo M, Comiche K, Galatas B, Huijben S, Koekemoer LL, Oliver SV, Maartens F, Marrenjo D, Cuamba N, Aide P, Saúte F, Paaijmans KP. The realized efficacy of indoor residual spraying campaigns falls quickly below the recommended WHO threshold when coverage, pace of spraying and residual efficacy on different wall types are considered. PLoS One 2022; 17:e0272655. [PMID: 36190958 PMCID: PMC9529131 DOI: 10.1371/journal.pone.0272655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 11/06/2022] Open
Abstract
Indoor residual spraying (IRS) has been and remains an important malaria control intervention in southern Mozambique, South Africa and Eswatini. A better understanding of the effectiveness of IRS campaigns is critical to guide future elimination efforts. We analyze the three IRS campaigns conducted during a malaria elimination demonstration project in southern Mozambique, the "Magude project", and propose a new method to calculate the efficacy of IRS campaigns adjusting for IRS coverage, pace of house spraying and IRS residual efficacy on different wall types. Anopheles funestus sensu lato (s.l.) and An. gambiae s.l. were susceptible to pirimiphos-methyl and DDT. Anopheles funestus s.l. was resistant to pyrethroids, with 24h post-exposure mortality being lower for An. funestus sensu stricto (s.s.) than for An. parensis (collected indoors). The percentage of structures sprayed was above 90% and percentage of people covered above 86% in all three IRS campaigns. The percentage of households sprayed was above 83% in 2015 and 2016, but not assessed in 2017. Mosquito mortality 24h post-exposure stayed above 80% for 196 days after the 2016 IRS campaign and 222 days after the 2017 campaign and was 1.5 months longer on mud walls than on cement walls. This was extended by up to two months when 120h post-exposure mortality was considered. The district-level realized IRS efficacy was 113 days after the 2016 campaign. While the coverage of IRS campaigns in Magude were high, IRS protection did not remain optimal for the entire high malaria transmissions season. The use of a longer-lasting IRS product could have further supported the interruption of malaria transmission in the district. To better estimate the protection afforded by IRS campaigns, National Malaria Control Programs and partners are encouraged to adjust the calculation of IRS efficacy for IRS coverage, pace of house spraying during the campaign and IRS efficacy on different wall types combined with wall type distribution in the sprayed area.
Collapse
Affiliation(s)
- Lucia Fernández Montoya
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | | | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Mercy Opiyo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Kiba Comiche
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
| | - Silvie Huijben
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shüné V. Oliver
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Nelson Cuamba
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Krijn P. Paaijmans
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
- ISGlobal, Barcelona, Spain
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
10
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Tchouakui M, Oruni A, Assatse T, Manyaka CR, Tchoupo M, Kayondo J, Wondji CS. Fitness cost of target-site and metabolic resistance to pyrethroids drives restoration of susceptibility in a highly resistant Anopheles gambiae population from Uganda. PLoS One 2022; 17:e0271347. [PMID: 35881658 PMCID: PMC9321773 DOI: 10.1371/journal.pone.0271347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insecticide resistance threatens the effectiveness of malaria vector control, calling for an urgent need to design suitable resistance management strategies. Here, we established the resistance profiling of an Ugandan Anopheles gambiae population to insecticides using WHO procedures and assessed the potential restoration of susceptibility in the hybrid line Mayuge/KISUMU in an insecticide-free environment for eighteen (18) generations. RESULTS This An gambiae population exhibited a very high intensity of resistance to permethrin, deltamethrin, and alphacypermethrin with a consistent loss of efficacy of all long-lasting insecticidal nets (LLINs) tested including PBO-based and new generation nets Interceptor G2 (IG2) and Royal guard. Molecular analysis revealed a fixation of the L1014S-kdr mutation together with the overexpression of some P450 metabolic genes (CYP6Z1, CYP9K1, CYP6P1, 3 & 4) besides the cuticular resistance-related genes (CYP4G16) and sensorial appendage proteins (SAP1, SAP2, and SAP3) but no GSTe2 overexpression. In the absence of selection pressure, the mortality rate after exposure to insecticides increased significantly over generations, and restoration of susceptibility was observed for most of the insecticides in less than 10 generations. Accordingly, a significant reduction in the frequency of KdrE was observed after 13 generations coupled with reduced expression of most metabolic resistance genes. CONCLUSIONS The results of this study show that the high intensity of pyrethroid resistance observed in An gambiae from Uganda associated with the loss of efficacy of LLINs could compromise vector control efforts. The study also highlights that an early rotation of insecticides could help manage resistance to insecticides by restoring the susceptibility. However, the persistence of Kdr mutation together with overexpression of some metabolic genes after many generations in the absence of selection pressure indicates the potential implication of modifiers alleviating the cost of resistance which needs to be further investigated.
Collapse
Affiliation(s)
| | - Ambrose Oruni
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Claudine R Manyaka
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- International Institute of Tropical Agriculture (IITA), Yaoundé, Cameroon
| |
Collapse
|
12
|
Alafo C, Martí-Soler H, Máquina M, Malheia A, Aswat AS, Koekemoer LL, Colborn J, Lobo NF, Tatarsky A, Williams YA, Marrenjo D, Cuamba N, Rabinovich R, Alonso P, Aide P, Saúte F, Paaijmans KP. To spray or target mosquitoes another way: focused entomological intelligence guides the implementation of indoor residual spraying in southern Mozambique. Malar J 2022; 21:215. [PMID: 35820899 PMCID: PMC9275269 DOI: 10.1186/s12936-022-04233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To eliminate malaria in southern Mozambique, the National Malaria Control Programme and its partners are scaling up indoor residual spraying (IRS) activities in two provinces, Gaza and Inhambane. An entomological surveillance planning tool (ESPT) was used to answer the programmatic question of whether IRS would be effective in target geographies, given limited information on local vector bionomics. METHODS Entomological intelligence was collected in six sentinel sites at the end of the rainy season (April-May 2018) and the beginning of the dry season (June-July 2018). The primary objective was to provide an 'entomological snapshot' by collecting question-based, timely and high-quality data within one single week in each location. Host-seeking behaviour (both indoors and outdoors) was monitored by human-baited tent traps. Indoor resting behaviour was quantified by pyrethrum spray catches and window exit traps. RESULTS Five different species or species groups were identified: Anopheles funestus sensu lato (s.l.) (66.0%), Anopheles gambiae s.l. (14.0%), Anopheles pharoensis (1.4%), Anopheles tenebrosus (14.1%) and Anopheles ziemanni (4.5%). Anopheles funestus sensu stricto (s.s.) was the major vector among its sibling species, and 1.9% were positive for Plasmodium falciparum infections. Anopheles arabiensis was the most abundant vector species within the An. gambiae complex, but none tested positive for P. falciparum infections. Some An. tenebrosus were positive for P. falciparum (1.3%). When evaluating behaviours that impact IRS efficacy, i.e. endophily, the known primary vector An. funestus s.s., was found to rest indoors-demonstrating at least part of its population will be impacted by the intervention if insecticides are selected to which this vector is susceptible. However, other vector species, including An. gambiae s.l., An. tenebrosus, An. pharoensis and An. ziemanni, showed exophilic and exophagic behaviours in several of the districts surveilled. CONCLUSION The targeted approach to entomological surveillance was successful in collecting question-based entomological intelligence to inform decision-making about the use of IRS in specific districts. Endophilic An. funestus s.s. was documented as being the most prevalent and primary malaria vector suggesting that IRS can reduce malaria transmission, but the presence of other vector species both indoors and outdoors suggests that alternative vector control interventions that target these gaps in protection may increase the impact of vector control in southern Mozambique.
Collapse
Affiliation(s)
- Celso Alafo
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | | | - Mara Máquina
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Arlindo Malheia
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Ayesha S Aswat
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yasmin A Williams
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dulcisária Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc, Maputo, Mozambique
| | - Regina Rabinovich
- ISGlobal, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pedro Alonso
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Krijn P Paaijmans
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique.
