1
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
2
|
Spatial patterns and climate drivers of malaria in three border areas of Brazil, Venezuela and Guyana, 2016-2018. Sci Rep 2022; 12:10995. [PMID: 35768450 PMCID: PMC9243034 DOI: 10.1038/s41598-022-14012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
In 2020, 77% of malaria cases in the Americas were concentrated in Venezuela, Brazil, and Colombia. These countries are characterized by a heterogeneous malaria landscape and malaria hotspots. Furthermore, the political unrest in Venezuela has led to significant cross-border population movement. Hence, the aim of this study was to describe spatial patterns and identify significant climatic drivers of malaria transmission along the Venezuela-Brazil-Guyana border, focusing on Bolivar state, Venezuela and Roraima state, Brazil. Malaria case data, stratified by species from 2016 to 2018, were obtained from the Brazilian Malaria Epidemiology Surveillance Information System, the Guyana Vector Borne Diseases Program, the Venezuelan Ministry of Health, and civil society organizations. Spatial autocorrelation in malaria incidence was explored using Getis-Ord (Gi*) statistics. A Poisson regression model was developed with a conditional autoregressive prior structure and posterior parameters were estimated using the Bayesian Markov chain Monte Carlo simulation with Gibbs sampling. There were 685,498 malaria cases during the study period. Plasmodium vivax was the predominant species (71.7%, 490,861). Malaria hotspots were located in eight municipalities along the Venezuela and Guyana international borders with Brazil. Plasmodium falciparum increased by 2.6% (95% credible interval [CrI] 2.1%, 2.8%) for one meter increase in altitude, decreased by 1.6% (95% CrI 1.5%, 2.3%) and 0.9% (95% CrI 0.7%, 2.4%) per 1 cm increase in 6-month lagged precipitation and each 1 °C increase of minimum temperature without lag. Each 1 °C increase of 1-month lagged maximum temperature increased P. falciparum by 0.6% (95% CrI 0.4%, 1.9%). P. vivax cases increased by 1.5% (95% CrI 1.3%, 1.6%) for one meter increase in altitude and decreased by 1.1% (95% CrI 1.0%, 1.2%) and 7.3% (95% CrI 6.7%, 9.7%) for each 1 cm increase of precipitation lagged at 6-months and 1 °C increase in minimum temperature lagged at 6-months. Each 1°C increase of two-month lagged maximum temperature increased P. vivax by 1.5% (95% CrI 0.6%, 7.1%). There was no significant residual spatial clustering after accounting for climatic covariates. Malaria hotspots were located along the Venezuela and Guyana international border with Roraima state, Brazil. In addition to population movement, climatic variables were important drivers of malaria transmission in these areas.
Collapse
|
3
|
Bansal M, Upadhyay C, Poonam, Kumar S, Rathi B. Phthalimide analogs for antimalarial drug discovery. RSC Med Chem 2021; 12:1854-1867. [PMID: 34825184 DOI: 10.1039/d1md00244a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Malaria remains one of the world's most life-threatening diseases and, thus, it is a major public health concern all around the world. The disease can become devastating if not treated with proper medication in a timely manner. Currently, the number of viable treatment therapies is in continuous decline due to compromised effectiveness, probably owing to the complex life cycle of Plasmodium falciparum. The factors responsible for the unclear status of malaria eradication programmes include ever-developing parasite resistance to the most effective treatments used on the frontline (i.e., artemisinin derivatives) and the paucity of new effective therapeutics. Due to these circumstances, the development of novel effective drug candidates with unique modes of action is essential for overcoming the listed obstacles. As such, the discovery of novel chemical compounds based on validated pharmacophores remains an unmet need in the field of medicinal chemistry. In this area, functionalized phthalimide (Pht) analogs have been explored as potential candidates against various diseases, including malaria. Pht presents a promising bioactive scaffold that can be easily functionalized and thus utilized as a starting point for the development of new antimalarial candidates suitable for preclinical and clinical studies. In this short review, we highlight a wide range of Pht analogs that have been investigated for their activity against various strains of Plasmodium falciparum.
