1
|
Rosales-Rosas AL, Soto A, Wang L, Mols R, Fontaine A, Sanon A, Augustijns P, Delang L. β-D-N 4-hydroxycytidine (NHC, EIDD-1931) inhibits chikungunya virus replication in mosquito cells and ex vivo Aedes aegypti guts, but not when ingested during blood-feeding. Antiviral Res 2024; 225:105858. [PMID: 38490342 DOI: 10.1016/j.antiviral.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus transmitted by Aedes mosquitoes. While there are no antiviral therapies currently available to treat CHIKV infections, several licensed oral drugs have shown significant anti-CHIKV activity in cells and in mouse models. However, the efficacy in mosquitoes has not yet been assessed. Such cross-species antiviral activity could be favorable, since virus inhibition in the mosquito vector might prevent further transmission to vertebrate hosts. Here, we explored the antiviral effect of β-d-N4-hydroxycytidine (NHC, EIDD-1931), the active metabolite of molnupiravir, on CHIKV replication in Aedes aegypti mosquitoes. Antiviral assays in mosquito cells and in ex vivo cultured mosquito guts showed that NHC had significant antiviral activity against CHIKV. Exposure to a clinically relevant concentration of NHC did not affect Ae. aegypti lifespan when delivered via a bloodmeal, but it slightly reduced the number of eggs developed in the ovaries. When mosquitoes were exposed to a blood meal containing both CHIKV and NHC, the compound did not significantly reduce virus infection and dissemination in the mosquitoes. This was confirmed by modelling and could be explained by pharmacokinetic analysis, which revealed that by 6 h post-blood-feeding, 90% of NHC had been cleared from the mosquito bodies. Our data show that NHC inhibited CHIKV replication in mosquito cells and gut tissue, but not in vivo when mosquitoes were provided with a CHIKV-infectious bloodmeal spiked with NHC. The pipeline presented in this study offers a suitable approach to identify anti-arboviral drugs that may impede replication in mosquitoes.
Collapse
Affiliation(s)
- Ana Lucia Rosales-Rosas
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Alina Soto
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lanjiao Wang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Raf Mols
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Belgium
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, 19-21 bd Jean Moulin, cedex 5, 13385 Marseille, France
| | - Aboubakar Sanon
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Belgium
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
2
|
Shah HK, Srinivasan V, Venkatesan S, Balakrishnan V, Candasamy S, Mathew N, Kumar A, Kuttiatt VS. Evaluation of the mosquitocidal efficacy of fluralaner, a potential candidate for drug based vector control. Sci Rep 2024; 14:5628. [PMID: 38454095 PMCID: PMC10920869 DOI: 10.1038/s41598-024-56053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Vector control is a key intervention against mosquito borne diseases. However, conventional methods have several limitations and alternate strategies are in urgent need. Vector control with endectocides such as ivermectin is emerging as a novel strategy. The short half-life of ivermectin is a limiting factor for its application as a mass therapy tool for vector control. Isoxazoline compounds like fluralaner, a class of veterinary acaricides with long half-life hold promise as an alternative. However, information about their mosquitocidal effect is limited. We explored the efficacy of fluralaner against laboratory reared vector mosquitoes-Aedes aegypti, Anopheles stephensi, and, Culex quinquefasciatus. 24 h post-blood feeding, fluralaner showed a significant mosquitocidal effect with LC50 values in the range of 24.04-49.82 ng/mL for the three different mosquito species tested. Effects on life history characteristics (fecundity, egg hatch success, etc.) were also observed and significant effects were noted at drug concentrations of 20, 25 and 45 ng/mL for Ae. aegypti, An. stephensi, and, Cx. quinquefasciatus respectively. At higher drug concentration of 250 ng/mL, significant mortality was observed within 1-2 h of post blood feeding. Potent mosquitocidal effect coupled with its long half-life makes fluralaner an excellent candidate for drug based vector control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nisha Mathew
- ICMR-Vector Control Research Centre, Puducherry, 605 006, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, 605 006, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Kanchipuram, 602 105, India
| | | |
Collapse
|
3
|
Alharbi HM, Elnakady YA, Aldahmash BA, Alajmi R, ALOthman ZA, Badjah-Hadj-Ahmed AY, Aqel A, Ahmed AM. Forensic analysis of mosquito blood meal digestion process and the impact of heroin opiate: determination of the post-feeding interval as a PMI estimation. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:74-86. [PMID: 38041868 DOI: 10.1093/jme/tjad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
Females of some mosquito species are anthropophilic, as they feed on human blood to support egg production and, hence, are forensically valuable if found at a crime scene. The present study investigated the blood meal digestion process in Culex pipiens L. both with and without heroin and proposed a method for estimating the post-feeding interval (PFI). Mosquitoes were fed on a control mouse, a heroin-injected mouse, or in vitro heroin-treated mouse blood. The blood meal digestion was then investigated at different hours post-feeding. Data showed that the blood meal size ingested by control mosquitoes was 0.681 ± 0.04 mg/mosquito and was completely digested within 45 h post-feeding. An estimation of the PFI was proposed in terms of the rate of hemoglobin (Hb) digestion. The blood meal size of the mosquitoes fed on the in vitro heroin-treated blood and the heroin-injected mouse was 0.96 ± 0.06 and 0.79 ± 0.01 mg/mosquito and was completely digested within 50 and 55 h post-feeding, respectively. The digestion of Hb started similarly in all experimental mosquitoes until 10 h post-feeding, after which it significantly decreased in heroin-treated blood meals compared with the control ones. This may suggest that heroin impacted the digestion process, as it took an extra 5-10 h to complete. These findings could be valuable in the forensic context since an estimation of PFI is proposed as a potential estimation of the postmortem interval (PMI). However, care should be taken as heroin in the host blood has significantly impacted the overall digestion process and, hence, may bias the PFI/PMI estimation.
Collapse
Affiliation(s)
- Hend M Alharbi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yasser A Elnakady
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Badr A Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Reem Alajmi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmad Aqel
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf M Ahmed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Sulik M, Antoszczak M, Huczyński A, Steverding D. Antiparasitic activity of ivermectin: Four decades of research into a "wonder drug". Eur J Med Chem 2023; 261:115838. [PMID: 37793327 DOI: 10.1016/j.ejmech.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Parasitic diseases still pose a serious threat to human and animal health, particularly for millions of people and their livelihoods in low-income countries. Therefore, research into the development of effective antiparasitic drugs remains a priority. Ivermectin, a sixteen-membered macrocyclic lactone, exhibits a broad spectrum of antiparasitic activities, which, combined with its low toxicity, has allowed the drug to be widely used in the treatment of parasitic diseases affecting humans and animals. In addition to its licensed use against river blindness and strongyloidiasis in humans, and against roundworm and arthropod infestations in animals, ivermectin is also used "off-label" to treat many other worm-related parasitic diseases, particularly in domestic animals. In addition, several experimental studies indicate that ivermectin displays also potent activity against viruses, bacteria, protozoans, trematodes, and insects. This review article summarizes the last 40 years of research on the antiparasitic effects of ivermectin, and the use of the drug in the treatment of parasitic diseases in humans and animals.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland.
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
5
|
Alcântara JA, de Araújo FSA, da Costa Paz A, Alencar RM, de Albuquerque Caldas BY, Godoy RSM, Lacerda MVG, de Melo GC, Monteiro WM, de Souza Sampaio V, Secundino NFC, Duarte APM, Santana RAG, Pimenta PFP. Effect of fluralaner on the biology, survival, and reproductive fitness of the neotropical malaria vector Anopheles aquasalis. Malar J 2023; 22:337. [PMID: 37936198 PMCID: PMC10631211 DOI: 10.1186/s12936-023-04767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Reducing mosquito abundance or interfering with its ability to support the parasite cycle can help to interrupt malaria in areas of significant risk of malaria transmission. Fluralaner is a safe and effective drug for veterinary use indicated for the treatment against fleas and ticks which acts as an antagonist of chloride ion channels mediated by γ-aminobutyric acid (GABA), preventing the entry of these ions into the postsynaptic neuron, leading to hyperexcitability of the postsynaptic neuron of the central nervous system of arthropods. Fluralaner demonstrated insecticidal activity against different insect species. METHODS The study aimed to evaluate the effects of fluralaner on the biology, survival, and reproductive fitness of Anopheles aquasalis. The following lethal concentrations (LC) were determined for An. aquasalis: LC5 = 0.511 µM; LC25 = 1.625 µM; LC50 = 3.237 µM. RESULTS A significant decrease (P < 0.001) was evident in the number of eggs, larvae, and pupae in the group exposed to a sublethal dose of fluralaner when compared to a control group (without the drug). Using blood from dogs after administration of fluralaner, it was observed that the drug causes 100% mortality in An. aquasalis in less than 24 h after feeding; this effect remains even after 90 days in all samples. DISCUSSION Fluralaner showed the same result for up to 60 days, and after that, there was a slight reduction in its effect, evidenced by a decrease in the percentage of dead females; however, still significant when compared to the control group. CONCLUSION Fluralaner affects the biology and reduction of survival in An. aquasalis in a lasting and prolonged period, and its fecundity with lower dosages, is a strong candidate for controlling disease vectors.