- ISGlobal, Barcelona, Spain.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Menze BD, Mugenzi LMJ, Tchouakui M, Wondji MJ, Tchoupo M, Wondji CS. Experimental Hut Trials Reveal That CYP6P9a/b P450 Alleles Are Reducing the Efficacy of Pyrethroid-Only Olyset Net against the Malaria Vector Anopheles funestus but PBO-Based Olyset Plus Net Remains Effective. Pathogens 2022; 11:pathogens11060638. [PMID: 35745492 PMCID: PMC9228255 DOI: 10.3390/pathogens11060638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Malaria remains a major public health concern in Africa. Metabolic resistance in major malaria vectors such as An. funestus is jeopardizing the effectiveness of long-lasting insecticidal nets (LLINs) to control malaria. Here, we used experimental hut trials (EHTs) to investigate the impact of cytochrome P450-based resistance on the efficacy of PBO-based net (Olyset Plus) compared to a permethrin-only net (Olyset), revealing a greater loss of efficacy for the latter. EHT performed with progenies of F5 crossing between the An. funestus pyrethroid-resistant strain FUMOZ and the pyrethroid-susceptible strain FANG revealed that PBO-based nets (Olyset Plus) induced a significantly higher mortality rate (99.1%) than pyrethroid-only nets (Olyset) (56.7%) (p < 0.0001). The blood-feeding rate was higher in Olyset compared to Olyset Plus (11.6% vs. 5.6%; p = 0.013). Genotyping the CYP6P9a/b and the intergenic 6.5 kb structural variant (SV) resistance alleles showed that, for both nets, homozygote-resistant mosquitoes have a greater ability to blood-feed than the susceptible mosquitoes. Homozygote-resistant genotypes significantly survived more with Olyset after cone assays (e.g., CYP6P9a OR = 34.6; p < 0.0001) than homozygote-susceptible mosquitoes. A similar but lower correlation was seen with Olyset Plus (OR = 6.4; p < 0.001). Genotyping EHT samples confirmed that CYP6P9a/b and 6.5 kb_SV homozygote-resistant mosquitoes survive and blood-feed significantly better than homozygote-susceptible mosquitoes when exposed to Olyset. Our findings highlight the negative impact of P450-based resistance on pyrethroid-only nets, further supporting that PBO nets, such as Olyset Plus, are a better solution in areas of P450-mediated resistance to pyrethroids.
Collapse
Affiliation(s)
- Benjamin D. Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
- Correspondence: (B.D.M.); (C.S.W.)
| | - Leon M. J. Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Murielle J. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Micareme Tchoupo
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), Yaoundé 13591, Cameroon; (L.M.J.M.); (M.T.); (M.T.)
- Correspondence: (B.D.M.); (C.S.W.)
| |
Collapse
|
14
|
Barreaux P, Koella JC, N'Guessan R, Thomas MB. Use of novel lab assays to examine the effect of pyrethroid-treated bed nets on blood-feeding success and longevity of highly insecticide-resistant Anopheles gambiae s.l. mosquitoes. Parasit Vectors 2022; 15:111. [PMID: 35346334 PMCID: PMC8962112 DOI: 10.1186/s13071-022-05220-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background There is a pressing need to improve understanding of how insecticide resistance affects the functional performance of insecticide-treated nets (ITNs). Standard WHO insecticide resistance monitoring assays are designed for resistance surveillance and do not necessarily provide insight into how different frequencies, mechanisms or intensities of resistance affect the ability of ITNs to reduce malaria transmission. Methods The current study presents some novel laboratory-based assays that attempt to better simulate realistic exposure of mosquitoes to ITNs and to quantify impact of exposure not only on instantaneous mortality, but also on blood-feeding and longevity, two traits that are central to transmission. The assays evaluated the performance of a standard ITN (Permanet® 2.0; Vestergaard Frandsen), a ‘next generation’ combination ITN with a resistance-breaking synergist (Permanet® 3.0) and an untreated net (UTN), against field-derived Anopheles gambiae sensu lato mosquitoes from Côte d’Ivoire exhibiting a 1500-fold increase in pyrethroid resistance relative to a standard susceptible strain. Results The study revealed that the standard ITN induced negligible instantaneous mortality against the resistant mosquitoes, whereas the resistance-breaking net caused high mortality and a reduction in blood-feeding. However, both ITNs still impacted long-term survival relative to the UTN. The impact on longevity depended on feeding status, with blood-fed mosquitoes living longer than unfed mosquitoes following ITN exposure. Exposure to both ITNs also reduced the blood-feeding success, the time spent on the net and blood-feeding duration, relative to the untreated net. Conclusion Although a standard ITN did not have as substantial instantaneous impact as the resistance-breaking net, it still had significant impacts on traits important for transmission. These results highlight the benefit of improved bioefficacy assays that allow for realistic exposure and consider sub- or pre-lethal effects to help assess the functional significance of insecticide resistance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05220-y.
Collapse
Affiliation(s)
- Priscille Barreaux
- Liverpool School of Tropical Medicine, Liverpool, UK. .,Pennsylvania State University, State College, PA, USA. .,University of Neuchâtel, Neuchâtel, Switzerland.
| | | | - Raphael N'Guessan
- London School of Tropical Medicine, London, UK.,Vector Control Product Evaluation Centre, Institute Pierre Richet, Bouaké, Côte d'Ivoire
| | - Matthew B Thomas
- Pennsylvania State University, State College, PA, USA.,University of York, York, UK
| |
Collapse
|
15
|
Oliver SV, Lyons CL, Brooke BD. The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci Rep 2022; 12:3877. [PMID: 35264696 PMCID: PMC8907345 DOI: 10.1038/s41598-022-07798-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Insecticide-based vector control is key to the reduction and elimination of malaria. Although insecticide resistance is common in malaria vector populations, the operational implications are often unclear. High intensity pyrethroid resistance in the major malaria vector Anopheles funestus has been linked to control failure in Southern Africa. The aim of this study was to assess linkages between mosquito age, blood feeding and the intensity of pyrethroid resistance in two An. funestus laboratory strains that originate from southern Mozambique, namely the moderately pyrethroid resistant FUMOZ and the highly resistant FUMOZ-R. Resistance tended to decline with age. This effect was significantly mitigated by blood feeding and was most apparent in cohorts that received multiple blood meals. In the absence of insecticide exposure, blood feeding tended to increase longevity of An. funestus females and, following insecticide exposure, enhanced their levels of deltamethrin resistance, even in older age groups. These effects were more marked in FUMOZ-R compared to FUMOZ. In terms of programmatic decision-making, these data suggest that it would be useful to assess the level and intensity of resistance in older female cohorts wherever possible, notwithstanding the standard protocols for resistance testing using age-standardised samples.
Collapse
Affiliation(s)
- Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2192, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
| | - Candice L Lyons
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, 1 Modderfontein Road, Sandringham, Johannesburg, 2192, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| |
Collapse
|
16
|
Wetzler EA, Park C, Arroz JAH, Chande M, Mussambala F, Candrinho B. Impact of mass distribution of insecticide-treated nets in Mozambique, 2012 to 2025: Estimates of child lives saved using the Lives Saved Tool. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000248. [PMID: 36962318 PMCID: PMC10022185 DOI: 10.1371/journal.pgph.0000248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Malaria was the leading cause of post-neonatal deaths in Mozambique in 2017. The use of insecticide treated nets (ITNs) is recognized as one of the most effective ways to reduce malaria mortality in children. No previous analyses have estimated changes in mortality attributable to the scale-up of ITNs, accounting for provincial differences in mortality rates and coverage of health interventions. Based upon annual provincial ownership coverage of ITNs, the Lives Saved Tool (LiST), a multi-cause mathematical model, estimated under-5 lives saved attributable to increased household ITN coverage in 10 provinces of Mozambique between 2012 and 2018, and projected lives saved from 2019 to 2025 if 2018 coverage levels are sustained. An estimated 14,040 under-5 child deaths were averted between 2012 and 2018. If 2018 coverage levels are maintained until 2025, an additional 33,277 child deaths could be avoided. If coverage reaches at least 85% in all ten provinces by 2022, then a projected 36,063 child lives can be saved. From 2012 to 2018, the estimated number of lives saved was highest in Zambezia and Tete provinces. Increases in ITN coverage can save a substantial number of child lives in Mozambique. Without continued investment, thousands of avoidable child deaths will occur.
Collapse
Affiliation(s)
- Erica A Wetzler
- World Vision United States, Federal Way, Washington, United States of America
| | - Chulwoo Park
- Department of Public Health and Recreation, San José State University, San Jose, California, United States of America
| | | | | | | | | |
Collapse
|
17
|
Namias A, Jobe NB, Paaijmans KP, Huijben S. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife 2021; 10:e65655. [PMID: 34355693 PMCID: PMC8346280 DOI: 10.7554/elife.65655] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.