Collapse
Affiliation(s)
- Meenakshi Bansal
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India .,Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Sonepat-131039 Haryana India
| | - Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology Murthal Sonepat-131039 Haryana India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi Delhi 110007 India
| |
Collapse
|
4
|
Space-Time Clustering Characteristics of Malaria in Bhutan at the End Stages of Elimination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115553. [PMID: 34067393 PMCID: PMC8196969 DOI: 10.3390/ijerph18115553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023]
Abstract
Malaria in Bhutan has fallen significantly over the last decade. As Bhutan attempts to eliminate malaria in 2022, this study aimed to characterize the space-time clustering of malaria from 2010 to 2019. Malaria data were obtained from the Bhutan Vector-Borne Disease Control Program data repository. Spatial and space-time cluster analyses of Plasmodium falciparum and Plasmodium vivax cases were conducted at the sub-district level from 2010 to 2019 using Kulldorff's space-time scan statistic. A total of 768 confirmed malaria cases, including 454 (59%) P. vivax cases, were reported in Bhutan during the study period. Significant temporal clusters of cases caused by both species were identified between April and September. The most likely spatial clusters were detected in the central part of Bhutan throughout the study period. The most likely space-time cluster was in Sarpang District and neighboring districts between January 2010 to June 2012 for cases of infection with both species. The most likely cluster for P. falciparum infection had a radius of 50.4 km and included 26 sub-districts with a relative risk (RR) of 32.7. The most likely cluster for P. vivax infection had a radius of 33.6 km with 11 sub-districts and RR of 27.7. Three secondary space-time clusters were detected in other parts of Bhutan. Spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Operational research to understand the drivers of residual transmission in hotspot sub-districts will help to overcome the final challenges of malaria elimination in Bhutan.
Collapse
|
5
|
Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med 2021; 18:e1003560. [PMID: 33891580 PMCID: PMC8064506 DOI: 10.1371/journal.pmed.1003560] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
7
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Xu S, Zeng W, Ngassa Mbenda HG, Liu H, Chen X, Xiang Z, Li C, Zhang Y, Baird JK, Yang Z, Cui L. Efficacy of directly-observed chloroquine-primaquine treatment for uncomplicated acute Plasmodium vivax malaria in northeast Myanmar: A prospective open-label efficacy trial. Travel Med Infect Dis 2020; 36:101499. [PMID: 31604130 PMCID: PMC7816571 DOI: 10.1016/j.tmaid.2019.101499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chloroquine (CQ) and primaquine (PQ) remain the frontline drugs for radical cure of uncomplicated P. vivax malaria in the Greater Mekong Sub-region (GMS). Recent reports of decreased susceptibility of P. vivax to CQ in many parts of the GMS raise concerns. METHODS From April 2014 to September 2016, 281 patients with uncomplicated P. vivax infection attending clinics in border settlements for internally displaced people in northeast Myanmar were recruited into this study. Patients were treated with standard regimen of 3-day CQ and concurrent 14-day PQ (3.5 mg/kg total dose) as directly observed therapy, and followed for recurrent parasitemia within 28 days post-patency. RESULTS Within the 28-day follow-up period, seven patients developed recurrent parasitemia, resulting in a cumulative rate of parasite recurrence of 2.6%. Five of the seven parasitemias recurred within two weeks, and two of those failed to clear within seven days, indicating high-grade resistance. CONCLUSION Although failure of CQ/PQ treatment of P. vivax was relatively infrequent in northeast Myanmar, this study nonetheless confirms that CQ/PQ-resistant strains do circulate in this area, some of them of a highly resistant phenotype. It is thus recommended that patients who acquire vivax malaria in Myanmar be treated an artemisinin-combination therapy along with hypnozoitocidal primaquine therapy to achieve radical cure.