Collapse
Affiliation(s)
- João Arthur Alcântara
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Francys Sayara Andrade de Araújo
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Andréia da Costa Paz
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Rodrigo Maciel Alencar
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | | | - Raquel Soares Maia Godoy
- Programa de Pós-Graduação Em Ciências da Saúde, FIOCRUZ-Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou-Fundação Oswaldo Cruz-(IRR-Fiocruz Minas), Belo Horizonte, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
- Instituto Leônidas e Maria Deane - Fundação Oswaldo Cruz - (ILMD - Fiocruz Amazônia), Manaus, Brazil
- University of Texas Medical Branch (UTMB), Galveston, USA
| | - Gisely Cardoso de Melo
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Vanderson de Souza Sampaio
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
| | - Nágila Francinete Costa Secundino
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
- Programa de Pós-Graduação Em Ciências da Saúde, FIOCRUZ-Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou-Fundação Oswaldo Cruz-(IRR-Fiocruz Minas), Belo Horizonte, Brazil
| | - Ana Paula Marques Duarte
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
- Instituto René Rachou-Fundação Oswaldo Cruz-(IRR-Fiocruz Minas), Belo Horizonte, Brazil
| | - Rosa Amélia Gonçalves Santana
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil
- Instituto Leônidas e Maria Deane - Fundação Oswaldo Cruz - (ILMD - Fiocruz Amazônia), Manaus, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Programa de Pós-graduação em Medicina Tropical-Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (PPGM-UEA/FMT-HVD), Manaus, Brazil.
- Departamento de Ensino e Pesquisa-Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (DENPE/FMT-HVD), Manaus, Brazil.
- Programa de Pós-Graduação Em Ciências da Saúde, FIOCRUZ-Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil.
- Instituto René Rachou-Fundação Oswaldo Cruz-(IRR-Fiocruz Minas), Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Yipsirimetee A, Tipthara P, Hanboonkunupakarn B, Tripura R, Lek D, Kümpornsin K, Lee MCS, Sattabongkot J, Dondorp AM, White NJ, Kobylinski KC, Tarning J, Chotivanich K. Activity of Ivermectin and Its Metabolites against Asexual Blood Stage Plasmodium falciparum and Its Interactions with Antimalarial Drugs. Antimicrob Agents Chemother 2023; 67:e0173022. [PMID: 37338381 PMCID: PMC10368210 DOI: 10.1128/aac.01730-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 μM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P < 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.
Collapse
Affiliation(s)
- Achaporn Yipsirimetee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Krittikorn Kümpornsin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Calibr, Division of the Scripps Research Institute, La Jolla, California, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M. Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kevin C. Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Chaccour C, Casellas A, Hammann F, Ruiz-Castillo P, Nicolas P, Montaña J, Mael M, Selvaraj P, Duthaler U, Mrema S, Kakolwa M, Lyimo I, Okumu F, Marathe A, Schürch R, Elobolobo E, Sacoor C, Saute F, Xia K, Jones C, Rist C, Maia M, Rabinovich NR. BOHEMIA: Broad One Health Endectocide-based Malaria Intervention in Africa-a phase III cluster-randomized, open-label, clinical trial to study the safety and efficacy of ivermectin mass drug administration to reduce malaria transmission in two African settings. Trials 2023; 24:128. [PMID: 36810194 PMCID: PMC9942013 DOI: 10.1186/s13063-023-07098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Residual malaria transmission is the result of adaptive mosquito behavior that allows malaria vectors to thrive and sustain transmission in the presence of good access to bed nets or insecticide residual spraying. These behaviors include crepuscular and outdoor feeding as well as intermittent feeding upon livestock. Ivermectin is a broadly used antiparasitic drug that kills mosquitoes feeding on a treated subject for a dose-dependent period. Mass drug administration with ivermectin has been proposed as a complementary strategy to reduce malaria transmission. METHODS A cluster randomized, parallel arm, superiority trial conducted in two settings with distinct eco-epidemiological conditions in East and Southern Africa. There will be three groups: human intervention, consisting of a dose of ivermectin (400 mcg/kg) administered monthly for 3 months to all the eligible population in the cluster (>15 kg, non-pregnant and no medical contraindication); human and livestock intervention, consisting human treatment as above plus treatment of livestock in the area with a single dose of injectable ivermectin (200 mcg/kg) monthly for 3 months; and controls, consisting of a dose of albendazole (400 mg) monthly for 3 months. The main outcome measure will be malaria incidence in a cohort of children under five living in the core of each cluster followed prospectively with monthly RDTs DISCUSSION: The second site for the implementation of this protocol has changed from Tanzania to Kenya. This summary presents the Mozambique-specific protocol while the updated master protocol and the adapted Kenya-specific protocol undergo national approval in Kenya. BOHEMIA will be the first large-scale trial evaluating the impact of ivermectin-only mass drug administration to humans or humans and cattle on local malaria transmission TRIAL REGISTRATION: ClinicalTrials.gov NCT04966702 . Registered on July 19, 2021. Pan African Clinical Trials Registry PACTR202106695877303.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universidda de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Felix Hammann
- University Hospital of Bern, Inselspital, Bern, Switzerland
| | | | - Patricia Nicolas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Julia Montaña
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Mary Mael
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | | | | | | | | | - Issa Lyimo
- Ifakara Health Institute, Ifakara, Tanzania
| | | | | | - Roger Schürch
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Eldo Elobolobo
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Kang Xia
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | | | - Cassidy Rist
- Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Marta Maia
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- TH Chan Harvard School of Public Health, Boston, USA
| |
Collapse
|
8
|
Pooda SH, Moiroux N, Porciani A, Courjaud AL, Roberge C, Gaudriault G, Sidibé I, Belem AMG, Rayaissé JB, Dabiré RK, Mouline K. Proof-of-concept study for a long-acting formulation of ivermectin injected in cattle as a complementary malaria vector control tool. Parasit Vectors 2023; 16:66. [PMID: 36788608 PMCID: PMC9926456 DOI: 10.1186/s13071-022-05621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/15/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Domesticated animals play a role in maintaining residual transmission of Plasmodium parasites of humans, by offering alternative blood meal sources for malaria vectors to survive on. However, the blood of animals treated with veterinary formulations of the anti-helminthic drug ivermectin can have an insecticidal effect on adult malaria vector mosquitoes. This study therefore assessed the effects of treating cattle with long-acting injectable formulations of ivermectin on the survival of an important malaria vector species, to determine whether it has potential as a complementary vector control measure. METHODS Eight head of a local breed of cattle were randomly assigned to either one of two treatment arms (2 × 2 cattle injected with one of two long-acting formulations of ivermectin with the BEPO® technology at the therapeutic dose of 1.2 mg/kg), or one of two control arms (2 × 2 cattle injected with the vehicles of the formulations). The lethality of the formulations was evaluated on 3-5-day-old Anopheles coluzzii mosquitoes through direct skin-feeding assays, from 1 to 210 days after treatment. The efficacy of each formulation was evaluated and compared using Cox proportional hazards survival models, Kaplan-Meier survival estimates, and log-logistic regression on cumulative mortality. RESULTS Both formulations released mosquitocidal concentrations of ivermectin until 210 days post-treatment (hazard ratio > 1). The treatments significantly reduced mosquito survival, with average median survival time of 4-5 days post-feeding. The lethal concentrations to kill 50% of the Anopheles (LC50) before they became infectious (10 days after an infectious blood meal) were maintained for 210 days post-injection for both formulations. CONCLUSIONS This long-lasting formulation of ivermectin injected in cattle could complement insecticide-treated nets by suppressing field populations of zoophagic mosquitoes that are responsible, at least in part, for residual malaria transmission. The impact of this approach will of course depend on the field epidemiological context. Complementary studies will be necessary to characterize ivermectin withdrawal times and potential environmental toxicity.
Collapse
Affiliation(s)
- Sié Hermann Pooda
- Université de Dédougou, Dedougou, Burkina Faso
- Centre International de Recherche et Développement pour l’Élevage en zones Sub-humides, Bobo-Dioulasso, Burkina Faso
- Insectarium de Bobo Dioulasso – Campagne d’éradication de la mouche Tsé Tsé et des Trypanosomoses, Bobo-Dioulasso, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| | | | | | | | | | - Issa Sidibé
- Insectarium de Bobo Dioulasso – Campagne d’éradication de la mouche Tsé Tsé et des Trypanosomoses, Bobo-Dioulasso, Burkina Faso
| | | | - Jean-Baptiste Rayaissé
- Centre International de Recherche et Développement pour l’Élevage en zones Sub-humides, Bobo-Dioulasso, Burkina Faso
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Karine Mouline
- MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| |
Collapse
|
9
|
Dias ACA, Teixeira AV, Lima Bezerra F, Andriolo A, Silva ADA. Sugar Bait Composition Containing Ivermectin Affect Engorgement and Mortality of the Mosquito Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:159-164. [PMID: 36440696 DOI: 10.1093/jme/tjac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Toxins and attractants have been studied and used in sugar baits for mosquitoes. However, little importance has been given to the combination of sugar concentration, bait composition, and their relationship with mosquito engorgement and mortality. Therefore, the present study evaluated the effects of three concentrations of sucrose on baits with and without an attractant (concentrated guava juice), on engorgement and mortality rates of adult Aedes aegypti (Linnaeus, Diptera: Culicidae). Toxic sugar baits (TSB) and attractant toxic sugar baits (ATSB) containing 10, 50, and 70% sucrose and 100 ppm ivermectin (IVM) were prepared to assess engorgement and mortality rates. Subsequently, different concentrations of IVM (0.312-100 ppm) in TSB and ATSB were prepared with sucrose concentrations of 10 and 70% to determine the lethal concentrations (LC50 and LC90) values. Engorgement on the baits was observed under a stereomicroscope, and mortality was followed up to 48 h after feeding. In general, more mosquitoes engorged on TSB regardless of the sugar concentration, while higher concentrations of sugar in ATSBs resulted in higher numbers of mosquitoes engorging. A large increase in the LC90 of IVM was observed for females feeding on ATSBs and TSBs with 70% sucrose relative to those feeding on baits with lower sugar concentrations. No such effect was observed for males.