Collapse
Affiliation(s)
- Alice Namias
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, Paris, France
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Ndey Bassin Jobe
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| | - Krijn Petrus Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Biodesign Institute, Tempe, United States
- ISGlobal, Carrer del Rosselló, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, Mozambique
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Life Sciences C, Tempe, United States
| |
Collapse
|
18
|
Marti-Soler H, Máquina M, Opiyo M, Alafo C, Sherrard-Smith E, Malheia A, Cuamba N, Sacoor C, Rabinovich R, Aide P, Saúte F, Paaijmans K. Effect of wall type, delayed mortality and mosquito age on the residual efficacy of a clothianidin-based indoor residual spray formulation (SumiShield™ 50WG) in southern Mozambique. PLoS One 2021; 16:e0248604. [PMID: 34351936 PMCID: PMC8341595 DOI: 10.1371/journal.pone.0248604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Indoor residual spraying (IRS) is one of the main malaria vector control strategies in Mozambique alongside the distribution of insecticide treated nets. As part of the national insecticide resistance management strategy, Mozambique introduced SumiShield™ 50WG, a third generation IRS product, in 2018. Its residual efficacy was assessed in southern Mozambique during the 2018-2019 malaria season. Using a susceptible Anopheles arabiensis strain, residual efficacy was assessed on two different wall surfaces, cement and mud-plastered walls, using standard WHO (World Health Organization) cone bioassay tests at three different heights. Female mosquitoes of two age groups (2-5 and 13-26 day old) were exposed for 30 minutes, after which mortality was observed 24h, 48h, 72h, and 96h and 120h post-exposure to assess (delayed) mortality. Lethal times (LT) 90, LT50 and LT10 were estimated using Bayesian models. Mortality 24h post exposure was consistently below 80%, the current WHO threshold value for effective IRS, in both young and old mosquitoes, regardless of wall surface type. Considering delayed mortality, residual efficacies (mosquito mortality equal or greater than 80%) ranged from 1.5 to ≥12.5 months, with the duration depending on mortality time post exposure, wall type and mosquito age. Looking at mortality 72h after exposure, residual efficacy was between 6.5 and 9.5 months, depending on wall type and mosquito age. The LT50 and LT10 (i.e. 90% of the mosquitoes survive exposure to the insecticides) values were consistently higher for older mosquitoes (except for LT10 values for 48h and 72h post-exposure mortality) and ranged from 0.9 to 5.8 months and 0.2 to 7.8 months for LT50 and LT10, respectively. The present study highlights the need for assessing mosquito mortality beyond the currently recommended 24h post exposure. Failure to do so may lead to underestimation of the residual efficacy of IRS products, as delayed mortality will lead to a further reduction in mosquito vector populations and potentially negatively impact disease transmission. Monitoring residual efficacy on relevant wall surfaces, including old mosquitoes that are ultimately responsible for malaria transmission, and assessing delayed mortalities are critical to provide accurate and actionable data to guide vector control programmes.
Collapse
Affiliation(s)
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mercy Opiyo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Goodbye Malaria, Tchau Tchau Malaria Foundation, Mozambique
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Regina Rabinovich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Krijn Paaijmans
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
19
|
Pyrethroid Resistance Aggravation in Ugandan Malaria Vectors Is Reducing Bednet Efficacy. Pathogens 2021; 10:pathogens10040415. [PMID: 33915866 PMCID: PMC8065452 DOI: 10.3390/pathogens10040415] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Monitoring cases of insecticide resistance aggravation and the effect on the efficacy of control tools is crucial for successful malaria control. In this study, the resistance intensity of major malaria vectors from Uganda was characterised and its impact on the performance of various insecticide-treated nets elucidated. High intensity of resistance to the discriminating concentration (DC), 5× DC, and 10× DC of pyrethroids was observed in both Anopheles funestus and Anopheles gambiae in Mayuge and Busia leading to significant reduced performance of long-lasting insecticidal nets (LLINs) including the piperonyl butoxide (PBO)-based nets (Olyset Plus). Molecular analysis revealed significant over-expression of cytochrome P450 genes (CYP9K1 and CYP6P9a/b). However, the expression of these genes was not associated with resistance escalation as no difference was observed in the level of expression in mosquitoes resistant to 5× DC and 10× DC compared to 1× DC suggesting that other resistance mechanisms are involved. Such high intensity of pyrethroid resistance in Uganda could have terrible consequences on the effectiveness of insecticide-based interventions and urgent action should be taken to prevent the spread of super-resistance in malaria vectors.
Collapse
|
20
|
Yu S, Wang P, Qin J, Zheng H, Wang J, Liu T, Yang X, Wang Y. Bacillus sphaericus exposure reduced vector competence of Anopheles dirus to Plasmodium yoelii by upregulating the Imd signaling pathway. Parasit Vectors 2020; 13:446. [PMID: 32891162 PMCID: PMC7487769 DOI: 10.1186/s13071-020-04321-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/30/2020] [Indexed: 12/05/2022] Open
Abstract
Background Vector control with Bacillus sphaericus (Bs) is an effective way to block the transmission of malaria. However, in practical application of Bs agents, a sublethal dose effect was often caused by insufficient dosing, and it is little known whether the Bs exposure would affect the surviving mosquitoes’ vector capacity to malaria. Methods A sublethal dose of the Bs 2362 strain was administrated to the early fourth-instar larvae of Anopheles dirus to simulate shortage use of Bs in field circumstance. To determine vector competence, mosquitoes were dissected and the oocysts in the midguts were examined on day 9–11 post-infection with Plasmodium yoelii. Meanwhile, a SYBR quantitative PCR assay was conducted to examine the transcriptional level of the key immune molecules of mosquitoes, and RNA interference was utilized to validate the role of key immune effector molecule TEP1. Results The sublethal dose of Bs treatment significantly reduced susceptibility of An. dirus to P. yoelii, with the decrease of P. yoelii infection intensity and rate. Although there existed a melanization response of adult An. dirus following challenge with P. yoelii, it was not involved in the decrease of vector competence as no significant difference of melanization rates and densities between the control and Bs groups was found. Further studies showed that Bs treatment significantly increased TEP1 expression in the fourth-instar larvae (L4), pupae (Pu), 48 h post-infection (hpi) and 72 hpi (P < 0.001). Further, gene-silencing of TEP1 resulted in disappearance of the Bs impact on vector competence of An. dirus to P. yoelii. Moreover, the transcriptional level of PGRP-LC and Rel2 were significantly elevated by Bs treatment with decreased expression of the negative regulator Caspar at 48 hpi, which implied that the Imd signaling pathway was upregulated by Bs exposure. Conclusions Bs exposure can reduce the vector competence of An. dirus to malaria parasites through upregulating Imd signaling pathway and enhancing the expression of TEP1. The data could not only help us to understand the impact and mechanism of Bs exposure on Anopheles’ vector competence to malaria but also provide us with novel clues for wiping out malaria using vector control.![]()
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Pan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Jie Qin
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
21
|
Galatas B, Saúte F, Martí-Soler H, Guinovart C, Nhamussua L, Simone W, Munguambe H, Hamido C, Montañà J, Muguande O, Maartens F, Luis F, Paaijmans K, Mayor A, Bassat Q, Menéndez C, Macete E, Rabinovich R, Alonso PL, Candrinho B, Aide P. A multiphase program for malaria elimination in southern Mozambique (the Magude project): A before-after study. PLoS Med 2020; 17:e1003227. [PMID: 32797101 PMCID: PMC7428052 DOI: 10.1371/journal.pmed.1003227] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/17/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria eradication remains the long-term vision of the World Health Organization (WHO). However, whether malaria elimination is feasible in areas of stable transmission in sub-Saharan Africa with currently available tools remains a subject of debate. This study aimed to evaluate a multiphased malaria elimination project to interrupt Plasmodium falciparum malaria transmission in a rural district of southern Mozambique. METHODS AND FINDINGS A before-after study was conducted between 2015 and 2018 in the district of Magude, with 48,448 residents living in 10,965 households. Building on an enhanced surveillance system, two rounds of mass drug administrations (MDAs) per year over two years (phase I, August 2015-2017), followed by one year of reactive focal mass drug administrations (rfMDAs) (phase II, September 2017-June 2018) were deployed with annual indoor residual spraying (IRS), programmatically distributed long-lasting insecticidal nets (LLINs), and standard case management. The four MDA rounds covered 58%-72% of the population, and annual IRS reported coverage was >70%. Yearly parasite surveys and routine surveillance data were used to monitor the primary outcomes of the study-malaria prevalence and incidence-at baseline and annually since the onset of the project. Parasite prevalence by rapid diagnostic test (RDT) declined from 9.1% (95% confidence interval [CI] 7.0-11.8) in May 2015 to 2.6% (95% CI 2.0-3.4), representing a 71.3% (95% CI 71.1-71.4, p < 0.001) reduction after phase I, and to 1.4% (95% CI 0.9-2.2) after phase II. This represented an 84.7% (95% CI 81.4-87.4, p < 0.001) overall reduction in all-age prevalence. Case incidence fell from 195 to 75 cases per 1,000 during phase I (61.5% reduction) and to 67 per 1,000 during phase II (65.6% overall reduction). Interrupted time series (ITS) analysis was used to estimate the level and trend change in malaria cases associated with the set of project interventions and the number of cases averted. Phase I interventions were associated with a significant immediate reduction in cases of 69.1% (95% CI 57.5-77.6, p < 0.001). Phase II interventions were not associated with a level or trend change. An estimated 76.7% of expected cases were averted throughout the project (38,369 cases averted of 50,005 expected). One malaria-associated inpatient death was observed during the study period. There were 277 mild adverse events (AEs) recorded through the passive pharmacovigilance system during the four MDA rounds. One serious adverse event (SAE) that resulted in death was potentially related to the drug. The study was limited by the incomplete coverage of interventions, the quality of the routine and cross-sectional data collected, and the restricted accuracy of ITS analysis with a short pre-intervention period. CONCLUSION In this study, we observed that the interventions deployed during the Magude project fell short of interrupting P. falciparum transmission with the coverages achieved. While new tools and strategies may be required to eventually achieve malaria elimination in stable transmission areas of sub-Saharan Africa, this project showed that innovative mixes of interventions can achieve large reductions in disease burden, a necessary step in the pathway towards elimination. TRIAL REGISTRATION ClinicalTrials.gov NCT02914145.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- * E-mail:
