1
|
Okore W, Ouma C, Okoth RO, Yeda R, Ingasia LO, Mwakio EW, Ochora DO, Wakoli DM, Amwoma JG, Chemwor GC, Juma JA, Okudo CO, Cheruiyot AC, Opot BH, Juma D, Egbo TE, Andagalu B, Roth A, Kamau E, Akala HM. Increased sensitivity of malaria parasites to common antimalaria drugs after the introduction of artemether-lumefantrine: Implication of policy change and implementation of more effective drugs in fight against malaria. PLoS One 2024; 19:e0298585. [PMID: 38900782 PMCID: PMC11189199 DOI: 10.1371/journal.pone.0298585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 06/22/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity. Of the samples genotyped, polymorphism at Pfmrp1 codon I876V was the most frequent, with 59.3% (163/275) mutants, followed by F1390I, 7.2% (20/278), H191Y, 4.0% (6/151), and S437A, 3.3% (9/274). A significant decrease in median 50% inhibition concentrations (IC50s) and interquartile range (IQR) was noted; AQ from 2.996 ng/ml [IQR = 2.604-4.747, n = 51] in 2008 to 1.495 ng/ml [IQR = 0.7134-3.318, n = 40] (P<0.001) in 2019, QN from 59.64 ng/ml [IQR = 29.88-80.89, n = 51] in 2008 to 18.10 ng/ml [IQR = 11.81-26.92, n = 42] (P<0.001) in 2019, CQ from 35.19 ng/ml [IQR = 16.99-71.20, n = 30] in 2008 to 6.699 ng/ml [IQR = 4.976-9.875, n = 37] (P<0.001) in 2019, and ART from 2.680 ng/ml [IQR = 1.608-4.857, n = 57] in 2008 to 2.105 ng/ml [IQR = 1.266-3.267, n = 47] (P = 0.0012) in 2019, implying increasing parasite sensitivity to the drugs over time. However, no significant variations were observed in LU (P = 0.2692) and MQ (P = 0.0939) respectively, suggesting stable parasite responses over time. There was no statistical significance between the mutation at 876 and parasite sensitivity to selected antimalarials tested, suggesting stable sensitivity for the parasites with 876V mutations. These findings show that Kenyan parasite strains are still sensitive to AQ, QN, CQ, ART, LU, and MQ. Despite the presence of Pfmrp1 mutations in parasites among the population.
Collapse
Affiliation(s)
- Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Luicer O. Ingasia
- Sydney Brenner Institute of Molecular Biosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Douglas O. Ochora
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Duncan M. Wakoli
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Joseph G. Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Charles O. Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Amanda Roth
- Medical Communications for Combat Casualty Care, Fort Detrick, Maryland, United States of America
| | - Edwin Kamau
- Department of Pathology and Area Laboratory Services, Tripler Army Medical Center, Honolulu, Honolulu, United States of America
| | - Hoseah M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| |
Collapse
|
2
|
A Hybrid of Amodiaquine and Primaquine Linked by Gold(I) Is a Multistage Antimalarial Agent Targeting Heme Detoxification and Thiol Redox Homeostasis. Pharmaceutics 2022; 14:pharmaceutics14061251. [PMID: 35745823 PMCID: PMC9229949 DOI: 10.3390/pharmaceutics14061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Hybrid-based drugs linked through a transition metal constitute an emerging concept for Plasmodium intervention. To advance the drug design concept and enhance the therapeutic potential of this class of drugs, we developed a novel hybrid composed of quinolinic ligands amodiaquine (AQ) and primaquine (PQ) linked by gold(I), named [AuAQPQ]PF6. This compound demonstrated potent and efficacious antiplasmodial activity against multiple stages of the Plasmodium life cycle. The source of this activity was thoroughly investigated by comparing parasite susceptibility to the hybrid's components, the annotation of structure-activity relationships and studies of the mechanism of action. The activity of [AuAQPQ]PF6 for the parasite's asexual blood stages was influenced by the presence of AQ, while its activity against gametocytes and pre-erythrocytic parasites was influenced by both quinolinic components. Moreover, the coordination of ligands to gold(I) was found to be essential for the enhancement of potency, as suggested by the observation that a combination of quinolinic ligands does not reproduce the antimalarial potency and efficacy as observed for the metallic hybrid. Our results indicate that this gold(I) hybrid compound presents a dual mechanism of action by inhibiting the beta-hematin formation and enzymatic activity of thioredoxin reductases. Overall, our findings support the potential of transition metals as a dual chemical linker and an antiplasmodial payload for the development of hybrid-based drugs.