Collapse
Affiliation(s)
- Alyne Cunha Alves Dias
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| | - Aurea Vieira Teixeira
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| | - Flaviana Lima Bezerra
- Laboratório de Bioecologia de Insetos, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| | - Aline Andriolo
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| | - Alexandre de A Silva
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
- Laboratório de Bioecologia de Insetos, Universidade Federal de Rondônia, Porto Velho, RO, Brasil
| |
Collapse
|
10
|
Eba K, Habtewold T, Asefa L, Degefa T, Yewhalaw D, Duchateau L. Effect of Ivermectin ® on survivorship and fertility of Anopheles arabiensis in Ethiopia: an in vitro study. Malar J 2023; 22:12. [PMID: 36624480 PMCID: PMC9830892 DOI: 10.1186/s12936-023-04440-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Innovative vector control tools are needed to counteract insecticide resistance and residual malaria transmission. One of such innovative methods is an ivermectin (IVM) treatment to reduce vector survival. In this study, a laboratory experiment was conducted to investigate the effect of ivermectin on survivorship, fertility and egg hatchability rate of Anopheles arabiensis in Ethiopia. METHODS An in vitro experiment was conducted using 3-5 days old An. arabiensis adults from a colony maintained at insectary of Tropical and Infectious Diseases Research Center, Jimma University (laboratory population) and Anopheles mosquitoes reared from larvae collected from natural mosquito breeding sites (wild population). The mosquitoes were allowed to feed on cattle blood treated with different doses of ivermectin (0 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml and 80 ng/ml). During each feeding experiment, the mosquitoes were held in cages and blood-fed using a Hemotek feeder. Mortality and egg production were then recorded daily for up to 9 days. Time to death was analysed by a Cox frailty model with replicate as frailty term and source of mosquito (wild versus laboratory), treatment type (ivermectin vs control) and their interaction as categorical fixed effects. Kaplan Meier curves were plotted separately for wild and laboratory populations for a visual interpretation of mosquito survival as a function of treatment. RESULTS Both mosquito source and treatment had a significant effect on survival (P < 0.001), but their interaction was not significant (P = 0.197). Compared to the controls, the death hazard of An. arabiensis that fed on ivermectin-treated blood was 2.3, 3.5, 6.5, 11.5 and 17.9 times that of the control for the 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, and 80 ng/ml dose, respectively. With respect to the number of hatched larvae, hatched pupae and emerged adults per fed mosquitoes, a significant difference was found between the control and the 5 ng/ml dose group (P < 0.001). The number of hatched larvae and pupae, and emerged adults decreased further for the 10 ng/ml dose group and falls to zero for the higher doses. CONCLUSION Treating cattle blood with ivermectin reduced mosquito survival, fertility, egg hatchability, larval development and adult emergence of An. arabiensis in all tested concentrations of ivermectin in both the wild and laboratory populations. Thus, ivermectin application in cattle could be used as a supplementary vector control method to tackle residual malaria transmission and ultimately achieve malaria elimination in Ethiopia.
Collapse
Affiliation(s)
- Kasahun Eba
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tibebu Habtewold
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Lechisa Asefa
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.472427.00000 0004 4901 9087Department of Environmental Health Sciences, Bule Hora University, P.O. Box 144, Bule Hora, Ethiopia
| | - Teshome Degefa
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.411903.e0000 0001 2034 9160Tropical and Infectious Diseases Research Center, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Luc Duchateau
- grid.5342.00000 0001 2069 7798Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Dreyer SM, Vaughan JA. Survival and Fecundity of Anopheles stephensi and Anopheles albimanus Mosquitoes (Diptera: Culicidae) After Ingesting Bovine Blood Containing Various Veterinary Systemic Parasiticides. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1700-1709. [PMID: 35934895 PMCID: PMC9473655 DOI: 10.1093/jme/tjac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 05/13/2023]
Abstract
Systemic parasiticides in livestock can control zoophilic malaria vectors that contribute to residual malaria transmission. Membrane feeding techniques were used to screen seven systemic parasiticidic drugs currently in veterinary use for livestock and dogs. Drugs were tested in two laboratory strains of zoophilic Anopheles - A. stephensi (South Asian vector) and A. albimanus (Central American vector). To assess the relative potentials of these drugs, the resultant LC-50 for each drug was compared with what is known about the pharmacokinetic of the drug. Drugs with LC-50 values below the reported maximum plasma concentration of treated animals were considered as showing the most promise for use in the field. Ivermectin and fipronil showed the greatest promise for use in cattle against A. stephensi. Fipronil showed the greatest promise for use in cattle against A. albimanus. Both fluralaner and afoxolaner were highly effective against both mosquito species but pharmacokinetic data for these drugs in cattle are lacking. Eprinomectin, moxidectin and abamectin showed marginal to no promise for either mosquito species. At sublethal doses, ivermectin, fipronil, and afoxolaner (but not fluralaner) significantly reduced the larval production of surviving A. stephensi and A. albimanus. Further testing of candidate systemic parasiticides, including their product formulations, in livestock against field-collected populations of Anopheles is the next logical step toward full implementation of this strategy to manage zoophilic vectors.
Collapse
Affiliation(s)
- Staci M Dreyer
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | | |
Collapse
|
12
|
Dreyer SM, Morin KJ, Magaña M, Pott M, Leiva D, Achee NL, Grieco JP, Vaughan JA. Oral susceptibility to ivermectin is over fifty times greater in a wild population of Anopheles albimanus mosquitoes from Belize than the STECLA laboratory reference strain of this mosquito. Malar J 2022; 21:72. [PMID: 35246147 PMCID: PMC8896111 DOI: 10.1186/s12936-022-04092-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background The STECLA strain of Anopheles albimanus has been in continuous colony for many years and is the reference strain on which genomic studies for the species are based. Recently, the STECLA strain was demonstrated to be much less susceptible to ivermectin ingested in a blood meal (4-day LC50 of 1468 ng/ml) than all other Anopheles species tested to-date (LC50 values range from 7 to 56 ng/ml). The ability of An. albimanus to survive ingestion of ivermectin at concentrations far beyond that typically found in the blood of ivermectin-treated people or livestock (i.e., 30–70 ng/ml) could invalidate the use of ivermectin as a malaria vector control strategy in areas where An. albimanus is a primary vector. Methods To investigate this, host-seeking An. albimanus were captured in northern Belize and used in membrane feeding bioassays of ivermectin, employing the same methods as described earlier with the STECLA strain. Results Field-collected An. albimanus in Belize were 55 times more susceptible to ingested ivermectin than were the STECLA reference strain. Oral susceptibility to ivermectin in wild An. albimanus from Belize (4-day LC50 of 26 ng/ml) was equivalent to that of other Anopheles species tested. Conclusions Contrary to initial assessments using a highly inbred strain of mosquito, laboratory studies using a field population indicate that ivermectin treatment of livestock could reduce An. albimanus populations in areas of Central America and the Caribbean where malaria transmission may occur. Toxicity screening of ivermectin and other systemic parasiticides for malaria control should examine wild populations of the vector species being targeted.
Collapse
Affiliation(s)
| | | | - Marla Magaña
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Marie Pott
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Donovan Leiva
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Nicole L Achee
- Belize Vector and Ecology Center, Orange Walk Town, Belize.,University of Notre Dame, South Bend, IN, 46556, USA
| | - John P Grieco
- Belize Vector and Ecology Center, Orange Walk Town, Belize.,University of Notre Dame, South Bend, IN, 46556, USA
| | | |
Collapse
|
13
|
Kositz C, Bradley J, Hutchins H, Last A, D'Alessandro U, Marks M. Broadening the range of use cases for ivermectin - a review of the evidence. Trans R Soc Trop Med Hyg 2022; 116:201-212. [PMID: 34323283 PMCID: PMC8890779 DOI: 10.1093/trstmh/trab114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic agent that interferes with glutamate-gated chloride channels found in invertebrates but not in vertebrate species. Mass drug administration (MDA) with ivermectin-based regimes has been a mainstay of elimination efforts targeting onchocerciasis and lymphatic filariasis for more than 3 decades. More recently, interest in the use of ivermectin to control other neglected tropical diseases (NTDs) such as soil-transmitted helminths and scabies has grown. Interest has been further stimulated by the fact that ivermectin displays endectocidal efficacy against various Anopheles species capable of transmitting malaria. Therefore there is growing interest in using ivermectin MDA as a tool that might aid in the control of both malaria and several NTDs. In this review we outline the evidence base to date on these emerging indications for ivermectin MDA with reference to clinical and public health data and discuss the rationale for evaluating the range of impacts of a malaria ivermectin MDA on other NTDs.
Collapse
Affiliation(s)
- Christian Kositz
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - John Bradley
- MRC International Statistics and Epidemiology Group, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Harry Hutchins
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Anna Last
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
- Hospital for Tropical Diseases, Mortimer Market Capper Street, WC1E 6JB, London, UK
| | - Umberto D'Alessandro
- Disease Control and Elimination, Medical Research Council Unit Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
- Hospital for Tropical Diseases, Mortimer Market Capper Street, WC1E 6JB, London, UK
| |
Collapse
|
14
|
Ahmad SS, Rahi M, Saroha P, Sharma A. Ivermectin as an endectocide may boost control of malaria vectors in India and contribute to elimination. Parasit Vectors 2022; 15:20. [PMID: 35012612 PMCID: PMC8744265 DOI: 10.1186/s13071-021-05124-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022] Open
Abstract
Malaria constitutes one of the largest public health burdens faced by humanity. Malaria control has to be an efficient balance between diagnosis, treatment and vector control strategies. The World Health Organization currently recommends indoor residual spraying and impregnated bed nets as two malaria vector control methods that have shown robust and persistent results against endophilic and anthropophilic mosquito species. The Indian government launched the National Framework for Malaria Elimination in 2016 with the aim to achieve the elimination of malaria in a phased and strategic manner and to sustain a nation-wide malaria-free status by 2030. India is currently in a crucial phase of malaria elimination and novel vector control strategies maybe helpful in dealing with various challenges, such as vector behavioural adaptations and increasing insecticide resistance among the Anopheles populations of India. Ivermectin can be one such new tool as it is the first endectocide to be approved in both animals and humans. Trials of ivermectin have been conducted in endemic areas of Africa with promising results. In this review, we assess available data on ivermectin as an endectocide and propose that this endectocide should be explored as a vector control tool for malaria in India.