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Camilo Hamido
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Júlia Montañà
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Olinda Muguande
- Fundação para o Desenvolvimento da Comunidade, Maputo, Mozambique
| | | | - Fabião Luis
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Krijn Paaijmans
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- School of Life Sciences, Center for Evolution and Medicine, Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, United States of America
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Clara Menéndez
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| | - Regina Rabinovich
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro L. Alonso
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Baltazar Candrinho
- National Malaria Control Program, Ministry of Health, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
- National Institute of Health, Ministry of Health, Maputo, Mozambique
| |
Collapse
|
22
|
Okumu F. The fabric of life: what if mosquito nets were durable and widely available but insecticide-free? Malar J 2020; 19:260. [PMID: 32690016 PMCID: PMC7370456 DOI: 10.1186/s12936-020-03321-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bed nets are the commonest malaria prevention tool and arguably the most cost-effective. Their efficacy is because they prevent mosquito bites (a function of physical durability and integrity), and kill mosquitoes (a function of chemical content and mosquito susceptibility). This essay follows the story of bed nets, insecticides and malaria control, and asks whether the nets must always have insecticides. METHODS Key attributes of untreated or pyrethroid-treated nets are examined alongside observations of their entomological and epidemiological impacts. Arguments for and against adding insecticides to nets are analysed in contexts of pyrethroid resistance, personal-versus-communal protection, outdoor-biting, need for local production and global health policies. FINDINGS Widespread resistance in African malaria vectors has greatly weakened the historical mass mosquitocidal effects of insecticide-treated nets (ITNs), which previously contributed communal benefits to users and non-users. Yet ITNs still achieve substantial epidemiological impact, suggesting that physical integrity, consistent use and population-level coverage are increasingly more important than mosquitocidal properties. Pyrethroid-treatment remains desirable where vectors are sufficiently susceptible, but is no longer universally necessary and should be re-examined alongside other attributes, e.g. durability, coverage, acceptability and access. New ITNs with multiple actives or synergists could provide temporary relief in some settings, but their performance, higher costs, and drawn-out innovation timelines do not justify singular emphasis on insecticides. Similarly, sub-lethal insecticides may remain marginally-impactful by reducing survival of older mosquitoes and disrupting parasite development inside the mosquitoes, but such effects vanish under strong resistance. CONCLUSIONS The public health value of nets is increasingly driven by bite prevention, and decreasingly by lethality to mosquitoes. For context-appropriate solutions, it is necessary to acknowledge and evaluate the potential and cost-effectiveness of durable untreated nets across different settings. Though ~ 90% of malaria burden occurs in Africa, most World Health Organization-prequalified nets are manufactured outside Africa, since many local manufacturers lack capacity to produce the recommended insecticidal nets at competitive scale and pricing. By relaxing conditions for insecticides on nets, it is conceivable that non-insecticidal but durable, and possibly bio-degradable nets, could be readily manufactured locally. This essay aims not to discredit ITNs, but to illustrate how singular focus on insecticides can hinder innovation and sustainability.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa.
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
23
|
Wang W, Dong RL, Gu D, He JA, Yi P, Kong SK, Ho HP, Loo J, Wang W, Wang Q. Antibody-free rapid diagnosis of malaria in whole blood with surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. Adv Med Sci 2020; 65:86-92. [PMID: 31923771 DOI: 10.1016/j.advms.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study is to establish a rapid antibody-free diagnostic method of malaria infection with Plasmodium falciparum and Plasmodium vivax in whole blood with Surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. MATERIALS AND METHODS The blood samples collected from patients were first lysed and centrifuged before dropping on the gold nano-structure (AuNS) substrate. Malaria diagnosis was performed by detecting Raman peaks from Surface Enhanced Raman Spectroscopy (SERS) with a 532 nm laser excitation. RESULTS Raman peaks at 1370 cm-1, 1570 cm-1, and 1627 cm-1, known to have high specificity against interference from other mosquito-borne diseases such as Dengue and West Nile virus infection, were selected as the fingerprint markers associated with P. falciparum and P. vivax infection. The limit of detection was 10-5 dilution, corresponding to the concentration of parasitized blood cells of 100/mL. A total number of 25 clinical samples, including 5 from patients with P. falciparum infection, 10 with P. vivax infection and 10 from healthy volunteers, were evaluated to support its clinical practical use. The whole assay on malaria detection took 30 min to complete. CONCLUSIONS While the samples analyzed in this work have strong clinical relevance, we have clearly demonstrated that sensitive malaria detection using AuNS-SERS is a practical direction for rapid in-field diagnosis of malaria infection.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rui-Ling Dong
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian-An He
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Pin Yi
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jacky Loo
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wen Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Tedrow RE, Ratovonjato J, Walker ED, Ratsimbasoa AC, Zimmerman PA. A Novel Assay for Simultaneous Assessment of Mammalian Host Blood, Mosquito Species, and Plasmodium spp. in the Medically Important Anopheles Mosquitoes of Madagascar. Am J Trop Med Hyg 2020; 100:544-551. [PMID: 30675844 DOI: 10.4269/ajtmh.18-0782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anopheles mosquitoes vary in habitat preference, feeding pattern, and susceptibility to various measures of vector control. Consequently, it is important that we identify reservoirs of disease, identify vectors, and characterize feeding patterns to effectively implement targeted control measures. Using 467 anopheline mosquito abdomen squashes captured in Madagascar, we designed a novel ligase detection reaction and fluorescent microsphere assay, dubbed Bloodmeal Detection Assay for Regional Transmission (BLOODART), to query the bloodmeal content, identify five Anopheles mosquito species, and detect Plasmodium infection. Validation of mammalian bloodspots was achieved by preparation and analysis of known hosts (singular and mixed), sensitivity to degradation and storage method were assessed through mosquito feeding experiments, and quantification was explored by altering ratios of two mammal hosts. BLOODART identifications were validated by comparison with mosquito samples identified by sequenced portions of the internal transcribed spacer 2. BLOODART identification of control mammal bloodspots was 100% concordant for singular and mixed mammalian blood. BLOODART was able to detect hosts up to 42 hours after digestion when mosquito samples were stored in ethanol. A mammalian host was identified in every field-collected, blood-fed female Anopheles mosquito by BLOODART. The predominant mosquito host was cow (n = 451), followed by pig (n = 26) and human (n = 25). Mixed species bloodmeals were commonly observed (n = 33). A BLOODART molecular identification was successful for 318/467 mosquitoes, with an overall concordance of 60% with all field-captured, morphologically identified Anopheles specimens. BLOODART enables characterization of large samples and simultaneous pathogen detection to monitor and incriminate disease vectors in Madagascar.
Collapse
Affiliation(s)
- Riley E Tedrow
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Jocelyn Ratovonjato
- Direction de Lutte contre le Paludisme/National Malaria Control Program Madagascar, Antananarivo, Madagascar
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Arsene C Ratsimbasoa
- Faculty of Medicine and Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.,Direction de Lutte contre le Paludisme/National Malaria Control Program Madagascar, Antananarivo, Madagascar
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
Riveron JM, Huijben S, Tchapga W, Tchouakui M, Wondji MJ, Tchoupo M, Irving H, Cuamba N, Maquina M, Paaijmans K, Wondji CS. Escalation of Pyrethroid Resistance in the Malaria Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl Butoxide-Based Insecticide-Treated Nets in Mozambique. J Infect Dis 2019; 220:467-475. [PMID: 30923819 PMCID: PMC6603977 DOI: 10.1093/infdis/jiz139] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. METHODS The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. RESULTS A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)-based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. CONCLUSIONS The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
| | - Williams Tchapga
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
| | | | - Mara Maquina
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Krijn Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
- ISGlobal, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Mozambique
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
26
|
Guo J, Xu Y, Yang X, Sun X, Sun Y, Zhou D, Ma L, Shen B, Zhu C. TRE1 and CHS1 contribute to deltamethrin resistance in Culex pipiens pallens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21538. [PMID: 30784111 DOI: 10.1002/arch.21538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular resistance, characterized by decreased epidermal penetration, has been reported on highly pyrethroid-resistant mosquitoes. In this study, we examined the role of genes in the chitin biosynthetic pathway in the context of deltamethrin-resistant (DR) Culex pipiens pallens. We found that expression of the trehalase (TRE1) gene and chitin synthase (CHS1) gene was upregulated 1.65- and 1.75-fold with quantitative reverse transcription polymerase chain reaction, respectively, in the DR strain as compared with the deltamethrin-susceptible (DS) strain. Examination of chitin content in DR and DS pupae showed an increased amount of chitin in DR pupae. To further establish the role of TRE1 and CHS1 in deltamethrin resistance, we injected mosquitoes with small interfering RNA (siRNA) for knockdown of TRE1 or CHS1 expression. The mortality rates of DR mosquitoes exposed to insecticides increased 17% and 26% after siTRE1 and siCHS1 injection, respectively. The siRNA treatment against TRE1 resulted in decreased expression of the downstream gene CHS1. Together, our findings support a role of TRE1 and CHS1 in the regulation of pyrethroid resistance.