Collapse
Affiliation(s)
- Shiling Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Huguette Gaelle Ngassa Mbenda
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, FL, 33612, USA
| | - Huaie Liu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No. 69, Jakarta, 10430, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, 650500, PR China.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Blvd, Suite 304, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
A spatio-temporal analysis to identify the drivers of malaria transmission in Bhutan. Sci Rep 2020; 10:7060. [PMID: 32341415 PMCID: PMC7184595 DOI: 10.1038/s41598-020-63896-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
At a time when Bhutan is on the verge of malaria elimination, the aim of this study was to identify malaria clusters at high geographical resolution and to determine its association with local environmental characteristics. Malaria cases from 2006–2014 were obtained from the Vector-borne Disease Control Program under the Ministry of Health, Bhutan. A Zero-Inflated Poisson multivariable regression model with a conditional autoregressive (CAR) prior structure was developed. Bayesian Markov chain Monte Carlo (MCMC) simulation with Gibbs sampling was used to estimate posterior parameters. A total of 2,062 Plasmodium falciparum and 2,284 Plasmodium vivax cases were reported during the study period. Both species of malaria showed seasonal peaks with decreasing trend. Gender and age were not associated with the transmission of either species of malaria. P. falciparum increased by 0.7% (95% CrI: 0.3%, 0.9%) for a one mm increase in rainfall, while climatic variables (temperature and rainfall) were not associated with P. vivax. Insecticide treated bed net use and residual indoor insecticide coverage were unaccounted for in this study. Hot spots and clusters of both species were isolated in the central southern part of Bhutan bordering India. There was significant residual spatial clustering after accounting for climate and demographic variables.
Collapse
|
10
|
Wangchuk S, Gyeltshen S, Dorji K, Wangdi T, Dukpa T, Namgay R, Dorjee S, Tobgay T, Chaijaroenkul W, Na-Bangchang K. Malaria elimination in Bhutan: asymptomatic malaria cases in the Bhutanese population living in malaria-risk areas and in migrant workers from India. Rev Inst Med Trop Sao Paulo 2019; 61:e52. [PMID: 31531630 PMCID: PMC6746194 DOI: 10.1590/s1678-9946201961052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022] Open
Abstract
In 2018, Bhutan reported 54 cases of malaria, of which six were indigenous, 14 introduced and 34 imported. Considering the continuous reduction in the number of indigenous cases, Bhutan plans to eliminate malaria by 2025 under the Bhutan Malaria Elimination Strategy. The study was conducted to assess the presence of asymptomatic plasmodial infection in both, Bhutanese population living in malaria-risk areas and in migrant workers to guide the elimination strategies. A cross-sectional study was conducted from April to May 2016 in 750 Bhutanese people and 473 migrant workers. Plasmodium falciparum and Plasmodium vivax infections were investigated by using a rapid diagnostic test (RDT) and the polymerase chain reaction (PCR). Prevalence of asymptomatic plasmodial infection based on PCR was 0.27% (95% CI: 0.05–1.07%) among Bhutanese people with a mean age of 43 years old. The proportions of males and females were 45% and 55%, respectively. Among migrant workers, the prevalence of asymptomatic plasmodial infection was 0.42% (95% CI: 0.07–1.69%) with a mean age of 30 years old. The majority of migrant workers were from the neighboring Indian State of West Bengal (57.51%), followed by Assam (12.26%). RDT in both study groups did not detect any plasmodial infection. The presence of a low prevalence of asymptomatic plasmodial infection indicates that the current elimination strategies and interventions are effective.
