1
|
Arora G, Černý J. Plasmodium proteases and their role in development of Malaria vaccines. ADVANCES IN PARASITOLOGY 2024; 126:253-273. [PMID: 39448193 DOI: 10.1016/bs.apar.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia
| |
Collapse
|
2
|
Bridging the Gap in Malaria Parasite Resistance, Current Interventions, and the Way Forward from in Silico Perspective: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227915. [PMID: 36432016 PMCID: PMC9692793 DOI: 10.3390/molecules27227915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decade has seen most antimalarial drugs lose their clinical potency stemming from parasite resistance. Despite immense efforts by researchers to mitigate this global scourge, a breakthrough is yet to be achieved, as most current malaria chemotherapies suffer the same fate. Though the etiology of parasite resistance is not well understood, the parasite's complex life has been implicated. A drug-combination therapy with artemisinin as the central drug, artemisinin-based combination therapy (ACT), is currently the preferred malaria chemotherapy in most endemic zones. The emerging concern of parasite resistance to artemisinin, however, has compromised this treatment paradigm. Membrane-bound Ca2+-transporting ATPase and endocytosis pathway protein, Kelch13, among others, are identified as drivers in plasmodium parasite resistance to artemisinin. To mitigate parasite resistance to current chemotherapy, computer-aided drug design (CADD) techniques have been employed in the discovery of novel drug targets and the development of small molecule inhibitors to provide an intriguing alternative for malaria treatment. The evolution of plasmepsins, a class of aspartyl acid proteases, has gained tremendous attention in drug discovery, especially the non-food vacuole. They are expressed at multi-stage of the parasite's life cycle and involve in hepatocytes' egress, invasion, and dissemination of the parasite within the human host, further highlighting their essentiality. In silico exploration of non-food vacuole plasmepsin, PMIX and PMX unearthed the dual enzymatic inhibitory mechanism of the WM382 and 49c, novel plasmepsin inhibitors presently spearheading the search for potent antimalarial. These inhibitors impose structural compactness on the protease, distorting the characteristic twist motion. Pharmacophore modeling and structure activity of these compounds led to the generation of hits with better affinity and inhibitory prowess towards PMIX and PMX. Despite these headways, the major obstacle in targeting PM is the structural homogeneity among its members and to human Cathepsin D. The incorporation of CADD techniques described in the study at early stages of drug discovery could help in selective inhibition to augment malaria chemotherapy.
Collapse
|
3
|
Richardson LW, Ashton TD, Dans MG, Nguyen N, Favuzza P, Triglia T, Hodder AN, Ngo A, Jarman KE, Cowman AF, Sleebs BE. Substrate Peptidomimetic Inhibitors of P. falciparum Plasmepsin X with Potent Antimalarial Activity. ChemMedChem 2022; 17:e202200306. [PMID: 35906744 PMCID: PMC9804387 DOI: 10.1002/cmdc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Indexed: 01/07/2023]
Abstract
Plasmepsin X (PMX) is an aspartyl protease that processes proteins essential for Plasmodium parasites to invade and egress from host erythrocytes during the symptomatic asexual stage of malaria. PMX substrates possess a conserved cleavage region denoted by the consensus motif, SFhE (h=hydrophobic amino acid). Peptidomimetics reflecting the P3 -P1 positions of the consensus motif were designed and showed potent and selective inhibition of PMX. It was established that PMX prefers Phe in the P1 position, di-substitution at the β-carbon of the P2 moiety and a hydrophobic P3 group which was supported by modelling of the peptidomimetics in complex with PMX. The peptidomimetics were shown to arrest asexual P. falciparum parasites at the schizont stage by impairing PMX substrate processing. Overall, the peptidomimetics described will assist in further understanding PMX substrate specificity and have the potential to act as a template for future antimalarial design.