Collapse
Affiliation(s)
- Juxin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Department of Microbiology, Shanxi Medical University Jinci College, Taiyuan, China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaohong Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Mandeng SE, Awono-Ambene HP, Bigoga JD, Ekoko WE, Binyang J, Piameu M, Mbakop LR, Fesuh BN, Mvondo N, Tabue R, Nwane P, Mimpfoundi R, Toto JC, Kleinschmidt I, Knox TB, Mnzava AP, Donnelly MJ, Fondjo E, Etang J. Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon. PLoS One 2019; 14:e0212024. [PMID: 30779799 PMCID: PMC6380565 DOI: 10.1371/journal.pone.0212024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization’s (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70–85% to 49–73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91–97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0–30% in 2011 to 18–61% in 2014–2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.
Collapse
Affiliation(s)
- Stanislas Elysée Mandeng
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Herman Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, Yaounde, Cameroon
| | - Wolfgang Eyisap Ekoko
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon
| | - Jérome Binyang
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Michael Piameu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Ecole des Sciences de la Santé, Université Catholique d’Afrique Centrale, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Betrand Nono Fesuh
- National Advanced School of Engineering, University of Yaounde I, Yaounde, Cameroon
| | - Narcisse Mvondo
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Raymond Tabue
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, Yaounde, Cameroon
- Ministry of Public Health, National Malaria Control Programme, Yaounde, Cameroon
| | - Philippe Nwane
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Rémy Mimpfoundi
- Laboratory of General Biology, University of Yaounde I, Yaounde, Cameroon
| | - Jean Claude Toto
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Tropical Medicine & Hygiene, MRC Tropical Epidemiology Group, London, United Kingdom
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Tessa Bellamy Knox
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Etienne Fondjo
- Ministry of Public Health, National Malaria Control Programme, Yaounde, Cameroon
| | - Josiane Etang
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Department of biological sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Heinrich-Buff-Ring, Germany
- * E-mail:
| |
Collapse
|
28
|
Magaço A, Botão C, Nhassengo P, Saide M, Ubisse A, Chicumbe S, Zulliger R. Community knowledge and acceptance of indoor residual spraying for malaria prevention in Mozambique: a qualitative study. Malar J 2019; 18:27. [PMID: 30683091 PMCID: PMC6347840 DOI: 10.1186/s12936-019-2653-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control remains a leading health challenge in Mozambique. Indoor residual spraying (IRS) is an effective strategy to control malaria transmission, but there are often barriers to reaching the coverage necessary for attaining maximum community protective effect of IRS. Mozambique recorded a high number of household refusals during the 2016 IRS campaign. This study sought to evaluate household and community factors related to the acceptability of IRS to inform strategies for future campaigns in Mozambique and the region. METHODS A cross-sectional, qualitative study was conducted in eight urban and rural communities in two high malaria burden provinces in Mozambique. Data were collected through in-depth interviews with community members, leaders, sprayers, and representatives of district health directorates; focus group discussions with community members who accepted and who refused IRS during the 2016 campaign; systematic field observations; and informal conversations. Data were systematically coded and analysed using NVIVO-11®. RESULTS A total of 61 interviews and 12 discussions were conducted. Community participants predominantly described IRS as safe, but many felt that it had limited efficacy. The main factors that participants mentioned as having influenced their IRS acceptance or refusal were: understanding of IRS; community leader level of support; characteristics of IRS programmatic implementation; environmental, political and historical factors. Specifically, IRS acceptance was higher when there was perceived community solidarity through IRS acceptance, desire to reduce the insect population in homes, trust in government and community satisfaction with past IRS campaign effectiveness. Participants who refused were mainly from urban districts and were more educated. The main barriers to acceptance were associated with selection and performance of spray operators, negative experiences from previous campaigns, political-partisan conflicts, difficulty in removing heavy or numerous household assets, and preference for insecticide-treated nets over IRS. CONCLUSIONS Acceptance of IRS was influenced by diverse operational and contextual factors. As such, future IRS communications in targeted communities should emphasize the importance of high IRS coverage for promoting both familial and community health. Additionally, clear communications and engagement with community leaders during spray operator selection and spray implementation may help reduce barriers to IRS acceptance.
Collapse
Affiliation(s)
- Amílcar Magaço
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique.
| | - Carlos Botão
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique
| | - Pedroso Nhassengo
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique
| | - Mohomede Saide
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique
| | - Arminda Ubisse
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique
| | - Sérgio Chicumbe
- Sistemas de Saúde, Instituto Nacional de Saúde, Ministério da Saúde, Moçambique, Maputo, Mozambique
| | - Rose Zulliger
- US President's Malaria Initiative and Malaria Branch, Division of Parasitic Diseases and Malaria, US Centers for Disease Control and Prevention, Maputo, Mozambique
| |
Collapse
|
29
|
Maziarz M, Nabalende H, Otim I, Legason ID, Kinyera T, Ogwang MD, Talisuna AO, Reynolds SJ, Kerchan P, Bhatia K, Biggar RJ, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. A cross-sectional study of asymptomatic Plasmodium falciparum infection burden and risk factors in general population children in 12 villages in northern Uganda. Malar J 2018; 17:240. [PMID: 29925378 PMCID: PMC6011516 DOI: 10.1186/s12936-018-2379-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is an important cause of morbidity in northern Uganda. This study was undertaken to assess village-, household-, and individual-level risk factors of asymptomatic falciparum malaria in children in 12 villages in northern Uganda. METHODS Between 10/2011 and 02/2014, 1006 apparently healthy children under 16 years old were enrolled in 12 villages using a stratified, multi-stage, cluster survey design and assessed for P. falciparum malaria infection using the rapid diagnostic test (RDT) and thick film microscopy (TFM), and structured interviewer-administered questionnaires. Associations between weighted P. falciparum malaria prevalence (pfPR), based on RDT, and covariates were estimated as odds ratios and 95% confidence intervals (ORs, 95% CIs) using logistic models accounting for the survey design. RESULTS Among 942 (93.5%) children successfully tested, pfPR was 52.4% by RDT and 32.7% by TFM. Overall pfPR was lower in villages where indoor residual insecticide spray (IRS) was, versus not, implemented (18.4% versus 75.2%, P < 0.0001). However, pfPR was heterogeneous both within IRS (10.6-34.8%) and non-IRS villages (63.6-86.2%). Elevated pfPR was associated with having a sibling who was RDT positive (OR 5.39, 95% CI 2.94-9.90, P = 0.0006) and reporting a fever at enrollment (aOR 4.80, 95% CI 1.94-11.9, P = 0.0094). Decreased pfPR was associated with living in an IRS village (adjusted OR 0.06, 95% CI 0.04-0.07, P < 0.0001), in a household with one (aOR 0.48, 95% CI 0.30-0.76) or more than one child below 5 years (aOR 0.23, 95% CI 0.12-0.44, Ptrend = 0.014), and reporting keeping a goat inside or near the house (aOR 0.42, 95% CI 0.29-0.62, P = 0.0021). CONCLUSIONS The results show high but heterogeneous pfPR in villages in northern Uganda, confirm significantly decreased pfPR associated with IRS implementation, and suggest significant associations with some household characteristics. Further research is needed to elucidate the factors influencing malaria heterogeneity in villages in Uganda.
Collapse
Affiliation(s)
- Marlena Maziarz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA
| | - Hadijah Nabalende
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Martin D Ogwang
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Ambrose O Talisuna
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala & St. Mary's Hospital, Lacor, Gulu, Uganda
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA
| | - Robert J Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr, Rm. 6E118 MSC 9706, Bethesda, MD, 20892-9704, USA.