Collapse
Affiliation(s)
- Sonam Wangchuk
- Bhutan Ministry of Health, Royal Center for Disease Control, Thimphu, Bhutan
| | - Sonam Gyeltshen
- Bhutan Ministry of Health, Royal Center for Disease Control, Thimphu, Bhutan
| | - Kunzang Dorji
- Bhutan Ministry of Health, Royal Center for Disease Control, Thimphu, Bhutan
| | - Tenzin Wangdi
- Bhutan Ministry of Health, Department of Public Health, Vector Borne Disease Control Programme, Thimphu, Bhutan
| | - Tobgyel Dukpa
- Bhutan Ministry of Health, Department of Public Health, Vector Borne Disease Control Programme, Thimphu, Bhutan
| | - Rinzin Namgay
- Bhutan Ministry of Health, Department of Public Health, Vector Borne Disease Control Programme, Thimphu, Bhutan
| | - Sithar Dorjee
- Bhutan Agriculture and Food Regulatory Authority, Thimphu, Bhutan.,Khesar Gyalpo University of Medical Science, Thimphu, Bhutan
| | - Tashi Tobgay
- Khesar Gyalpo University of Medical Science, Thimphu, Bhutan
| | - Wanna Chaijaroenkul
- Thammasat University, Cholangiocarcinoma, Chulabhorn International College of Medicine, Center of Excellence in Pharmacology and Molecular Biology of Malaria, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Thammasat University, Cholangiocarcinoma, Chulabhorn International College of Medicine, Center of Excellence in Pharmacology and Molecular Biology of Malaria, Pathumthani, Thailand
| |
Collapse
|
11
|
Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, Alemu SG, Añez A, Anstey NM, Aseffa A, Assefa A, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, D'Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Grigg MJ, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Taylor WRJ, Thwaites G, Tran BQ, Hien TT, Vieira JLF, Wangchuk S, Watson J, William T, Woodrow CJ, Nosten F, Guerin PJ, White NJ, Price RN. The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Med 2019; 17:151. [PMID: 31366382 PMCID: PMC6670141 DOI: 10.1186/s12916-019-1386-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax. METHODS A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model. RESULTS In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p < 0.001). On day 42, patients with recurrent parasitaemia had a mean haemoglobin concentration - 0.72 g/dL [- 0.90, - 0.54] lower than patients without recurrence (p < 0.001). Seven days after starting primaquine, G6PD normal patients had a 0.3% (1/389) risk of clinically significant haemolysis (fall in haemoglobin > 25% to < 7 g/dL) and a 1% (4/389) risk of a fall in haemoglobin > 5 g/dL. CONCLUSIONS Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals. TRIAL REGISTRATION This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia.
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas M Douglas
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Sisay G Alemu
- Addis Ababa University, Addis Ababa, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Arletta Añez
- Departamento de Salud Pública, Universidad de Barcelona, Barcelona, Spain.,Organización Panamericana de Salud, Oficina de País Bolivia, La Paz, Bolivia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria and Neglected Tropical Diseases Research Team, Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | | | - Prabin Dahal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Vice-presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter J de Vries
- Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands
| | - Annette Erhart
- Medical Research Council Unit The Gambia at LSTMH, Fajara, The Gambia
| | - Margarete S M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá - SVS/AP, Macapá, Amapá, Brazil.,Universidade Federal do Amapá - UNIFAP, Macapá, Amapá, Brazil
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, USA.,Global Health Group, University of California San Francisco, San Francisco, USA
| | - Piet A Kager
- Centre for Infection and Immunity Amsterdam (CINEMA), Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, the Netherlands
| | - Tsige Ketema
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Biology, Jimma University, Jimma, Ethiopia
| | - Wasif A Khan
- International Centre for Diarrheal Diseases and Research, Dhaka, Bangladesh
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kartini Lidia
- The Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Universidade do Estado do Amazonas, Manaus, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Rondônia, Brazil.,Universidade Federal de Rondônia (UNIR), Porto Velho, Rondônia, Brazil
| | - Giao T Phan
- Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, Amsterdam, the Netherlands.,Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Aung P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Madhav Nagar, Manipal, Karnataka, India.,Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Carol H Sibley
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Department of Genome Sciences, University of Washington, Seattle, USA
| | - André M Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Walter R J Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guy Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Binh Q Tran
- Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Pará, Brazil
| | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - James Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia. .,WorldWide Antimalarial Resistance Network (WWARN), Clinical Module, Darwin, Northern Territory, Australia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. .,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, Añez A, Anstey NM, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, Chu CS, D'Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Gonzalez-Ceron L, Grigg MJ, Heidari A, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Nosten F, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Sutanto I, Taylor WRJ, Thwaites G, Tran BQ, Tran HT, Valecha N, Vieira JLF, Wangchuk S, William T, Woodrow CJ, Zuluaga-Idarraga L, Guerin PJ, White NJ, Price RN. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. THE LANCET. INFECTIOUS DISEASES 2018; 18:1025-1034. [PMID: 30033231 PMCID: PMC6105624 DOI: 10.1016/s1473-3099(18)30348-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings. METHODS A systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310. FINDINGS Of 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8-35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69-0·97; p=0·021) and in children younger than 5 years (0·59, 0·41-0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1-7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05-0·17; p<0·0001). INTERPRETATION Chloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax. FUNDING Wellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Clinical module, Darwin, NT, Australia; Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Sisay G Alemu