Collapse
Affiliation(s)
- Sundus Shafat Ahmad
- Indian Council of Medical Research (ICMR)–National Institute of Malaria Research, New Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSir), Ghaziabad, India
| | - Poonam Saroha
- Indian Council of Medical Research (ICMR)–National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSir), Ghaziabad, India
| | - Amit Sharma
- Indian Council of Medical Research (ICMR)–National Institute of Malaria Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSir), Ghaziabad, India
| |
Collapse
|
15
|
Singh L, Singh K. Ivermectin: A Promising Therapeutic for Fighting Malaria. Current Status and Perspective. J Med Chem 2021; 64:9711-9731. [PMID: 34242031 DOI: 10.1021/acs.jmedchem.1c00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Finding new chemotherapeutic interventions to treat malaria through repurposing of time-tested drugs and rigorous design of new drugs using tools of rational drug design remains one of the most sought strategies at the disposal of medicinal chemists. Ivermectin, a semisynthetic derivative of avermectin B1, is among the efficacious drugs used in mass drug administration drives employed against onchocerciasis, lymphatic filariasis, and several other parasitic diseases in humans. In this review, we present the prowess of ivermectin, a potent endectocide, in the control of malaria through vector control to reduce parasite transmission combined with efficacious chemoprevention to reduce malaria-related fatalities.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| | - Kamaljit Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| |
Collapse
|
16
|
Nicolas P, Kiuru C, Wagah MG, Muturi M, Duthaler U, Hammann F, Maia M, Chaccour C. Potential metabolic resistance mechanisms to ivermectin in Anopheles gambiae: a synergist bioassay study. Parasit Vectors 2021; 14:172. [PMID: 33743783 PMCID: PMC7981804 DOI: 10.1186/s13071-021-04675-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Despite remarkable success obtained with current malaria vector control strategies in the last 15 years, additional innovative measures will be needed to achieve the ambitious goals for malaria control set for 2030 by the World Health Organization (WHO). New tools will need to address insecticide resistance and residual transmission as key challenges. Endectocides such as ivermectin are drugs that kill mosquitoes which feed on treated subjects. Mass administration of ivermectin can effectively target outdoor and early biting vectors, complementing the still effective conventional tools. Although this approach has garnered attention, development of ivermectin resistance is a potential pitfall. Herein, we evaluate the potential role of xenobiotic pumps and cytochrome P450 enzymes in protecting mosquitoes against ivermectin by active efflux and metabolic detoxification, respectively. Methods We determined the lethal concentration 50 for ivermectin in colonized Anopheles gambiae; then we used chemical inhibitors and inducers of xenobiotic pumps and cytochrome P450 enzymes in combination with ivermectin to probe the mechanism of ivermectin detoxification. Results Dual inhibition of xenobiotic pumps and cytochromes was found to have a synergistic effect with ivermectin, greatly increasing mosquito mortality. Inhibition of xenobiotic pumps alone had no effect on ivermectin-induced mortality. Induction of xenobiotic pumps and cytochromes may confer partial protection from ivermectin. Conclusion There is a clear pathway for development of ivermectin resistance in malaria vectors. Detoxification mechanisms mediated by cytochrome P450 enzymes are more important than xenobiotic pumps in protecting mosquitoes against ivermectin.![]()
Collapse
Affiliation(s)
- Patricia Nicolas
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, 1929, Maputo, Mozambique
| | - Caroline Kiuru
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, 1929, Maputo, Mozambique
| | - Martin G Wagah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 91SA, UK.,Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Martha Muturi
- Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University and University Hospital Basel, 4056, Basel, Switzerland.,Division of Clinical Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland
| | - Felix Hammann
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Bern, 3010, Bern, Switzerland
| | - Marta Maia
- Department of Biosciences, KEMRI Wellcome Trust Research Programme, Kilifi, 230-80108, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain. .,Ifakara Health Institute, Ifakara, 67501, United Republic of Tanzania. .,Facultad de Medicina, Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
17
|
Lymphatic filariasis, infection status in Culex quinquefasciatus and Anopheles species after six rounds of mass drug administration in Masasi District, Tanzania. Infect Dis Poverty 2021; 10:20. [PMID: 33648600 PMCID: PMC7919328 DOI: 10.1186/s40249-021-00808-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lymphatic filariasis (LF) elimination program in Tanzania started in 2000 in response to the Global program for the elimination of LF by 2020. Evidence shows a persistent LF transmission despite more than a decade of mass drug administration (MDA). It is advocated that, regular monitoring should be conducted in endemic areas to evaluate the progress towards elimination and detect resurgence of the disease timely. This study was therefore designed to assess the status of Wuchereria bancrofti infection in Culex quinqefasciatus and Anopheles species after six rounds of MDA in Masasi District, South Eastern Tanzania. Methods Mosquitoes were collected between June and July 2019 using Center for Diseases Control (CDC) light traps and gravid traps for indoor and outdoor respectively. The collected mosquitoes were morphologically identified into respective species. Dissections and PCR were carried out to detect W. bancrofti infection. Questionnaire survey and checklist were used to assess vector control interventions and household environment respectively. A Poisson regression model was run to determine the effects of household environment on filarial vector density. Results Overall, 12 452 mosquitoes were collected of which 10 545 (84.7%) were filarial vectors. Of these, Anopheles gambiae complex, An. funestus group and Cx. quinquefasciatus accounted for 0.1%, 0.7% and 99.2% respectively. A total of 365 pools of Cx. quinquefasciatus (each with 20 mosquitoes) and 46 individual samples of Anopheles species were analyzed by PCR. For Cx. quinquefasciatus pools, 33 were positive for W. bancrofti, giving an infection rate of 0.5%, while the 46 samples of Anopheles species were all negative. All 1859 dissected mosquitoes analyzed by microscopy were also negative. Households with modern latrines had less mosquitoes than those with pit latrines [odds ratio (OR) = 0.407, P < 0.05]. Houses with unscreened windows had more mosquitoes as compared to those with screened windows (OR = 2.125, P < 0.05). More than 80% of the participants own bednets while 16.5% had no protection. Conclusions LF low transmission is still ongoing in Masasi District after six rounds of MDA and vector control interventions. The findings also suggest that molecular tools may be essential for xenomonitoring LF transmission during elimination phase. ![]()
Collapse
|
18
|
Jones RT, Pretorius E, Ant TH, Bradley J, Last A, Logan JG. The use of islands and cluster-randomized trials to investigate vector control interventions: a case study on the Bijagós archipelago, Guinea-Bissau. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190807. [PMID: 33357055 PMCID: PMC7776941 DOI: 10.1098/rstb.2019.0807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Vector-borne diseases threaten the health of populations around the world. While key interventions continue to provide protection from vectors, there remains a need to develop and test new vector control tools. Cluster-randomized trials, in which the intervention or control is randomly allocated to clusters, are commonly selected for such evaluations, but their design must carefully consider cluster size and cluster separation, as well as the movement of people and vectors, to ensure sufficient statistical power and avoid contamination of results. Island settings present an opportunity to conduct these studies. Here, we explore the benefits and challenges of conducting intervention studies on islands and introduce the Bijagós archipelago of Guinea-Bissau as a potential study site for interventions intended to control vector-borne diseases. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Thomas H. Ant
- Centre for Virus Research, Bearsden Road, Bearsden, Glasgow G61 1QH, UK
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Anna Last
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - James G. Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
19
|
Khaligh FG, Jafari A, Silivanova E, Levchenko M, Rahimi B, Gholizadeh S. Endectocides as a complementary intervention in the malaria control program: a systematic review. Syst Rev 2021; 10:30. [PMID: 33455581 PMCID: PMC7812718 DOI: 10.1186/s13643-021-01578-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Malaria is the most common vector-borne disease transmitted to humans by Anopheles mosquitoes. Endectocides and especially ivermectin will be available as a vector control tool soon. The current review could be valuable for trial design and clinical studies to control malaria transmission. METHODS PubMed/MEDLINE, Scopus, Web of Science, and Science Direct were searched for original English published papers on ("Malaria chemical control" OR "Malaria elimination" OR "Anopheles vector control" OR "Malaria zooprophylaxis") AND ("Systemic insecticides" OR "Endectocides" OR "Ivermectin"). The last search was from 19 June 2019 to 31 December 2019. It was updated on 17 November 2020. Two reviewers (SG and FGK) independently reviewed abstracts and full-text articles. Data were extracted by one person and checked by another. As meta-analyses were not possible, a qualitative summary of results was performed. RESULTS Thirty-six published papers have used systemic insecticides/endectocides for mosquito control. Most of the studies (56.75%) were done on Anopheles gambiae complex species on doses from 150 μg/kg to 400 μg/kg in several studies. Target hosts for employing systemic insecticides/drugs were animals (44.2%, including rabbit, cattle, pig, and livestock) and humans (32.35%). CONCLUSIONS Laboratory and field studies have highlighted the potential of endectocides in malaria control. Ivermectin and other endectocides could soon serve as novel malaria transmission control tools by reducing the longevity of Anopheles mosquitoes that feed on treated hosts, potentially decreasing Plasmodium parasite transmission when used as mass drug administration (MDA).