| |
Collapse
|
30
|
Cornel AJ, Lee Y, Almeida APG, Johnson T, Mouatcho J, Venter M, de Jager C, Braack L. Mosquito community composition in South Africa and some neighboring countries. Parasit Vectors 2018; 11:331. [PMID: 29859109 PMCID: PMC5984792 DOI: 10.1186/s13071-018-2824-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background A century of studies have described particular aspects of relatively few mosquito species in southern Africa, mostly those species involved with disease transmission, specifically malaria and arboviruses. Patterns of community composition such as mosquito abundance and species diversity are often useful measures for medical entomologists to guide broader insights and projections regarding disease dynamics and potential introduction, spread or maintenance of globally spreading pathogens. However, little research has addressed these indicators in southern Africa. Results We collected 7882 mosquitoes from net and light traps at 11 localities comprising 66 species in 8 genera. We collected an additional 8 species using supplementary collection techniques such as larval sampling, sweep-netting and indoor pyrethrum knockdown catches. Highest diversity and species richness was found in the Okavango Delta of Botswana and in South Africa’s Kruger National Park, while the lowest diversity and abundances were in the extreme southern tip of South Africa and in semi-desert Kalahari close to the South Africa border with Botswana. Species composition was more similar between proximal localities than distant ones (Linear model P-value = 0.005). Multiple arbovirus vector species were detected in all localities we surveyed (proportion of vector mosquito numbers were > 0.5 in all locations except Shingwedzi). Their proportions were highest (> 90%) in Vilankulo and Kogelberg. Conclusions Multiple known arbovirus vector species were found in all study sites, whereas anopheline human malaria vector species in only some sites. The combination of net traps and light traps effectively sampled mosquito species attracted to carbon-dioxide or light, accounting for 89% of the 74 species collected. The 11% remaining species were collected using supplementary collection techniques mentioned above. The diversity of species weas highest in savanna type habitats, whereas low diversities were found in the drier Kalahari sands regions and the southern Cape fynbos regions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2824-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony J Cornel
- Department of Entomology & Nematology, University of California, Davis, USA. .,UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Yoosook Lee
- Department of Entomology & Nematology, University of California, Davis, USA
| | - António Paulo Gouveia Almeida
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Todd Johnson
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marietjie Venter
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Christiaan de Jager
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Glunt KD, Coetzee M, Huijben S, Koffi AA, Lynch PA, N'Guessan R, Oumbouke WA, Sternberg ED, Thomas MB. Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets. Evol Appl 2018; 11:431-441. [PMID: 29636797 PMCID: PMC5891045 DOI: 10.1111/eva.12574] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023] Open
Abstract
In spite of widespread insecticide resistance in vector mosquitoes throughout Africa, there is limited evidence that long-lasting insecticidal bed nets (LLINs) are failing to protect against malaria. Here, we showed that LLIN contact in the course of host-seeking resulted in higher mortality of resistant Anopheles spp. mosquitoes than predicted from standard laboratory exposures with the same net. We also found that sublethal contact with an LLIN caused a reduction in blood feeding and subsequent host-seeking success in multiple lines of resistant mosquitoes from the laboratory and the field. Using a transmission model, we showed that when these LLIN-related lethal and sublethal effects were accrued over mosquito lifetimes, they greatly reduced the impact of resistance on malaria transmission potential under conditions of high net coverage. If coverage falls, the epidemiological impact is far more pronounced. Similarly, if the intensity of resistance intensifies, the loss of malaria control increases nonlinearly. Our findings help explain why insecticide resistance has not yet led to wide-scale failure of LLINs, but reinforce the call for alternative control tools and informed resistance management strategies.
Collapse
Affiliation(s)
- Katey D. Glunt
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Maureen Coetzee
- Wits Research Institute for MalariaFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic—Universitat de BarcelonaBarcelonaSpain
| | | | - Penelope A. Lynch
- College of Life and Environmental Sciences, Penryn CampusUniversity of ExeterCornwallUK
| | - Raphael N'Guessan
- Institut Pierre Richet (IPR)AbidjanCôte d'Ivoire
- London School of Hygiene and Tropical MedicineLondonUK
| | - Welbeck A. Oumbouke
- Institut Pierre Richet (IPR)AbidjanCôte d'Ivoire
- London School of Hygiene and Tropical MedicineLondonUK
| | | | - Matthew B. Thomas
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
32
|
Wangdi K, Furuya-Kanamori L, Clark J, Barendregt JJ, Gatton ML, Banwell C, Kelly GC, Doi SAR, Clements ACA. Comparative effectiveness of malaria prevention measures: a systematic review and network meta-analysis. Parasit Vectors 2018; 11:210. [PMID: 29587882 PMCID: PMC5869791 DOI: 10.1186/s13071-018-2783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Background Malaria causes significant morbidity and mortality worldwide. There are several preventive measures that are currently employed, including insecticide-treated nets (ITNs, including long-lasting insecticidal nets and insecticidal-treated bed nets), indoor residual spraying (IRS), prophylactic drugs (PD), and untreated nets (UN). However, it is unclear which measure is the most effective for malaria prevention. We therefore undertook a network meta-analysis to compare the efficacy of different preventive measures on incidence of malaria infection. Methods A systematic literature review was undertaken across four medical and life sciences databases (PubMed, Cochrane Central, Embase, and Web of Science) from their inception to July 2016 to compare the effectiveness of different preventive measures on malaria incidence. Data from the included studies were analysed for the effectiveness of several measures against no intervention (NI). This was carried out using an automated generalized pairwise modeling (GPM) framework for network meta-analysis to generate mixed treatment effects against a common comparator of no intervention (NI). Results There were 30 studies that met the inclusion criteria from 1998–2016. The GPM framework led to a final ranking of effectiveness of measures in the following order from best to worst: PD, ITN, IRS and UN, in comparison with NI. However, only ITN (RR: 0.49, 95% CI: 0.32–0.74) showed precision while other methods [PD (RR: 0.24, 95% CI: 0.004–15.43), IRS (RR: 0.55, 95% CI: 0.20–1.56) and UN (RR: 0.73, 95% CI: 0.28–1.90)] demonstrating considerable uncertainty associated with their point estimates. Conclusion Current evidence is strong for the protective effect of ITN interventions in malaria prevention. Even though ITNs were found to be the only preventive measure with statistical support for their effectiveness, the role of other malaria control measures may be important adjuncts in the global drive to eliminate malaria. Electronic supplementary material The online version of this article (10.1186/s13071-018-2783-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kinley Wangdi
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.
| | - Luis Furuya-Kanamori
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.,Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - Justin Clark
- Centre for Research in Evidence-Based Practice (CREBP), Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jan J Barendregt
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia.,Epigear International Pty Ltd, Sunrise Beach, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cathy Banwell
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| | - Gerard C Kelly
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| | - Suhail A R Doi
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.,Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - Archie C A Clements
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| |
Collapse
|
33
|
Prussing C, Moreno M, Saavedra MP, Bickersmith SA, Gamboa D, Alava F, Schlichting CD, Emerson KJ, Vinetz JM, Conn JE. Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-Iquitos, Amazonian Peru. Malar J 2018; 17:86. [PMID: 29463241 PMCID: PMC5819687 DOI: 10.1186/s12936-018-2234-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Loreto Department, Peru, a successful 2005-2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011-2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013-2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour. RESULTS In 2013-2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time. CONCLUSIONS This study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Carl D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Kevin J Emerson
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
34
|
Abstract
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John Greico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
35
|
Abstract
Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal responses to drugs and insecticides are both spreading geographically and emerging independently and are being seen at increasing intensities. Whilst resistance is unavoidable, its effects can be mitigated through resistance management practices, such as exposing the parasite or vector to more than one selective agent. Resistance contributed to the failure of the 20th century Global Malaria Eradication Programme, and yet the global response to this issue continues to be slow and poorly coordinated-too often, too little, too late. The Malaria Eradication Research Agenda (malERA) Refresh process convened a panel on resistance of both insecticides and antimalarial drugs. This paper outlines developments in the field over the past 5 years, highlights gaps in knowledge, and proposes a research agenda focused on managing resistance. A deeper understanding of the complex biological processes involved and how resistance is selected is needed, together with evidence of its public health impact. Resistance management will require improved use of entomological and parasitological data in decision making, and optimisation of the useful life of new and existing products through careful implementation, combination, and evaluation. A proactive, collaborative approach is needed from basic science and the development of new tools to programme and policy interventions that will ensure that the armamentarium of drugs and insecticides is sufficient to deal with the challenges of malaria control and its elimination.
Collapse
|
36
|
Rakotoson JD, Fornadel CM, Belemvire A, Norris LC, George K, Caranci A, Lucas B, Dengela D. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar. Parasit Vectors 2017; 10:396. [PMID: 28835269 PMCID: PMC5569519 DOI: 10.1186/s13071-017-2336-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. METHODS WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. RESULTS Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF fully suppressed resistance to deltamethrin and alpha-cypermethrin, while it partially restored susceptibility to permethrin in two of the three sites. Molecular analysis data suggest absence of kdr and ace-1 R gene mutations. CONCLUSION This study suggests involvement of detoxifying enzymes in the phenotypic resistance of An. gambiae (s.l.) to pyrethroids. The absence of resistance in An. funestus and An. mascarensis to pirimiphos-methyl and pyrethroids and in An. gambiae (s.l.) to carbamates and organophosphates presents greater opportunity for managing resistance in Madagascar.
Collapse
Affiliation(s)
- Jean-Desire Rakotoson
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Antananarivo, Madagascar
| | - Christen M Fornadel
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Allison Belemvire
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Laura C Norris
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Kristen George
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Angela Caranci
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Bradford Lucas
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA
| | - Dereje Dengela
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA.
| |
Collapse
|
37
|
Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens. Parasitol Res 2017; 116:2175-2179. [PMID: 28608057 DOI: 10.1007/s00436-017-5521-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Cuticular proteins (CPs) are implicated in insecticide resistance in mosquito populations. Here, we investigated the role of cuticular genes in regulation of insecticide resistance in Culex pipiens pallens. We identified two CpCPRs (CpCPR63 and CpCPR47) that exhibited higher transcript levels in pyrethroid-resistant strains than in susceptible strains. Mosquito mortality was increased after knockdown of CpCPR genes by dsRNA injection. The RNA interference experiment suggested an interaction between CpCPR63 and CpCPR47, as silencing of one gene resulted in decreased expression of the other. These findings revealed that CpCPRs may regulate pyrethroid resistance and could be used as a potential genetic marker to monitor pyrethroid resistance in mosquitoes.