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Arletta Añez
- Departamento de Salud Pública, Universidad de Barcelona, Barcelona, Spain; Organización Panamericana de Salud, Oficina de país Bolivia, La Paz, Bolivia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Ghulam R Awab
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad Afghanistan
| | - J Kevin Baird
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | | | - Cindy S Chu
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Umberto D'Alessandro
- Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium; Medical Research Council Unit, Fajara, The Gambia
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - André Daher
- Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Vice-Presidency of Research and Reference Laboratories, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Peter J de Vries
- Department of Internal Medicine, Tergooi Hospital, Hilversum, Netherlands
| | - Annette Erhart
- Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium; Medical Research Council Unit, Fajara, The Gambia; Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Margarete S M Gomes
- Superintendência de Vigilância em Saúde do Estado do Amapá -SVS/AP, Macapá, Amapá, Brazil; Federal University of Amapá, Macapá, Amapá, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Chiapas, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Aliehsan Heidari
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | - Piet A Kager
- Centre for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Tsige Ketema
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia; Department of Biology, Jimma University, Jimma, Ethiopia
| | - Wasif A Khan
- International Centre for Diarrheal Diseases and Research, Dhaka, Bangladesh
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| | - Toby Leslie
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; HealthNet-TPO, Kabul, Afghanistan
| | - Benedikt Ley
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Kartini Lidia
- Department of Pharmacology and Therapy, Faculty of Medicine, Nusa Cendana University, Kupang, Indonesia
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Giao T Phan
- Division of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, Amsterdam, Netherlands; Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Aung P Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mark Rowland
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Kavitha Saravu
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India; Manipal McGill Center for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Carol H Sibley
- WorldWide Antimalarial Resistance Network, Oxford, UK; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - André M Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil; Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Binh Q Tran
- Tropical Diseases Clinical Research Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Hien T Tran
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Infectious Diseases Unit, Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Charles J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Division of Clinical Sciences, St George's, University of London, London, UK
| | | | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, UK; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network, Clinical module, Darwin, NT, Australia; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, Barber BE, William T, Handayuni I, Marfurt J, Trimarsanto H, Noviyanti R, Sriprawat K, Nosten F, Campino S, Clark TG, Anstey NM, Kwiatkowski DP, Price RN. Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics. Nat Commun 2018; 9:2585. [PMID: 29968722 PMCID: PMC6030216 DOI: 10.1038/s41467-018-04965-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination.
Collapse
Affiliation(s)
- Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK
| | - Ernest D. Benavente
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Olivo Miotto
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK ,0000 0004 1937 0490grid.10223.32Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400 Thailand
| | - Richard D. Pearson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Roberto Amato
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Matthew J. Grigg
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Bridget E. Barber
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia ,0000 0004 1772 8727grid.415560.3Clinical Research Centre, Queen Elizabeth Hospital, 88300 Kota Kinabalu Sabah, Malaysia ,Jesselton Medical Centre, 88300 Kota Kinabalu Sabah, Malaysia
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Jutta Marfurt
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Rintis Noviyanti
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia
| | - Kanlaya Sriprawat
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand
| | - Francois Nosten
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| | - Susana Campino
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Taane G. Clark
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK ,0000 0004 0425 469Xgrid.8991.9Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Nicholas M. Anstey
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Dominic P. Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| |
Collapse
|
14
|
Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. INFECTION GENETICS AND EVOLUTION 2017; 58:83-95. [PMID: 29313805 DOI: 10.1016/j.meegid.2017.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.