Collapse
Affiliation(s)
- Fereshteh Ghahvechi Khaligh
- Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Department of Clinical Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elena Silivanova
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology, Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences (ASRIVEA - Branch of Tyumen Scientific Centre SB RAS), Institutskaya st. 2, Tyumen, Russian Federation, 625041
| | - Mikhail Levchenko
- All-Russian Scientific Research Institute of Veterinary Entomology and Arachnology, Branch of Federal State Institution Federal Research Centre Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences (ASRIVEA - Branch of Tyumen Scientific Centre SB RAS), Institutskaya st. 2, Tyumen, Russian Federation, 625041
| | - Bahlol Rahimi
- Department of Health Information Technology, School of Applied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Gholizadeh
- Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran. .,Medical Entomology Department, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
20
|
High concentrations of membrane-fed ivermectin are required for substantial lethal and sublethal impacts on Aedes aegypti. Parasit Vectors 2021; 14:9. [PMID: 33407825 PMCID: PMC7789309 DOI: 10.1186/s13071-020-04512-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Background With widespread insecticide resistance in mosquito vectors, there is a pressing need to evaluate alternatives with different modes of action. Blood containing the antihelminthic drug ivermectin has been shown to have lethal and sub-lethal effects on mosquitoes. Almost all work to date has been on Anopheles spp., but impacts on other anthropophagic vectors could provide new options for their control, or additional value to anti-malarial ivermectin programmes. Methods Using dose-response assays, we evaluated the effects of ivermectin delivered by membrane feeding on daily mortality (up to 14 days post-blood feed) and fecundity of an Indian strain of Aedes aegypti. Results The 7-day lethal concentration of ivermectin required to kill 50% of adult mosquitoes was calculated to be 178.6 ng/ml (95% confidence intervals 142.3–218.4) for Ae. aegypti, which is much higher than that recorded for Anopheles spp. in any previous study. In addition, significant effects on fecundity and egg hatch rates were only recorded at high ivermectin concentrations (≥ 250 ng/ul). Conclusion Our results suggest that levels of ivermectin present in human blood at current dosing regimes in mass drug administration campaigns, or even those in a recent higher-dose anti-malaria trial, are unlikely to have a substantial impact on Ae. aegypti. Moreover, owing to the strong anthropophagy of Ae. aegypti, delivery of higher levels of ivermectin in livestock blood is also unlikely to be an effective option for its control. However, other potential toxic impacts of ivermectin metabolites, accumulation in tissues, sublethal effects on behaviour, or antiviral action might increase the efficacy of ivermectin against Ae. aegypti and the arboviral diseases it transmits, and require further investigation.![]()
Collapse
|
21
|
Harrington LC, Foy BD, Bangs MJ. Considerations for Human Blood-Feeding and Arthropod Exposure in Vector Biology Research: An Essential Tool for Investigations and Disease Control. Vector Borne Zoonotic Dis 2020; 20:807-816. [PMID: 32905735 DOI: 10.1089/vbz.2020.2620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Eventually there may be a broadly acceptable, even perfected, substitute for the human host requirement for direct feeding experiments by arthropods, most notably mosquitoes. However, for now, direct and indirect feeding on human volunteers is an important, if not essential, tool in vector biology research (VBR). This article builds on the foundational publication by Achee et al. (2015) covering considerations for the use of human participants in VBR pursuits. The authors introduced methods involving human participation in VBR, while detailing human-landing collections (catches) as a prime example. Benedict et al. (2018) continued this theme with an overview of human participation and considerations for research that involves release of mosquito vectors into the environment. In this study, we discuss another important aspect of human use in VBR activities: considerations addressing studies that require an arthropod to feed on a live human host. Using mosquito studies as our principal example, in this study, we discuss the tremendous importance and value of this approach to support and allow study of a wide variety of factors and interactions related to our understanding of vector-borne diseases and their control. This includes establishment of laboratory colonies for test populations, characterization of essential nutrients that contribute to mosquito fitness, characterization of blood-feeding (biting) behavior and pathogen transmission, parameterization for modeling transmission dynamics, evaluation of human host attraction and/or agents that repel, and the effectiveness of antivector or parasite therapeutic drug studies.
Collapse
Affiliation(s)
| | - Brian D Foy
- Department of Microbiology, Immunology & Pathology, Arthropod-Borne and Infectious Diseases Laboratory Fort Collins, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Bangs
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
22
|
Billingsley P, Binka F, Chaccour C, Foy B, Gold S, Gonzalez-Silva M, Jacobson J, Jagoe G, Jones C, Kachur P, Kobylinski K, Last A, Lavery JV, Mabey D, Mboera D, Mbogo C, Mendez-Lopez A, Rabinovich NR, Rees S, Richards F, Rist C, Rockwood J, Ruiz-Castillo P, Sattabongkot J, Saute F, Slater H, Steer A, Xia K, Zullinger R. A Roadmap for the Development of Ivermectin as a Complementary Malaria Vector Control Tool. Am J Trop Med Hyg 2020; 102:3-24. [PMID: 31971144 PMCID: PMC7008306 DOI: 10.4269/ajtmh.19-0620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In the context of stalling progress against malaria, resistance of mosquitoes to insecticides, and residual transmission, mass drug administration (MDA) of ivermectin, an endectocide used for neglected tropical diseases (NTDs), has emerged as a promising complementary vector control method. Ivermectin reduces the life span of Anopheles mosquitoes that feed on treated humans and/or livestock, potentially decreasing malaria parasite transmission when administered at the community level. Following the publication by WHO of the preferred product characteristics for endectocides as vector control tools, this roadmap provides a comprehensive view of processes needed to make ivermectin available as a vector control tool by 2024 with a completely novel mechanism of action. The roadmap covers various aspects, which include 1) the definition of optimal dosage/regimens for ivermectin MDA in both humans and livestock, 2) the risk of resistance to the drug and environmental impact, 3) ethical issues, 4) political and community engagement, 5) translation of evidence into policy, and 6) operational aspects of large-scale deployment of the drug, all in the context of a drug given as a prevention tool acting at the community level. The roadmap reflects the insights of a multidisciplinary group of global health experts who worked together to elucidate the path to inclusion of ivermectin in the toolbox against malaria, to address residual transmission, counteract insecticide resistance, and contribute to the end of this deadly disease.
Collapse
Affiliation(s)
| | - Fred Binka
- University of Health and Allied Sciences
| | | | | | | | | | | | | | | | | | | | - Anna Last
- London School of Hygiene and Tropical Medicine
| | | | - David Mabey
- London School of Hygiene and Tropical Medicine
| | | | | | | | | | | | | | - Cassidy Rist
- Virginia-Maryland College of Veterinary Medicine at Virginia Tech
| | | | | | | | | | | | | | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech
| | - Rose Zullinger
- US President’s Malaria Initiative/US Centers for Disease Control and Prevention
| |
Collapse
|
23
|
Kobylinski KC, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Pantuwatana K, Phasomkusolsil S, Davidson SA, Winterberg M, Hoglund RM, Mukaka M, van der Pluijm RW, Dondorp A, Day NPJ, White NJ, Tarning J. Safety, Pharmacokinetics, and Mosquito-Lethal Effects of Ivermectin in Combination With Dihydroartemisinin-Piperaquine and Primaquine in Healthy Adult Thai Subjects. Clin Pharmacol Ther 2019; 107:1221-1230. [PMID: 31697848 PMCID: PMC7285759 DOI: 10.1002/cpt.1716] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
Mass administration of antimalarial drugs and ivermectin are being considered as potential accelerators of malaria elimination. The safety, tolerability, pharmacokinetics, and mosquito‐lethal effects of combinations of ivermectin, dihydroartemisinin‐piperaquine, and primaquine were evaluated. Coadministration of ivermectin and dihydroartemisinin‐piperaquine resulted in increased ivermectin concentrations with corresponding increases in mosquito‐lethal effect across all subjects. Exposure to piperaquine was also increased when coadministered with ivermectin, but electrocardiograph QT‐interval prolongation was not increased. One subject had transiently impaired liver function. Ivermectin mosquito‐lethal effect was greater than predicted previously against the major Southeast Asian malaria vectors. Both Anopheles dirus and Anopheles minimus mosquito mortality was increased substantially (20‐fold and 35‐fold increase, respectively) when feeding on volunteer blood after ivermectin administration compared with in vitro ivermectin‐spiked blood. This suggests the presence of ivermectin metabolites that impart mosquito‐lethal effects. Further studies of this combined approach to accelerate malaria elimination are warranted.