Collapse
|
38
|
Maziarz M, Kinyera T, Otim I, Kagwa P, Nabalende H, Legason ID, Ogwang MD, Kirimunda S, Emmanuel B, Reynolds SJ, Kerchan P, Joloba MM, Bergen AW, Bhatia K, Talisuna AO, Biggar RJ, Goedert JJ, Pfeiffer RM, Mbulaiteye SM. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda. Malar J 2017; 16:124. [PMID: 28320389 PMCID: PMC5360076 DOI: 10.1186/s12936-017-1778-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falciparum malaria is an important risk factor for African Burkitt lymphoma (BL), but few studies have evaluated malaria patterns in healthy BL-age children in populations where both diseases are endemic. To obtain accurate current data, patterns of asymptomatic malaria were investigated in northern Uganda, where BL is endemic. METHODS Between 2011 and 2015, 1150 apparently healthy children under 15 years old were sampled from 100 villages in northern Uganda using a stratified, multi-stage, cluster survey design. Falciparum malaria prevalence (pfPR) was assessed by questionnaire, rapid diagnostic test (RDT) and thick film microscopy (TFM). Weighted pfPR and unadjusted and adjusted associations of prevalence with covariates were calculated using logistic models and survey methods. RESULTS Based on 1143 children successfully tested, weighted pfPR was 54.8% by RDT and 43.4% by TFM. RDT sensitivity and specificity were 97.5 and 77.8%, respectively, as compared to TFM, because RDT detect malaria antigens, which persist in peripheral blood after clinical malaria, thus results based on RDT are reported. Weighted pfPR increased from 40% in children aged under 2 years to 61.8% in children aged 6-8 years (odds ratio 2.42, 95% confidence interval (CI) 1.26-4.65), then fell slightly to 49% in those aged 12-15 years. Geometric mean parasite density was 1805.5 parasites/µL (95% CI 1344.6-2424.3) among TFM-positive participants, and it was higher in children aged <5 years at 5092.9/µL (95% CI 2892.7-8966.8) and lower in those aged ≥10 years at 983.8/µL (95% CI 472.7-2047.4; P = 0.001). Weighted pfPR was lower in children residing in sub-regions employing indoor residual spraying (IRS) than in those residing in non-IRS sub-regions (32.8 versus 65.7%; OR 0.26, 95% CI 0.14, 0.46). However, pfPR varied both within IRS (3.2-55.3%) and non-IRS sub-regions (29.8-75.8%; Pheterogeneity <0.001). pfPR was inversely correlated with a child's mother's income (P = 0.011) and positively correlated with being enrolled in the wet season (P = 0.076), but sex was irrelevant. CONCLUSIONS The study observed high but geographically and demographically heterogenous patterns of asymptomatic malaria prevalence among children living in northern Uganda. These results provide important baseline data that will enable precise evaluation of associations between malaria and BL.
Collapse
Affiliation(s)
- Marlena Maziarz
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Paul Kagwa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Martin D. Ogwang
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- St. Mary’s Hospital, Lacor, Gulu, Uganda
| | - Samuel Kirimunda
- Department of Medical Microbiology, Makerere Medical School, Kampala, Uganda
| | - Benjamin Emmanuel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
- University of Maryland, Baltimore, MD USA
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Kuluva, Arua, Uganda
| | - Moses M. Joloba
- Department of Medical Microbiology, Makerere Medical School, Kampala, Uganda
| | - Andrew W. Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Robert J. Biggar
- Institute of Health and Biotechnical Innovation, Queensland University of Technology, Brisbane, Australia
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
39
|
Hardy A, Makame M, Cross D, Majambere S, Msellem M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 2017; 10:29. [PMID: 28088225 PMCID: PMC5237572 DOI: 10.1186/s13071-017-1973-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. RESULTS With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). CONCLUSION The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.
Collapse
Affiliation(s)
- Andy Hardy
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK.
| | - Makame Makame
- Zanzibar Malaria Elimination Programme, Zanzibar Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Dónall Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Silas Majambere
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mwinyi Msellem
- Zanzibar Malaria Elimination Programme, Zanzibar Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| |
Collapse
|
40
|
Zamawe COF, Nakamura K, Shibanuma A, Jimba M. The effectiveness of a nationwide universal coverage campaign of insecticide-treated bed nets on childhood malaria in Malawi. Malar J 2016; 15:505. [PMID: 27756392 PMCID: PMC5070233 DOI: 10.1186/s12936-016-1550-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/05/2016] [Indexed: 11/28/2022] Open
Abstract
Background Although the universal coverage campaign of insecticide-treated mosquito bed nets (ITNs) has been associated with improved malaria outcomes, recent reports indicate that the campaign is losing its sparkle in some countries. In Malawi, the universal coverage campaign was implemented in 2012, but its impacts are yet to be ascertained. Thus, this study examined the effects of the campaign on malaria morbidity among children in Malawi. Methods This is a repeated cross-sectional study. The study used nationally-representative malaria indicator survey (MIS) data collected in 2012 and 2014. In total, the analysis included 4193 children between the ages of 6 and 59 months (2171 from 2012 MIS and 2022 from 2014 MIS). ITNs coverage and malaria morbidity before (2012 = pre-test/control) and after (2014 = post-test/treated) the universal coverage campaign of ITNs were compared. The treated and control samples were matched on measured relevant covariates using propensity scores. Results The mean number of ITNs per household improved significantly from 1.1 (SD 1.0) in 2012 to 1.4 (SD 1.1) in 2014 (p < 0.001). Nonetheless, the prevalence of malaria among children increased considerably from 27.7 % (2012) to 32.0 % (2014) (p = 0.002). The risk of malaria was also significantly higher in 2014 compared to 2012 (RR = 1.14; 95 % CI 1.01–1.29). Besides, the use of bed nets was not significantly associated with malaria morbidity in 2014 (RR = 0.92; 95 % CI 0.76–1.12), but it was in 2012 (RR = 0.83; 95 % CI 0.70–1.00). Conclusions The universal coverage campaign of ITNs was not associated with a reduced burden of malaria among children in Malawi. This was likely due to increased insecticide resistance, inconsistent use of bed nets and under-utilization of other methods of malaria control. This calls for a multifaceted approach in the fight against malaria instead of simple dependence on ITNs. In particular, local or community level malaria interventions should go hand in hand with the universal coverage campaign. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1550-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Collins O F Zamawe
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kanan Nakamura
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Shibanuma
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
41
|
Liu B, Tian M, Guo Q, Ma L, Zhou D, Shen B, Sun Y, Zhu C. MiR-932 Regulates Pyrethroid Resistance in Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1205-1210. [PMID: 27313166 PMCID: PMC5013817 DOI: 10.1093/jme/tjw083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/06/2016] [Indexed: 05/12/2023]
Abstract
MicroRNAs (miRNAs) play notable role in regulation of gene expression at the posttranscription level, and have been involved in many biological processes, including insecticide resistance. In this study, we investigated the role of miR-932 in the molecular mechanisms of pyrethroid resistance in Culex pipiens pallens (L.). Overexpression of miR-932 in the DS-strain made the mosquitoes more resistant to deltamethrin, while inhibiting the expression of miR-932 in the DR-strain made the mosquitoes more sensitive to deltamethrin. Further, we also identified CpCPR5 as a target gene of miR-932. Sustained overexpression of miR-932 resulted in repression of CpCPR5, and that knockdown of miR-932 increased CpCPR5 expression. In addition, knockdown of CpCPR5 decreased the sensitivity of mosquitoes to deltamethrin in the DS-strain. In conclusion, our study finds a molecular link between miR-932 and CpCPR5 and provides a novel insight into the mechanism of insecticide resistance.