Collapse
|
15
|
Rebecca VW, Nicastri MC, McLaughlin N, Fennelly C, McAfee Q, Ronghe A, Nofal M, Lim CY, Witze E, Chude CI, Zhang G, Alicea GM, Piao S, Murugan S, Ojha R, Levi SM, Wei Z, Barber-Rotenberg JS, Murphy ME, Mills GB, Lu Y, Rabinowitz J, Marmorstein R, Liu Q, Liu S, Xu X, Herlyn M, Zoncu R, Brady DC, Speicher DW, Winkler JD, Amaravadi RK. A Unified Approach to Targeting the Lysosome's Degradative and Growth Signaling Roles. Cancer Discov 2017; 7:1266-1283. [PMID: 28899863 PMCID: PMC5833978 DOI: 10.1158/2159-8290.cd-17-0741] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
Lysosomes serve dual roles in cancer metabolism, executing catabolic programs (i.e., autophagy and macropinocytosis) while promoting mTORC1-dependent anabolism. Antimalarial compounds such as chloroquine or quinacrine have been used as lysosomal inhibitors, but fail to inhibit mTOR signaling. Further, the molecular target of these agents has not been identified. We report a screen of novel dimeric antimalarials that identifies dimeric quinacrines (DQ) as potent anticancer compounds, which concurrently inhibit mTOR and autophagy. Central nitrogen methylation of the DQ linker enhances lysosomal localization and potency. An in situ photoaffinity pulldown identified palmitoyl-protein thioesterase 1 (PPT1) as the molecular target of DQ661. PPT1 inhibition concurrently impairs mTOR and lysosomal catabolism through the rapid accumulation of palmitoylated proteins. DQ661 inhibits the in vivo tumor growth of melanoma, pancreatic cancer, and colorectal cancer mouse models and can be safely combined with chemotherapy. Thus, lysosome-directed PPT1 inhibitors represent a new approach to concurrently targeting mTORC1 and lysosomal catabolism in cancer.Significance: This study identifies chemical features of dimeric compounds that increase their lysosomal specificity, and a new molecular target for these compounds, reclassifying these compounds as targeted therapies. Targeting PPT1 blocks mTOR signaling in a manner distinct from catalytic inhibitors, while concurrently inhibiting autophagy, thereby providing a new strategy for cancer therapy. Cancer Discov; 7(11); 1266-83. ©2017 AACR.See related commentary by Towers and Thorburn, p. 1218This article is highlighted in the In This Issue feature, p. 1201.
Collapse
Affiliation(s)
- Vito W Rebecca
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Nicastri
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noel McLaughlin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Colin Fennelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Quentin McAfee
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amruta Ronghe
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Michel Nofal
- Department of Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Eric Witze
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cynthia I Chude
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Gretchen M Alicea
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Shengfu Piao
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Rani Ojha
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel M Levi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Julie S Barber-Rotenberg
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua Rabinowitz
- Department of Chemistry and Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Shujing Liu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Donita C Brady
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania
| | - Jeffrey D Winkler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Mitiku I, Assefa A. Caregivers' perception of malaria and treatment-seeking behaviour for under five children in Mandura District, West Ethiopia: a cross-sectional study. Malar J 2017; 16:144. [PMID: 28390423 PMCID: PMC5385040 DOI: 10.1186/s12936-017-1798-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/04/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Early diagnosis and prompt malaria treatment is essential to reduce progression of the illness to severe disease and, therefore, decrease mortality particularly among children under 5 years of age. This study assessed perception of malaria and treatment-seeking behaviour for children under five with fever in the last 2 weeks in Mandura District, West Ethiopia. METHODS A community based cross-sectional study was conducted among 491 caregivers of children under five in Mandura District, West Ethiopia in December 2014. Data were collected using interviewer-administered questionnaires. Data were entered into Epi Info version 7 and analysed using SPSS version 20. Multiple logistic regression analyses were conducted to identify the determinants of caregivers' treatment-seeking behaviour. RESULTS Overall, 94.1% of the respondents perceived that fever is the most common symptom and 70% associated mosquito bite with the occurrence of malaria. Of 197 caregivers with under five children with fever in the last 2 weeks preceding the study 87.8% sought treatment. However, only 38.7% received treatment within 24 h of onset of fever. Determinants of treatment-seeking include place of residence (rural/urban) (AOR 2.80, 95% CI 1.01-7.70), caregivers age (AOR 3.40, 95% CI 1.27-9.10), knowledge of malaria (AOR 4.65, 95% CI 1.38-15.64), perceived susceptibility to malaria (AOR 3.63, 95% CI 1.21-10.88), and perceived barrier to seek treatment (AOR 0.18, 95% CI 0.06-0.52). CONCLUSIONS Majority of the respondents of this study sought treatment for their under five children. However, a considerable number of caregivers first consulted traditional healers and tried home treatment, thus, sought treatment late. Living in rural village, caregivers' age, malaria knowledge, perceived susceptibility to malaria and perceived barrier to seek treatment were important factors in seeking health care. There is a need to focus on targeted interventions, promote awareness and prevention, and address misconceptions about childhood febrile illness.