Collapse
Affiliation(s)
- Kevin C Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Kanchana Pantuwatana
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Phasomkusolsil
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Silas A Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Mekuriaw W, Balkew M, Messenger LA, Yewhalaw D, Woyessa A, Massebo F. The effect of ivermectin ® on fertility, fecundity and mortality of Anopheles arabiensis fed on treated men in Ethiopia. Malar J 2019; 18:357. [PMID: 31703736 PMCID: PMC6842263 DOI: 10.1186/s12936-019-2988-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Insecticide resistance is a growing threat to malaria vector control. Ivermectin, either administered to humans or animals, may represent an alternate strategy to reduce resistant mosquito populations. The aim of this study was to assess the residual or delayed effect of administering a single oral dose of ivermectin to humans on the survival, fecundity and fertility of Anopheles arabiensis in Ethiopia. Methods Six male volunteers aged 25–40 years (weight range 64–72 kg) were recruited; four of them received a recommended single oral dose of 12 mg ivermectin and the other two individuals were untreated controls. A fully susceptible insectary colony of An. arabiensis was fed on treated and control participants at 1, 4, 7, 10 and 13 days post ivermectin-administration. Daily mosquito mortality was recorded for 5 days. An. arabiensis fecundity and fertility were measured from day 7 post treatment, by dissection to examine the number of eggs per mosquito, and by observing larval hatching rates, respectively. Results Ivermectin treatment induced significantly higher An. arabiensis mortality on days 1 and 4, compared to untreated controls (p = 0.02 and p < 0.001, respectively). However, this effect had declined by day 7, with no significant difference in mortality between treated and control groups (p = 0.06). The mean survival time of mosquitoes fed on day 1 was 2.1 days, while those fed on day 4 survived 4.0 days. Mosquitoes fed on the treatment group at day 7 and 10 produced significantly lower numbers of eggs compared to the untreated controls (p < 0.001 and p = 0.04, respectively). An. arabiensis fed on day 7 on treated men also had lower larval hatching rates than mosquitoes fed on days 10 and 13 (p = 0.003 and p = 0.001, respectively). Conclusion A single oral dose of ivermectin given to humans can induce mortality and reduce survivorship of An. arabiensis for 7 days after treatment. Ivermectin also had a delayed effect on fecundity of An. arabiensis that took bloodmeals from treated individuals on day 7 and 10. Additional studies are warranted using wild, insecticide-resistant mosquito populations, to confirm findings and a phase III evaluation among community members in Ethiopia is needed to determine the impact of ivermectin on malaria transmission.
Collapse
Affiliation(s)
- Wondemeneh Mekuriaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia. .,Department of Biology, Arba Minch University, Arba Minch, Ethiopia.
| | - Meshesha Balkew
- Abt Associates, PMI Vectorlink Project in Ethiopia, Addis Ababa, Ethiopia
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia.,Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fekadu Massebo
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
25
|
Smit MR, Ochomo EO, Aljayyoussi G, Kwambai TK, Abong’o BO, Bousema T, Waterhouse D, Bayoh NM, Gimnig JE, Samuels AM, Desai MR, Phillips-Howard PA, Kariuki SK, Wang D, Ward SA, ter Kuile FO. Human Direct Skin Feeding Versus Membrane Feeding to Assess the Mosquitocidal Efficacy of High-Dose Ivermectin (IVERMAL Trial). Clin Infect Dis 2019; 69:1112-1119. [PMID: 30590537 PMCID: PMC6743833 DOI: 10.1093/cid/ciy1063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ivermectin is being considered for mass drug administration for malaria, due to its ability to kill mosquitoes feeding on recently treated individuals. In a recent trial, 3-day courses of 300 and 600 mcg/kg/day were shown to kill Anopheles mosquitoes for at least 28 days post-treatment when fed patients' venous blood using membrane feeding assays. Direct skin feeding on humans may lead to higher mosquito mortality, as ivermectin capillary concentrations are higher. We compared mosquito mortality following direct skin and membrane feeding. METHODS We conducted a mosquito feeding study, nested within a randomized, double-blind, placebo-controlled trial of 141 adults with uncomplicated malaria in Kenya, comparing 3 days of ivermectin 300 mcg/kg/day, ivermectin 600 mcg/kg/day, or placebo, all co-administered with 3 days of dihydroartemisinin-piperaquine. On post-treatment day 7, direct skin and membrane feeding assays were conducted using laboratory-reared Anopheles gambiae sensu stricto. Mosquito survival was assessed daily for 28 days post-feeding. RESULTS Between July 20, 2015, and May 7, 2016, 69 of 141 patients participated in both direct skin and membrane feeding (placebo, n = 23; 300 mcg/kg/day, n = 24; 600 mcg/kg/day, n = 22). The 14-day post-feeding mortality for mosquitoes fed 7 days post-treatment on blood from pooled patients in both ivermectin arms was similar with direct skin feeding (mosquitoes observed, n = 2941) versus membrane feeding (mosquitoes observed, n = 7380): cumulative mortality (risk ratio 0.99, 95% confidence interval [CI] 0.95-1.03, P = .69) and survival time (hazard ratio 0.96, 95% CI 0.91-1.02, P = .19). Results were consistent by sex, by body mass index, and across the range of ivermectin capillary concentrations studied (0.72-73.9 ng/mL). CONCLUSIONS Direct skin feeding and membrane feeding on day 7 resulted in similar mosquitocidal effects of ivermectin across a wide range of drug concentrations, suggesting that the mosquitocidal effects seen with membrane feeding accurately reflect those of natural biting. Membrane feeding, which is more patient friendly and ethically acceptable, can likely reliably be used to assess ivermectin's mosquitocidal efficacy. CLINICAL TRIALS REGISTRATION NCT02511353.
Collapse
Affiliation(s)
- Menno R Smit
- Liverpool School of Tropical Medicine, United Kingdom
| | - Eric O Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu
| | | | - Titus K Kwambai
- Liverpool School of Tropical Medicine, United Kingdom
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu
- Kenya Ministry of Health, Kisumu County, Kisumu
| | - Bernard O Abong’o
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu
| | - Teun Bousema
- Radboud University Medical Center, Nijmegen, The Netherlands
- London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Nabie M Bayoh
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia
| | - John E Gimnig
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia
| | - Aaron M Samuels
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia
| | - Meghna R Desai
- US Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia
| | | | - Simon K Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu
| | - Duolao Wang
- Liverpool School of Tropical Medicine, United Kingdom
| | | | | |
Collapse
|
26
|
Dreyer SM, Leiva D, Magaña M, Pott M, Kay J, Cruz A, Achee NL, Grieco JP, Vaughan JA. Fipronil and ivermectin treatment of cattle reduced the survival and ovarian development of field-collected Anopheles albimanus in a pilot trial conducted in northern Belize. Malar J 2019; 18:296. [PMID: 31464619 PMCID: PMC6716933 DOI: 10.1186/s12936-019-2932-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Most malaria vector control programmes rely on indoor residual spraying of insecticides and insecticide-treated bed nets. This is effective against vector species that feed indoors at night and rest inside the house afterwards. In Central America, malaria vectors have different behaviours and are typically exophagic (i.e., bite outdoors), exophilic (i.e., remain outdoors after feeding), and zoophagic (i.e., as likely to feed on non-humans as humans). Thus, malaria elimination in Central America may require additional tactics. This pilot study investigated whether commercially-available products used to treat livestock for ticks could also be used to kill and/or sterilize zoophagic malaria vectors that feed on treated cattle in Belize. METHODS Cattle were treated with either a pour-on formulation of 1% fipronil (3 heifers) or injection of 1% ivemectin (1 heifer). Control heifers (n = 2) were left untreated. Field-collected Anopheles albimanus contained in screen-top cages were strapped onto cattle at 2, 5, 7, and 14 days after treatment. Mosquito mortality was monitored once a day for 4 successive days. Surviving mosquitoes were dissected to assess blood meal digestion and ovarian development. RESULTS A total of 1078 female An. albimanus mosquitoes were fed and monitored for mortality. Both fipronil and ivermectin significantly reduced survivorship of An. albimanus for up to 7 days after treatment. By 14 days, efficacy had declined. The ivermectin treatment completely lost its effectiveness and even though the fipronil-treated heifers were still killing significantly more mosquitoes than the untreated heifers, the amount of mosquito killing had diminished greatly. Both treatments significantly reduced ovary development in mosquitoes fed on treated cattle for the duration of the 2-week trial. CONCLUSIONS Treatment of cattle in northern Belize with topical fipronil and injectable ivermectin had significant lethal and sublethal effects on wild An. albimanus females. These results suggest that efforts towards eliminating residual transmission of malaria by zoophagic vectors in Central America may benefit by the judicious, targeted treatment of livestock with mosquitocidal compounds, such as fipronil or ivermectin.
Collapse
Affiliation(s)
- Staci M Dreyer
- Biology Department, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Donovan Leiva
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Marla Magaña
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Marie Pott
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Jonathan Kay
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | - Alvaro Cruz
- Belize Vector and Ecology Center, Orange Walk Town, Belize
| | | | - John P Grieco
- University of Notre Dame, South Bend, IN, 46556, USA
| | - Jefferson A Vaughan
- Biology Department, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
27
|
Dreyer SM, Morin KJ, Vaughan JA. Differential susceptibilities of Anopheles albimanus and Anopheles stephensi mosquitoes to ivermectin. Malar J 2018; 17:148. [PMID: 29615055 PMCID: PMC5883420 DOI: 10.1186/s12936-018-2296-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vector control is a crucial element of anti-malaria campaigns and works best when there is a thorough knowledge of the biology and behaviour of the Anopheles vector species responsible for transmitting malaria within a given locale. With the push to eradicate malaria stronger than ever, there is a growing need to develop and deploy control strategies that exploit the behavioural attributes of local vector species. This is especially true in regions where the vectors are exophagic (i.e., prefer to bite outdoors), exophilic (i.e., prefer to remain outdoors), and zoophagic (i.e., as likely to feed on non-humans as humans). One promising strategy targeting vectors with these behavioural traits is the administration of avermectin-based endectocides, such as ivermectin, to humans and livestock. When ingested in a blood meal, ivermectin has been shown to reduce mosquito survivorship and fecundity in a number of Anopheles species. In this study, the relative toxicity of ivermectin was compared between two zoophagic, exophilic malaria vectors-Anopheles albimanus and Anopheles stephensi. RESULTS Toxicity of ivermectin was assessed using membrane feedings, intrathoracic injections, and mosquito feedings on treated mice. When ingested in a blood meal, ivermectin was much less toxic to An. albimanus (4-day oral LC50 = 1468 ng/ml) than to An. stephensi (4-day oral LC50 = 7 ng/ml). However when injected into the haemocoel of An. albimanus, ivermectin was much more toxic (3-day parenteral LC50 = 188 ng/ml). Because the molecular targets of ivermectin (i.e., glutamate-gated chloride channels) reside outside the midgut in nerves and muscles, this suggests that ingested ivermectin was not readily absorbed across the midgut of An. albimanus. In contrast, ivermectin was considerably more toxic to An. stephensi when ingested (4-day oral LC50 = 7 ng/ml) than when injected (3-day parenteral LC50 = 49 ng/ml). This suggests that metabolic by-products from the digestion of ivermectin may play a role in the oral toxicity of ivermectin to An. stephensi. Blood meal digestion and subsequent oviposition rates were significantly hindered in both species by ingested ivermectin but only at concentrations at or above their respective oral LC50 concentrations. To test mosquitocidal activity of ivermectin in a live host system, two groups of three mice each received subcutaneous injections of either ivermectin (600 µg/kg BW) or saline (control). One day after injection, the ivermectin-treated mice (n = 3) exhibited significant mosquitocidal activity against both An. stephensi (85% mortality vs 0% in control-fed) and, to a lesser degree, An. albimanus (44% mortality vs 11% in control-fed). At 3 days, the mosquitocidal activity of ivermectin-treated mice waned and was effective only against An. stephensi (31% mortality vs 3% in control-fed). CONCLUSIONS Ivermectin was not uniformly toxic to both Anopheles species. Previous studies indicate that ivermectin is a good choice of endectocide to use against malaria vectors in southeast Asia and Africa. However, these data suggest that ivermectin may not be the optimal endectocide to use in Central America or the Caribbean where An. albimanus is a major malaria vector species. If endectocides are to be used to help eradicate malaria, then additional efficacy data will be needed to define the activity of specific endectocides against the major malaria vector species of the world.