Collapse
Affiliation(s)
- Lachlan W. Richardson
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Trent D. Ashton
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Madeline G. Dans
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Paola Favuzza
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Tony Triglia
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
| | - Anthony N. Hodder
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Anna Ngo
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
| | - Kate E. Jarman
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Alan F. Cowman
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia,Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| |
Collapse
|
4
|
Rezvani Y, Keroack CD, Elsworth B, Arriojas A, Gubbels MJ, Duraisingh MT, Zarringhalam K. Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles. PLoS Biol 2022; 20:e3001816. [PMID: 36137068 PMCID: PMC9531838 DOI: 10.1371/journal.pbio.3001816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites. Due to limitations in synchronizing Babesia parasites, fine-scale time-course transcriptomic resources are not readily available. Single-cell transcriptomics provides a powerful unbiased alternative for profiling asynchronous cell populations. Here, we applied single-cell RNA sequencing to 3 Babesia species (B. divergens, B. bovis, and B. bigemina). We used analytical approaches and algorithms to map the replication cycle and construct pseudo-synchronized time-course gene expression profiles. We identify clusters of co-expressed genes showing "just-in-time" expression profiles, with gradually cascading peaks throughout asexual development. Moreover, clustering analysis of reconstructed gene curves reveals coordinated timing of peak expression in epigenetic markers and transcription factors. Using a regularized Gaussian graphical model, we reconstructed co-expression networks and identified conserved and species-specific nodes. Motif analysis of a co-expression interactome of AP2 transcription factors identified specific motifs previously reported to play a role in DNA replication in Plasmodium species. Finally, we present an interactive web application to visualize and interactively explore the datasets.
Collapse
Affiliation(s)
- Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
6
|
Grasso F, Fratini F, Albanese TG, Mochi S, Ciardo M, Pace T, Ponzi M, Pizzi E, Olivieri A. Identification and preliminary characterization of Plasmodium falciparum proteins secreted upon gamete formation. Sci Rep 2022; 12:9592. [PMID: 35689013 PMCID: PMC9187623 DOI: 10.1038/s41598-022-13415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria long-term elimination depends on parasite transmission control. Plasmodium sexual stage maturation in the mosquito, including egress from the host erythrocyte, is one of the prime targets for transmission-blocking interventions. This work aims to identify candidate molecules potentially involved in gamete emergence from the host erythrocyte, as novel transmission blocking targets. We analyzed by quantitative mass spectrometry the proteins released/secreted by purified Plasmodium falciparum gametocytes upon induction of gametogenesis. The proteome obtained showed a good overlap (74%) with the one previously characterized in similar conditions from gametocytes of the rodent malaria parasite P. berghei. Four candidates were selected based on comparative analysis of their abundance values in released vs total gametocyte proteome. We also characterized the P. falciparum orthologue of the microgamete surface protein (MiGS), a marker of male gametocyte secretory vesicles in murine models of malaria. The findings of this study reveal that all the selected candidate proteins are expressed in both genders and localize to vesicle-like structures that respond to gametogenesis stimuli. This result, together with the fact that the selected proteins are released during gamete emergence in both Plasmodium species, makes them interesting candidates for future functional studies to investigate their potential role in the gametogenesis process.
Collapse
Affiliation(s)
- Felicia Grasso
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Federica Fratini
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Stefania Mochi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Tomasino Pace
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Marta Ponzi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Elisabetta Pizzi
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | - Anna Olivieri
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Dual enzymatic inhibitory mechanism of WM382 on plasmepsin IX and X: Atomistic perspectives from dynamic analysis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
9
|
Panda SK, Saxena S, Gupta PSS, Rana MK. Inhibitors of Plasmepsin X Plasmodium falciparum: Structure-based pharmacophore generation and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
11
|
Nasamu AS, Polino AJ, Istvan ES, Goldberg DE. Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem 2020; 295:8425-8441. [PMID: 32366462 PMCID: PMC7307202 DOI: 10.1074/jbc.rev120.009309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmepsins are a group of diverse aspartic proteases in the malaria parasite Plasmodium Their functions are strikingly multifaceted, ranging from hemoglobin degradation to secretory organelle protein processing for egress, invasion, and effector export. Some, particularly the digestive vacuole plasmepsins, have been extensively characterized, whereas others, such as the transmission-stage plasmepsins, are minimally understood. Some (e.g. plasmepsin V) have exquisite cleavage sequence specificity; others are fairly promiscuous. Some have canonical pepsin-like aspartic protease features, whereas others have unusual attributes, including the nepenthesin loop of plasmepsin V and a histidine in place of a catalytic aspartate in plasmepsin III. We have learned much about the functioning of these enzymes, but more remains to be discovered about their cellular roles and even their mechanisms of action. Their importance in many key aspects of parasite biology makes them intriguing targets for antimalarial chemotherapy. Further consideration of their characteristics suggests that some are more viable drug targets than others. Indeed, inhibitors of invasion and egress offer hope for a desperately needed new drug to combat this nefarious organism.