Collapse
Affiliation(s)
- Israel Mitiku
- Department of Public Health, College of Medicine and Health Science, Wollo University, P. O. Box: 1145, Dessie, Ethiopia.
| | - Adane Assefa
- Department of Public Health, College of Medicine and Health Science, Wollo University, P. O. Box: 1145, Dessie, Ethiopia
| |
Collapse
|
17
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
18
|
VivaxGEN: An open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis 2017; 11:e0005465. [PMID: 28362818 PMCID: PMC5389845 DOI: 10.1371/journal.pntd.0005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.
Collapse
|
19
|
Hamedi Y, Sharifi-Sarasiabi K, Dehghan F, Safari R, To S, Handayuni I, Trimarsanto H, Price RN, Auburn S. Molecular Epidemiology of P. vivax in Iran: High Diversity and Complex Sub-Structure Using Neutral Markers, but No Evidence of Y976F Mutation at pvmdr1. PLoS One 2016; 11:e0166124. [PMID: 27829067 PMCID: PMC5102416 DOI: 10.1371/journal.pone.0166124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria remains endemic at low levels in the south-eastern provinces of Iran bordering Afghanistan and Pakistan, with the majority of cases attributable to P. vivax. The national guidelines recommend chloroquine (CQ) as blood-stage treatment for uncomplicated P. vivax, but the large influx of imported cases enhances the risk of introducing CQ resistance (CQR). METHODOLOGY AND PRINCIPAL FINDINGS The genetic diversity at pvmdr1, a putative modulator of CQR, and across nine putatively neutral short tandem repeat (STR) markers were assessed in P. vivax clinical isolates collected between April 2007 and January 2013 in Hormozgan Province, south-eastern Iran. One hundred blood samples were collected from patients with microscopy-confirmed P. vivax enrolled at one of five district clinics. In total 73 (73%) were autochthonous cases, 23 (23%) imported cases from Afghanistan or Pakistan, and 4 (4%) with unknown origin. 97% (97/100) isolates carried the F1076L mutation, but none carried the Y976F mutation. STR genotyping was successful in 71 (71%) isolates, including 57(57%) autochthonous and 11 (11%) imported cases. Analysis of population structure revealed 2 major sub-populations, K1 and K2, with further sub-structure within K2. The K1 sub-population had markedly lower diversity than K2 (HE = 0.06 vs HE = 0.82) suggesting that the sub-populations were sustained by distinct reservoirs with differing transmission dynamics, possibly reflecting local versus imported/introduced populations. No notable separation was observed between the local and imported cases although the sample size was limited. CONCLUSIONS The contrasting low versus high diversity in the two sub-populations (K1 and K2) infers that a combination of local transmission and cross-border malaria from higher transmission regions shape the genetic make-up of the P. vivax population in south-eastern Iran. There was no molecular evidence of CQR amongst the local or imported cases, but ongoing clinical surveillance is warranted.
Collapse
Affiliation(s)
- Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Farzaneh Dehghan
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Reza Safari
- Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
20
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|