Collapse
Affiliation(s)
- Staci M Dreyer
- Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND, 58202-9019, USA
| | - Kelsey J Morin
- Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND, 58202-9019, USA
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND, 58202-9019, USA.
| |
Collapse
|
28
|
Promising approach to reducing Malaria transmission by ivermectin: Sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. PLoS Negl Trop Dis 2018; 12:e0006221. [PMID: 29444080 PMCID: PMC5828505 DOI: 10.1371/journal.pntd.0006221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/27/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Background The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. Methods To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 μg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. Results IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. Conclusion In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission. Malaria is one of the most important infectious diseases in the world with hundreds of millions of new cases every year. The disease is caused by parasites of the genus Plasmodium where Plasmodium vivax represent most of the cases in the Americas. Current strategies to combat malaria transmission are being implemented; however, widespread insecticide resistance in vectors threatens the effectiveness of vector control programs. Ivermectin (IVM) has arisen as a new potential tool to be added to these programs as it has mosquito-lethal and sporontocidal properties making it a promising transmission reduction drug. Plasmodium vivax was drawn from patients, mixed with powdered IVM and metabolized IVM in plasma collected from healthy volunteers receiving IVM, and fed to mosquitoes via membrane feeding. Powdered and metabolized IVM interrupt P. vivax transmission, reducing oocyst infection and intensity rate of two South American malaria vectors An. aquasalis and An. darlingi. We also demonstrate the effect of IVM on asexual stages development of P. vivax, providing evidence that IVM may affect different parasite life cycle stages. Our findings place IVM as a strong candidate for malaria transmission reducing interventions.
Collapse
|
29
|
Muñoz J, Ballester MR, Antonijoan RM, Gich I, Rodríguez M, Colli E, Gold S, Krolewiecki AJ. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers. PLoS Negl Trop Dis 2018; 12:e0006020. [PMID: 29346388 PMCID: PMC5773004 DOI: 10.1371/journal.pntd.0006020] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
Ivermectin is a pivotal drug for the control of onchocerciasis and lymphatic filariasis, which is increasingly identified as a useful drug for the control of other Neglected Tropical Diseases. Its role in the treatment of soil transmitted helminthiasis through improved efficacy against Trichuris trichiura in combination with other anthelmintics might accelerate the progress towards breaking transmission. Ivermectin is a derivative of Avermectin B1, and consists of an 80:20 mixture of the equipotent homologous 22,23 dehydro B1a and B1b. Pharmacokinetic characteristics and safety profile of ivermectin allow to explore innovative uses to further expand its utilization through mass drug administration campaigns to improve coverage rates. We conducted a phase I clinical trial with 54 healthy adult volunteers who sequentially received 2 experimental treatments using a new 18 mg ivermectin tablet in a fixed-dose strategy of 18 and 36 mg single dose regimens, compared to the standard, weight based 150–200 μg/kg, regimen. Volunteers were recruited in 3 groups based on body weight. Plasma concentrations of ivermectin were measured through HPLC up to 168 hours post treatment. Safety data showed no significant differences between groups and no serious adverse events: headache was the most frequent adverse event in all treatment groups, none of them severe. Pharmacokinetic parameters showed a half-life between 81 and 91 h in the different treatment groups. When comparing the systemic bioavailability (AUC0t and Cmax) of the reference product (WA-ref) with the other two study groups using fixed doses, we observed an overall increase in AUC0t and Cmax for the two experimental treatments of 18 mg and 36 mg. Body mass index (BMI) and weight were associated with t1/2 and V/F, probably reflecting the high liposolubility of IVM with longer retention times proportional to the presence of more adipose tissue. Systemic exposure to ivermectin (AUC0t or Cmax) was not associated with BMI or weight in our study. These findings contribute to further understand the pharmacokinetic characteristics of ivermectin, highlighting its safety across different dosing regimens. They also correlate with known pharmacokinetic parameters showing stable levels of AUC and Cmax across a wide range of body weights, which justifies the strategy of fix dosing from a pharmacokinetic perspective. TRIAL REGISTRATION ClinicalTrials.gov NCT03173742.
Collapse
Affiliation(s)
- Jose Muñoz
- Barcelona Institute for Global Health, ISGlobal-CRESIB, Universitat de Barcelona. Barcelona, Spain
| | - Maria Rosa Ballester
- CIM-Sant Pau. IIB Sant Pau. Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau. Barcelona, Spain
| | - Rosa Maria Antonijoan
- CIM-Sant Pau. IIB Sant Pau. Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau. Barcelona, Spain
- Pharmacology and Therapeutics Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ignasi Gich
- CIM-Sant Pau. IIB Sant Pau. Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau. Barcelona, Spain
- Pharmacology and Therapeutics Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Montse Rodríguez
- CIM-Sant Pau. IIB Sant Pau. Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau. Barcelona, Spain
| | | | - Silvia Gold
- Fundacion Mundo Sano, Buenos Aires, Argentina
| | - Alejandro J. Krolewiecki
- Instituto de Investigaciones en Enfermedades Tropicales, Universidad Nacional de Salta/CONICET, Oran, Argentina
- * E-mail:
| |
Collapse
|
30
|
Sampaio VDS, Rivas GBDS, Kobylinski K, Pinilla YT, Pimenta PFP, Lima JBP, Bruno RV, Lacerda MVG, Monteiro WM. What does not kill it makes it weaker: effects of sub-lethal concentrations of ivermectin on the locomotor activity of Anopheles aquasalis. Parasit Vectors 2017; 10:623. [PMID: 29282130 PMCID: PMC5745606 DOI: 10.1186/s13071-017-2563-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023] Open
Abstract
Background Malaria remains a major public health concern. Vector control measures based solely on insecticide treated nets (ITNs) and indoor residual spraying (IRS) have demonstrated not to be feasible for malaria elimination. It has been shown that ivermectin affects several aspects of Anopheles species biology. Along the Latin American seacoast, Anopheles aquasalis Curry plays an important role in malaria transmission. The observation of mosquitoes locomotor activity under laboratory conditions can reveal details of their daily activity rhythms, which is controlled by an endogenous circadian clock that seems to be influenced by external signals, such as light and temperature. In this study, we assessed basal locomotor activity and the effects of ivermectin on locomotor activity of the American malaria vector, An. aquasalis. Methods Adult females of Anopheles aquasalis used in experiments were three to five days post-emergence. Blood from one single subject was used to provide mosquito meals by membrane feeding assays. Powdered ivermectin compound was used to achieve different concentrations of drug as previously described. Fully engorged mosquitoes were individually placed into glass tubes and provided with 10% sucrose. Each tube was placed into a Locomotor Activity Monitor (LAM). The LAMs were kept inside an incubator under a constant temperature and a 12:12 h light:dark cycle. The average locomotor activity was calculated as the mean number of movements performed per mosquito in the period considered. Intervals of time assessed were adapted from a previous study. One-way ANOVA tests were performed in order to compare means between groups. Additionally, Dunnett’s method was used for post-hoc pairwise means comparisons between each group and control. Stata software version 13 was used for the analysis. Results Anopheles aquasalis showed a nocturnal and bimodal pattern for mosquitoes fed both control blood meals and sub-lethal concentrations of ivermectin. In this species, activity peaks occurred at the beginning of the photophase and scotophase in the control group. The nocturnal activity is evident and higher just after the evening peak and maintains basal levels of locomotion throughout the scotophase. In the entire group analysis, locomotor activity means of experimental sets were significantly lower than control for each period of time evaluated. In the survival group, the locomotor activity means of all treatment sets were lower than control mosquitoes for all intervals of time when both the whole period and scotophase were assessed. When the middle of scotophase was evaluated, means were significantly lower for LC15 and LC25, but not LC5. For the beginning of photophase period, significant differences were detected only between control and LC5. When both the photophase and scotophase were assessed alone, no significant differences were found. Mean locomotor activity was significantly lower for dead group when compared to survival group for all experimental sets when whole period, photophase, and scotophase were assessed. Conclusions Ivermectin seems to decrease locomotor activity of An. aquasalis at sub-lethal concentrations. The effects on locomotor activity increase according at higher ivermectin concentrations and are most evident during the whole scotophase as well as in the beginning and in the end of this phase, and sub-lethal effects may still be observed in the photophase. Findings presented in this study demonstrate that sub-lethal ivermectin effects reduce mosquito locomotor activity, which could diminish vectorial capacity and therefore the malaria transmission. Electronic supplementary material The online version of this article (10.1186/s13071-017-2563-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanderson de Souza Sampaio
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil. .,Sala de Análise de Situação em Saúde, Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil.