Collapse
Affiliation(s)
- Armiyaw S Nasamu
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexander J Polino
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva S Istvan
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Azevedo R, Mendes AM, Prudêncio M. The Impact of Antiretroviral Therapy on Malaria Parasite Transmission. Front Microbiol 2020; 10:3048. [PMID: 32038528 PMCID: PMC6993566 DOI: 10.3389/fmicb.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Coendemicity between the human immunodeficiency virus (HIV) and Plasmodium parasites, the causative agents of acquired immunodeficiency syndrome (AIDS) and malaria, respectively, occurs in several regions around the world. Although the impact of the interaction between these two organisms is not well understood, it is thought that the outcome of either disease may be negatively influenced by coinfection. Therefore, it is important to understand how current first-line antiretroviral therapies (ART) might impact Plasmodium infection in these regions. Here, we describe the effect of 18 antiretroviral compounds and of first-line ART on the blood and sporogonic stages of Plasmodium berghei in vitro and in vivo. We show that the combination zidovudine + lamivudine + lopinavir/ritonavir (LPV/r), employed as first-line HIV treatment in the field, has a strong inhibitory activity on the sporogonic stages of P. berghei and that several non-nucleoside reverse transcriptase inhibitors (NNRTI) have a moderate effect on this stage of the parasite’s life cycle. Our results expose the effect of current first-line ART on Plasmodium infection and identify potential alternative therapies for HIV/AIDS that might impact malaria transmission.
Collapse
Affiliation(s)
- Raquel Azevedo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - António M Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Prudêncio
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Cheuka PM, Dziwornu G, Okombo J, Chibale K. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present). J Med Chem 2020; 63:4445-4467. [PMID: 31913032 DOI: 10.1021/acs.jmedchem.9b01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmepsins represent novel antimalarial drug targets. However, plasmepsin-based antimalarial drug discovery efforts in the past 2 decades have generally suffered some drawbacks including lack of translatability of target inhibition to potent parasite inhibition in vitro and in vivo as well as poor selectivity over the related human aspartic proteases. Most studies reported in this period have over-relied on the use of hemoglobinase plasmepsins I-IV (particularly I and II) as targets for the new inhibitors even though these are known to be nonessential at the asexual stage of parasite development. Therefore, future antimalarial drug discovery efforts seeking to identify plasmepsin inhibitors should focus on incorporating non-hemoglobinase plasmepsins such as V, IX, and X in their screening in order to maximize chances of success. Additionally, there is need to go beyond just target enzymatic activity profiling to establishing cellular activity, physicochemical as well as drug metabolism and pharmacokinetics properties and finally in vivo proof-of-concept while ensuring selectivity over related human host proteases.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - Godwin Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
14
|
Miura K, Tachibana M, Takashima E, Morita M, Kanoi BN, Nagaoka H, Baba M, Torii M, Ishino T, Tsuboi T. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Rev Vaccines 2019; 18:1017-1027. [PMID: 31566026 PMCID: PMC11000147 DOI: 10.1080/14760584.2019.1674145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Highly effective malaria vaccines are essential component toward malaria elimination. Although the leading malaria vaccine, RTS,S/AS01, with modest efficacy is being evaluated in a pilot feasibility trial, development of a malaria transmission-blocking vaccine (TBV) could make a major contribution toward malaria elimination. Only a few TBV antigens have reached pre-clinical or clinical development but with several challenges including difficulties in the expression of malaria recombinant proteins and low immunogenicity in humans. Therefore, novel approaches to accelerate TBV research to preclinical development are critical to generate an efficacious TBV.Areas covered: PubMed was searched to review the progress and future prospects of malaria TBV research and development. We also reviewed registered trials at ClinicalTrials.gov as well as post-genome TBV candidate discovery research including our efforts.Expert opinion: Wheat germ cell-free protein synthesis technology can accelerate TBV development by overcoming some current challenges of TBV research.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
15
|
Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2018; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
|
16
|
Antimalarial Transmission-Blocking Interventions: Past, Present, and Future. Trends Parasitol 2018; 34:735-746. [PMID: 30082147 DOI: 10.1016/j.pt.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
Malaria remains a major global health challenge. Appropriate use of current antimalarial tools has reduced the disease burden, but morbidity and mortality remain unacceptably high. It is widely accepted that, to achieve long-term control/eradication, it will be necessary to use interventions that inhibit the transmission of parasites to mosquitoes - these tools are termed transmission-blocking interventions (TBIs). This article aims to outline the rationale for the development of TBIs, with a focus on transmission-blocking drugs and (parasite-derived) transmission-blocking vaccines. We describe and summarise the current status of each of these intervention classes and attempt to identify future requirements in development, with a focus on the challenges of establishing each method within an integrated malarial control programme in the future.