Collapse
Affiliation(s)
- Bingqian Liu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Mengmeng Tian
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| |
Collapse
|
42
|
Galatas B, Guinovart C, Bassat Q, Aponte JJ, Nhamússua L, Macete E, Saúte F, Alonso P, Aide P. A prospective cohort study to assess the micro-epidemiology of Plasmodium falciparum clinical malaria in Ilha Josina Machel (Manhiça, Mozambique). Malar J 2016; 15:444. [PMID: 27577880 PMCID: PMC5006496 DOI: 10.1186/s12936-016-1496-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Abstract
Background After the decrease in clinical malaria incidence observed in Mozambique until 2009, a steady resurgence of cases per year has been reported nationally, reaching alarming levels in 2014. However, little is known about the clinical profile of the cases presented, or the possible epidemiological factors contributing to the resurgence of cases. Methods An analysis of surveillance data collected between July 2003 and June 2013 in the high malaria-transmission area of Ilha Josina Machel (Southern Mozambique) through a paediatric outpatient morbidity surveillance system was conducted to calculate hospital-based clinical malaria rates, slide-positivity rates, and minimum community-based incidence rates (MCBIRs) and incidence rate ratios per malaria season in children younger than 15 years of age. Clinical malaria was defined as a fever ≥37.5 °C or a reported fever in the previous 24 h with a positive blood smear. Yearly mean age, geometric mean parasitaemia (GMP) and mean packed cell volume (PCV) were also described for all clinical malaria cases and compared between seasons using DID analysis or ANOVA tests. Results During the study period, the percentage of outpatient visits presenting with confirmed clinical malaria decreased from 51 % in the 2003–2004 season to 23 % in 2008–2009, followed by an increase back to 51 % in 2012–2013. The yearly mean age of cases significantly increased from 2.9 (95 % CI 2.8–3.0) in 2003–2004 to 5.7 (95 % CI 5.6–5.7) in 2012–2013, compared to non-malaria cases. An increase in mean PCV levels was also observed (p < 0.001), as well as in GMPs: from 5778 parasites/µL in 2002–2003 to 17,316 parasites/µL in 2012–2013 (p < 0.001) mainly driven by an increase in GMP in children older than 1 year of age. MCBIRs in infants decreased by 70 % (RR = 0.3, p < 0.001) between 2003–2004 and 2012–2013. Incidence diminished by a third among children 1- to 4-years between 2003 and 2007, although such drop was unsustained as observed in 2012–2013 (RR = 1.0, 95 % CI 0.9–1.0). Finally, the incidence among children 5–14 years was 3.8 (95 % CI 3.4–4.3) times higher in 2012–2013 compared to 2003–2004. Conclusion Since 2003, Ilha Josina Machel observed a significant reduction of clinical malaria cases which was followed by an upsurge, following the national trend. A shift in the age distribution towards older children was observed, indicating that the changes in the transmission intensity patterns resulted in a slower acquisition of the naturally acquired immunity to malaria in children.
Collapse
Affiliation(s)
- Beatriz Galatas
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique. .,ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | - Caterina Guinovart
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - John J Aponte
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique.,ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Lídia Nhamússua
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique
| | - Pedro Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique.,Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Rua12, Bairro Cambeve, Vila de Manhiça, Maputo, Mozambique.,National Institute of Health, Ministry of Health, Maputo, Mozambique
| |
Collapse
|
43
|
Etang J, Pennetier C, Piameu M, Bouraima A, Chandre F, Awono-Ambene P, Marc C, Corbel V. When intensity of deltamethrin resistance in Anopheles gambiae s.l. leads to loss of Long Lasting Insecticidal Nets bio-efficacy: a case study in north Cameroon. Parasit Vectors 2016; 9:132. [PMID: 26951758 PMCID: PMC4782322 DOI: 10.1186/s13071-016-1420-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/02/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In Cameroon, insecticide resistance in Anopheles (An.) gambiae s.l. has been reported in several foci, prompting further investigations on associated patterns of Long-Lasting Insecticidal Nets (LLINs) bio-efficacy. The current study, conducted from June to August 2011, explored the intensity of deltamethrin resistance in An. gambiae s.l. from Pitoa and its impact on the residual bio-efficacy of LifeNet, a LLIN with deltamethrin incorporated into polypropylene nets (PND). METHODS Two-four days old females An. gambiae s.l. reared from larval collections in Pitoa were tested for susceptibility to DDT, permethrin and deltamethrin, using standard World Health Organization (WHO) tube assays. Intensity of deltamethrin resistance was explored using WHO tube assays, but across six working concentrations from 0.001 % to 0.5 %. Bio-efficacy of unwashed and washed PND was assessed using WHO cone test. Species identification and kdr 1014 genotyping were performed on mosquito samples that were not exposed to insecticides, using PCR-RFLP and HOLA methods respectively. The Kisumu reference susceptible strain of An. gambiae s.s. was used for comparisons. RESULTS A total of 1895 An. gambiae s.l. specimens from Pitoa were used for resistance and PND bio-efficacy testing. This mosquito population was resistant to DDT, permethrin and deltamethrin, with 18-40 min knockdown times for 50 % of tested mosquitoes and 59-77 % mortality. Deltamethrin Resistance Ratio compared with the Kisumu strain was estimated at ≥500 fold. LifeNets were effective against the susceptible Kisumu (100 % knockdown (KD60min) and mortality) and the resistant Pitoa samples (95 % KD60min, 83-95 % mortality). However, the bio-efficacy gradually dropped against the Pitoa samples when nets were washed (X (2) = 35.887, df = 8, p < 0.001), and fell under the WHO efficacy threshold (80 % mortality and/or 95 % KD60min) between 10 and 15 washes. The Pitoa samples were composed of three sibling species: An. arabiensis (132/154, 86 %), An. coluzzii (19/154, 12 %) and An. gambiae s.s. (3/154, 2 %). The kdr L1014F allele was found only in An. coluzzii (Npositive = 13/19), at 34 % frequency and heterozygote stage. No specimen carried the kdr L1014S allele. CONCLUSIONS The current study showed that LifeNet might still offer some protection against the resistant An. gambiae s.l. population from Pitoa, provided appropriate dose of insecticide is available on the nets.
Collapse
Affiliation(s)
- Josiane Etang
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun.
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
| | - Cédric Pennetier
- Institut de Recherche pour le Développement (IRD) UMR224 MIVEGEC, 34394, Montpellier, France.
- Institut Pierre Richet (IPR), BP1500, Bouaké, Côte d'Ivoire.
| | - Michael Piameu
- Ecole des Sciences de la Santé, Université Catholique d'Afrique Centrale, B.P. 1110, Yaoundé, Cameroun.
| | - Aziz Bouraima
- Centre de Recherche Entomologique de Cotonou (CREC), 01 B.P. 4414, Cotonou, Bénin.
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD) UMR224 MIVEGEC, 34394, Montpellier, France.
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun.
| | - Coosemans Marc
- Institute of Tropical Medicine, Department Parasitology - Entomology, Nationalestraat 155, B-2000, Antwerpen, Belgium.
- University of Antwerp, Antwerp, Belgium.
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD) UMR224 MIVEGEC, 34394, Montpellier, France.
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
44
|
Ranson H, Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol 2016; 32:187-196. [PMID: 26826784 DOI: 10.1016/j.pt.2015.11.010] [Citation(s) in RCA: 559] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
Abstract
Malaria control is reliant on insecticides to control the mosquito vector. As efforts to control the disease have intensified, so has the selection pressure on mosquitoes to develop resistance to these insecticides. The distribution and strength of this resistance has increased dramatically in recent years and now threatens the success of control programs. This review provides an update on the current status of resistance to the major insecticide classes in African malaria vectors, considers the evidence that this resistance is already compromising malaria control efforts, and looks to the future to highlight some of the new insecticide-based tools under development and the challenges in ensuring they are most effectively deployed to manage resistance.
Collapse
Affiliation(s)
- Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
45
|
Wanjala CL, Zhou G, Mbugi J, Simbauni J, Afrane YA, Ototo E, Gesuge M, Atieli H, Githeko AK, Yan G. Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya. Parasit Vectors 2015; 8:588. [PMID: 26567915 PMCID: PMC4644290 DOI: 10.1186/s13071-015-1194-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/31/2015] [Indexed: 11/13/2022] Open
Abstract
Background Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. Methods WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. Results WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). Conclusion This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
Collapse
Affiliation(s)
- Christine L Wanjala
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya. .,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Jernard Mbugi
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Jemimah Simbauni
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Yaw A Afrane
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Ednah Ototo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Maxwell Gesuge
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Harrysone Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
46
|
Weedall GD, Irving H, Hughes MA, Wondji CS. Molecular tools for studying the major malaria vector Anopheles funestus: improving the utility of the genome using a comparative poly(A) and Ribo-Zero RNAseq analysis. BMC Genomics 2015; 16:931. [PMID: 26573092 PMCID: PMC4647341 DOI: 10.1186/s12864-015-2114-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and improve genomic tools for studying the major malaria vector Anopheles funestus. Results To guide future RNAseq transcriptomic studies of An. funestus, we compared two methods for enrichment of non-ribosomal RNA for analysis: enrichment of polyadenylated RNA and ribosomal RNA depletion using a kit designed to deplete human/rat/mouse rRNA. We found large differences between the two methods in the resulting transcriptomes, some of which is due to differential representation of polyadenylated and non-polyadenylated transcripts. We used the RNAseq data for validation and targeted manual editing of the draft An. funestus genome annotation, validating 62 % of annotated introns, manually improving the annotation of seven gene families involved in the detoxification of xenobiotics and integrated two published transcriptomic datasets with the recently published genome assembly. Conclusions The mRNA enrichment method makes a substantial, replicable difference to the transcriptome composition, at least partly due to the representation of non-polyadenylated transcripts in the final transcriptome. Therefore, great care should be taken in comparing gene expression data among studies. Ribosomal RNA depletion of total RNA using a kit designed to deplete human/rat/mouse rRNA works in mosquitoes and, we argue, results in a truer representation of the transcriptome than poly(A) selection. The An. funestus genome annotation can be considerably improved with the help of these new RNAseq data and further guided manual gene editing efforts will be of great benefit to the Anopheles research community for studies of this insect’s genome and transcriptome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2114-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Margaret A Hughes
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|