| | - Gustavo Bueno da Silva Rivas
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Kevin Kobylinski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Yudi Tatiana Pinilla
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | | | - Marcus Vinícius Guimarães Lacerda
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
31
|
Kobylinski KC, Escobedo-Vargas KS, López-Sifuentes VM, Durand S, Smith ES, Baldeviano GC, Gerbasi RV, Ballard SB, Stoops CA, Vásquez GM. Ivermectin susceptibility, sporontocidal effect, and inhibition of time to re-feed in the Amazonian malaria vector Anopheles darlingi. Malar J 2017; 16:474. [PMID: 29162101 PMCID: PMC5696779 DOI: 10.1186/s12936-017-2125-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Outdoor malaria transmission hinders malaria elimination efforts in the Amazon region and novel vector control tools are needed. Ivermectin mass drug administration (MDA) to humans kills wild Anopheles, targets outdoor-feeding vectors, and can suppress malaria parasite transmission. Laboratory investigations were performed to determine ivermectin susceptibility, sporontocidal effect and inhibition of time to re-feed for the primary Amazonian malaria vector, Anopheles darlingi. METHODS To assess ivermectin susceptibility, various concentrations of ivermectin were mixed in human blood and fed to An. darlingi. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with Probit analysis was used to calculate lethal concentrations of ivermectin that killed 50% (LC50), 25% (LC25) and 5% (LC5) of mosquitoes. To examine ivermectin sporonticidal effect, Plasmodium vivax blood samples were collected from malaria patients and offered to mosquitoes without or with ivermectin at the LC50, LC25 or LC5. To assess ivermectin inhibition of mosquito time to re-feed, concentrations of ivermectin predicted to occur after a single oral dose of 200 μg/kg ivermectin were fed to An. darlingi. Every day for 12 days thereafter, individual mosquitoes were given the opportunity to re-feed on a volunteer. Any mosquitoes that re-blood fed or died were removed from the study. RESULTS Ivermectin significantly reduced An. darlingi survivorship: 7-day-LC50 = 43.2 ng/ml [37.5, 48.6], -LC25 = 27.8 ng/ml [20.4, 32.9] and -LC5 = 14.8 ng/ml [7.9, 20.2]. Ivermectin compound was sporontocidal to P. vivax in An. darlingi at the LC50 and LC25 concentrations reducing prevalence by 22.6 and 17.1%, respectively, but not at the LC5. Oocyst intensity was not altered at any concentration. Ivermectin significantly delayed time to re-feed at the 4-h (48.7 ng/ml) and 12-h (26.9 ng/ml) concentrations but not 36-h (10.6 ng/ml) or 60-h (6.3 ng/ml). CONCLUSIONS Ivermectin is lethal to An. darlingi, modestly inhibits sporogony of P. vivax, and delays time to re-feed at concentrations found in humans up to 12 h post drug ingestion. The LC50 value suggests that a higher than standard dose (400-μg/kg) is necessary to target An. darlingi. These results suggest that ivermectin MDA has potential in the Amazon region to aid malaria elimination efforts.
Collapse
Affiliation(s)
- Kevin C Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Entomology Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA.
| | - Karín S Escobedo-Vargas
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - Victor M López-Sifuentes
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - Salomón Durand
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - Edward S Smith
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - G Christian Baldeviano
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - Robert V Gerbasi
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - Sara-Blythe Ballard
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Rm. W5515, Baltimore, MD, 21205, USA
| | - Craig A Stoops
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| | - Gissella M Vásquez
- Department of Entomology, U.S. Naval Medical Research Unit No. 6, Av. Venezuela block 36 s/n, Callao 2, Peru
| |
Collapse
|
32
|
Cytochrome P450/ABC transporter inhibition simultaneously enhances ivermectin pharmacokinetics in the mammal host and pharmacodynamics in Anopheles gambiae. Sci Rep 2017; 7:8535. [PMID: 28819225 PMCID: PMC5561046 DOI: 10.1038/s41598-017-08906-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 01/06/2023] Open
Abstract
Mass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host and the target mosquitoes. Using a mini-pig model, we show that drug-mediated cytochrome P450/ABC transporter inhibition results in a 3-fold increase in the time ivermectin remains above mosquito-killing concentrations. In contrast, P450/ABC transporter induction with rifampicin markedly impaired ivermectin absorption. The same ketoconazole-mediated cytochrome/ABC transporter inhibition also occurs outside the mammal host and enhances the mortality of Anopheles gambiae. This was proven by using the samples from the mini-pig experiments to conduct an ex-vivo synergistic bioassay by membrane-feeding Anopheles mosquitoes. Inhibiting the same cytochrome/xenobiotic pump complex in two different organisms to simultaneously boost the pharmacokinetic and pharmacodynamic activity of a drug is a novel concept that could be applied to other systems. Although the lack of a dose-response effect in the synergistic bioassay warrants further exploration, our study may have broad implications for the control of parasitic and vector-borne diseases.
Collapse
|
33
|
Lyimo IN, Kessy ST, Mbina KF, Daraja AA, Mnyone LL. Ivermectin-treated cattle reduces blood digestion, egg production and survival of a free-living population of Anopheles arabiensis under semi-field condition in south-eastern Tanzania. Malar J 2017; 16:239. [PMID: 28587669 PMCID: PMC5461717 DOI: 10.1186/s12936-017-1885-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/30/2017] [Indexed: 01/26/2023] Open
Abstract
Background Anopheles arabiensis feed on cattle and contributes to residual transmission of malaria in areas with high coverage of long-lasting insecticide-treated nets and indoor residual spraying in East Africa. This study aimed to evaluate the effects of ivermectin-treated cattle as a complementary vector control tool against population of An. arabiensis under the semi-field conditions in south-eastern Tanzania. Methods The free-living population of An. arabiensis was allowed to forage on untreated or ivermectin-treated cattle in alternating nights within the semi-field system in south-eastern Tanzania. Fresh blood fed mosquitoes were collected in the morning using mouth aspirators and assessed for their blood meal digestion, egg production, and survivorship. The residual activity of ivermectin-treated cattle was also determined by exposing mosquitoes to the same treatments after every 2 days until day 21 post-treatments. These experiments were replicated 3 times using different individual cattle. Results Overall, the ivermectin-treated cattle reduced blood meal digestion in the stomach of An. arabiensis, and their subsequent egg production and survival over time. The ivermectin-treated cattle halved blood meal digestion in mosquitoes, but reduced their egg production for up to 15 days. The ivermectin-treated cattle reduced the survival, and median survival times (1–3 days) of An. arabiensis than control cattle. The daily mortality rates of mosquitoes fed on ivermectin-treated cattle increased by five-fold relative to controls in the first week, and it gradually declined up to 21 days after treatment. Conclusion This study demonstrates that long-lasting effects of ivermectin-treated cattle on egg production and survival of An. arabiensis may sustainably suppress their vector density, and reduce residual transmission of malaria. This study suggests that ivermectin-treated non-lactating cattle (i.e. calves, heifers and bulls) could be suitable option for large-scale malaria vector control without limiting consumption of milk and meat by communities in rural settings. Furthermore, simulation models are underway to predict the impact of ivermectin-treated cattle alone, or in combination with LLIN/IRS, the frequency of treatment, and their coverage required to significantly suppress population of An. arabiensis and reduce residual transmission of malaria.
Collapse
Affiliation(s)
- Issa N Lyimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania.
| | - Stella T Kessy
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Kasian F Mbina
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Ally A Daraja
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania
| | - Ladslaus L Mnyone
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, P.O.BOX 53, Ifakara, Morogoro, United Republic of Tanzania.,Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania.,School of Public Health, University of the Witwatersrand, Parktown, Republic of South Africa
| |
Collapse
|
34
|
Gomez SA, Picado A. Systemic insecticides used in dogs: potential candidates for phlebotomine vector control? Trop Med Int Health 2017; 22:755-764. [PMID: 28326655 DOI: 10.1111/tmi.12870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zoonotic visceral leishmaniasis (ZVL) is a public health problem endemic in some countries. Current control measures, in particular culling infected dogs, have not reduced ZVL incidence in humans. We evaluated the use of five systemic insecticides (spinosad, fluralaner, afoxolaner, sarolaner and moxidectin) currently used in dogs for other purposes (e.g. tick, flea control) in controlling ZVL transmission. The anti-phlebotomine capacity of these compounds confirmed in experimental studies makes their use in ZVL control programmes very promising. Limitations and benefits of using this new control tool are compared to current practices.
Collapse
Affiliation(s)
| | - Albert Picado
- Barcelona Institute for Global Health, Barcelona, Spain
| |
Collapse
|
35
|
Chaccour C, Rabinovich NR. Ivermectin to reduce malaria transmission II. Considerations regarding clinical development pathway. Malar J 2017; 16:166. [PMID: 28434405 DOI: 10.1186/s12936-017-1802-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
The development of ivermectin as a complementary vector control tool will require good quality evidence. This paper reviews the different eco-epidemiological contexts in which mass drug administration with ivermectin could be useful. Potential scenarios and pharmacological strategies are compared in order to help guide trial design. The rationale for a particular timing of an ivermectin-based tool and some potentially useful outcome measures are suggested.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique. .,Instituto de Salud Tropical Universidad de Navarra, Pamplona, Spain.
| | - N Regina Rabinovich
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|