Collapse
|
17
|
Onchieku NM, Mogire R, Ndung'u L, Mwitari P, Kimani F, Matoke-Muhia D, Kiboi D, Magoma G. Deciphering the targets of retroviral protease inhibitors in Plasmodium berghei. PLoS One 2018; 13:e0201556. [PMID: 30067811 PMCID: PMC6070271 DOI: 10.1371/journal.pone.0201556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022] Open
Abstract
Retroviral protease inhibitors (RPIs) such as lopinavir (LP) and saquinavir (SQ) are active against Plasmodium parasites. However, the exact molecular target(s) for these RPIs in the Plasmodium parasites remains poorly understood. We hypothesised that LP and SQ suppress parasite growth through inhibition of aspartyl proteases. Using reverse genetics approach, we embarked on separately generating knockout (KO) parasite lines lacking Plasmepsin 4 (PM4), PM7, PM8, or DNA damage-inducible protein 1 (Ddi1) in the rodent malaria parasite Plasmodium berghei ANKA. We then tested the suppressive profiles of the LP/Ritonavir (LP/RT) and SQ/RT as well as antimalarials; Amodiaquine (AQ) and Piperaquine (PQ) against the KO parasites in the standard 4-day suppressive test. The Ddi1 gene proved refractory to deletion suggesting that the gene is essential for the growth of the asexual blood stage parasites. Our results revealed that deletion of PM4 significantly reduces normal parasite growth rate phenotype (P = 0.003). Unlike PM4_KO parasites which were less susceptible to LP and SQ (P = 0.036, P = 0.030), the suppressive profiles for PM7_KO and PM8_KO parasites were comparable to those for the WT parasites. This finding suggests a potential role of PM4 in the LP and SQ action. On further analysis, modelling and molecular docking studies revealed that both LP and SQ displayed high binding affinities (-6.3 kcal/mol to -10.3 kcal/mol) towards the Plasmodium aspartyl proteases. We concluded that PM4 plays a vital role in assuring asexual stage parasite fitness and might be mediating LP and SQ action. The essential nature of the Ddi1 gene warrants further studies to evaluate its role in the parasite asexual blood stage growth as well as a possible target for the RPIs.
Collapse
Affiliation(s)
- Noah Machuki Onchieku
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Reagan Mogire
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, Kenya
| | - Loise Ndung'u
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Daniel Kiboi
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, Kenya
- West Africa Centre for Cell Biology and Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| |
Collapse
|
18
|
Mishra V, Rathore I, Arekar A, Sthanam LK, Xiao H, Kiso Y, Sen S, Patankar S, Gustchina A, Hidaka K, Wlodawer A, Yada RY, Bhaumik P. Deciphering the mechanism of potent peptidomimetic inhibitors targeting plasmepsins - biochemical and structural insights. FEBS J 2018; 285:3077-3096. [PMID: 29943906 DOI: 10.1111/febs.14598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 11/28/2022]
Abstract
Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar Ki values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different ρ-substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DATABASE: Structural data are available in the PDB under the accession numbers 5YIE, 5YIB, 5YID, 5YIC, and 5YIA.
Collapse
Affiliation(s)
- Vandana Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anagha Arekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Yoshiaki Kiso
- Laboratory of Peptide Sciences, Nagahama Institute of Bio-Science and Technology, Japan
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Koushi Hidaka
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
19
|
Sittikul P, Songtawee N, Kongkathip N, Boonyalai N. In vitro and in silico studies of naphthoquinones and peptidomimetics toward Plasmodium falciparum plasmepsin V. Biochimie 2018; 152:159-173. [PMID: 30103899 DOI: 10.1016/j.biochi.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022]
Abstract
Plasmodium proteases play both regulatory and effector roles in essential biological processes in this important pathogen and have long been investigated as drug targets. Plasmepsin V from P. falciparum (PfPMV) is an essential protease that processes proteins for export into the host erythrocyte and is a focus of ongoing drug development efforts. In the present study, recombinant protein production, inhibition assays, binding studies as well as molecular docking and molecular dynamics simulation studies were used to investigate the mode of binding of a PEXEL-based peptidomimetic and naphthoquinone compounds to PfPMV. Consistent with our previous study, refolded PfPMVs were produced with functional characteristics similar to the soluble counterpart. Naphthoquinone compounds inhibited PfPMV activity by 50% at 50 μM but did not affect pepsin activity. The IC50 values of compounds 31 and 37 against PfPMV were 22.25 and 68.94 μM, respectively. Molecular dynamics simulations revealed that PEXEL peptide interacted with PfPMV active site residues via electrostatic interactions while naphthoquinone binding preferred van der Waal interactions. P1'-Ser of the PfEMP2 substrate formed an additional H-bond with Asp365 promoting the catalytic efficiency. Additionally, the effect of metal ions on the secondary structure of PfPMV was examined. Our results confirmed that Hg2+ ions reversibly induced the changes in secondary structure of the protein whereas Fe3+ ions induced irreversibly. No change was observed in the presence of Ca2+ ions. Overall, the results here suggested that naphthoquinone derivatives may represent another source of antimalarial inhibitors targeting aspartic proteases but further chemical modifications are required.
Collapse
Affiliation(s)
- Pichamon Sittikul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Ngampong Kongkathip
- Natural Product and Organic Synthesis Research Unit (NPOS), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Nonlawat Boonyalai
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
20
|
Transcript and protein expression analysis of proteases in the blood stages of Plasmodium falciparum. Exp Parasitol 2017; 180:33-44. [DOI: 10.1016/j.exppara.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 01/05/2023]
|
21
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
22
|
Altered Plasmodium falciparum Sensitivity to the Antiretroviral Protease Inhibitor Lopinavir Associated with Polymorphisms in pfmdr1. Antimicrob Agents Chemother 2016; 61:AAC.01949-16. [PMID: 27821443 DOI: 10.1128/aac.01949-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023] Open
Abstract
The HIV protease inhibitor lopinavir inhibits Plasmodium falciparum aspartic proteases (plasmepsins) and parasite development, and children receiving lopinavir-ritonavir experienced fewer episodes of malaria than those receiving other antiretroviral regimens. Resistance to lopinavir was selected in vitro over ∼9 months, with ∼4-fold decreased sensitivity. Whole-genome sequencing of resistant parasites showed a mutation and increased copy number in pfmdr1 and a mutation in a protein of unknown function, but no polymorphisms in plasmepsin genes.
Collapse
|
23
|
Cassone A, Vecchiarelli A, Hube B. Aspartyl Proteinases of Eukaryotic Microbial Pathogens: From Eating to Heating. PLoS Pathog 2016; 12:e1005992. [PMID: 28005981 PMCID: PMC5179018 DOI: 10.1371/journal.ppat.1005992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Antonio Cassone
- Polo d’innovazione della Genomica, Genetica e Biologia, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Jena, Germany
- Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
- Friedrich-Schiller-Universität, Jena, Germany
| |
Collapse
|
24
|
Ravenhall M, Benavente ED, Mipando M, Jensen ATR, Sutherland CJ, Roper C, Sepúlveda N, Kwiatkowski DP, Montgomery J, Phiri KS, Terlouw A, Craig A, Campino S, Ocholla H, Clark TG. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi. Malar J 2016; 15:575. [PMID: 27899115 PMCID: PMC5129638 DOI: 10.1186/s12936-016-1634-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.
Collapse
Affiliation(s)
- Matt Ravenhall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja T. R. Jensen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nuno Sepúlveda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | | | - Jacqui Montgomery
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kamija S. Phiri
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja Terlouw
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
25
|
Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol 2016; 32:708-723. [PMID: 27344362 DOI: 10.1016/j.pt.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022]
Abstract
Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic.
| | - David Hartmann
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Jan Dvořák
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 14220, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 16610, Czech Republic; School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|