Collapse
|
3
|
Beavogui AH, Diawara EY, Cherif MS, Delamou A, Diallo N, Traore A, Millimouno P, Camara D, Sylla MM, Toure AA, Diallo MS, Toure S, Togo A, Camara G, Kourouma K, Sagara I, Dicko A, Djimde A. SELECTION OF PFCRT 76T AND PFMDR1 86Y MUTANT PLASMODIUM FALCIPARUM AFTER TREATMENT OF UNCOMPLICATED MALARIA WITH ARTESUNATE-AMODIAQUINE IN REPUBLIC OF GUINEA. J Parasitol 2021; 107:778-782. [PMID: 34581793 DOI: 10.1645/19-199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of Amodiaquine monotherapy is associated with the selection of molecular markers of Plasmodium falciparum resistance to chloroquine (pfcrt and pfmdr1). The decrease in sensitivity and the emergence of P. falciparum resistant to artemisinin-based combination therapy have been reported. Therefore, it is important to assess the impact of treatment of uncomplicated malaria with Artesunate-Amodiaquine (AS+AQ) on molecular markers of antimalarial resistance. We used standard World Health Organization (WHO) protocols to determine the in vivo efficacy of the combination (AS+AQ). In total, 170 subjects were included in the study. The molecular analysis focused on 168 dried blood spots. The aims were to determine the frequency of pfcrt 76T and pfmdr1 86Y mutations and the rates of reinfection using polymorphism markers msp1, msp2, and microsatellite markers (CA1, Ta87, TA99). Nested-PCR was used, followed in some cases by a restriction digestion. The level of P. falciparum clinical response was 92.9% (156/168) of Adequate Clinical and Parasitological Response (ACPR) before molecular correction and 97.0% (163/168) after molecular correction (P = 0.089). The frequency of mutation point pfcrt 76T was 76.2% (128/168) before treatment and 100% (7/7) after treatment (P = 0.1423). For the pfmdr1 mutation, the frequency was 28% (47/168) before treatment and 60% (6/10) after treatment (P = 0.1124). The rate of pfcrt 76T + pfmdr1 86Y was 22% (37/168) before and 50% (6/12) after treatment (P = 0.1465). Despite the presence of AS in the combination, AS+AQ selects for pfcrt 76T and pfmdr1 86Y mutant P. falciparum in Guinea.
Collapse
Affiliation(s)
- Abdoul H Beavogui
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea.,Bioclinical and Fundamental Sciences Chair, Department of Medical Sciences, Faculty of Health Science and Techniques, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Elisabeth Y Diawara
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Mahamoud S Cherif
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea.,Pediatric Chair, Department of Medicine, Faculty of Health Science and Techniques, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Alexandre Delamou
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea.,Department of Public Health, Faculty of Health Science and Techniques, Gamal Abdel Nasser University of Conakry, Conakry, Guinea
| | - Nouhoum Diallo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Aliou Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Pascal Millimouno
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Daouda Camara
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Malick M Sylla
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Almamy A Toure
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Mamadou S Diallo
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Sekou Toure
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Amadou Togo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Gnepou Camara
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Karifa Kourouma
- Centre National de formation et de recherche en santé rurale (CNFRSR), Jean Senecal de Maferinyah, Forécariah, Guinea
| | - Issaka Sagara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Alhassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| | - Abdoulaye Djimde
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, PO Box: 1805 Point G, Bamako, Mali
| |
Collapse
|
4
|
Ahouidi A, Oliveira R, Lobo L, Diedhiou C, Mboup S, Nogueira F. Prevalence of pfk13 and pfmdr1 polymorphisms in Bounkiling, Southern Senegal. PLoS One 2021; 16:e0249357. [PMID: 33770151 PMCID: PMC7996989 DOI: 10.1371/journal.pone.0249357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Delayed Plasmodium falciparum parasite clearance has been associated with Single Nucleotide Polymorphisms (SNPs) in the kelch protein propeller domain (coded by pfk13 gene). SNPs in the Plasmodium falciparum multidrug resistance gene 1 (pfmdr1) are associated with multi-drug resistance including the combination artemether-lumefantrine. To our knowledge, this is the first work providing information on the prevalence of k13-propeller and pfmdr1 mutations from Sédhiou, a region in the south of Senegal. METHODS 147 dried blood spots on filter papers were collected from symptomatic patients attending a hospital located in Bounkiling City, Sédhiou Region, Southern Senegal. All samples were collected between 2015-2017 during the malaria transmission season. Specific regions of the gene pfk13 and pfmdr1 were analyzed using PCR amplification and Sanger sequencing. RESULTS The majority of parasites (92.9%) harboured the pfk13 wild type sequence and 6 samples harboured synonymous changes. Regarding pfmdr1, wild-type alleles represented the majority except at codon 184. Overall, prevalence of 86Y was 11.9%, 184F was 56.3% and 1246Y was 1.5%. The mutant allele 184F decreased from 73.7% in 2015 to 40.7% in 2017. The prevalence of haplotype NFD decreased from 71.4% in 2015 to 20.8% in 2017. CONCLUSIONS This study provides the first description of pfk13 and pfmdr1 genes variations in Bounkiling, a city in the Sédhiou Region of Senegal, contributing to closing the gap of information on anti-malaria drug resistance molecular markers in southern Senegal.
Collapse
Affiliation(s)
- Ambroise Ahouidi
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Rafael Oliveira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Lis Lobo
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Cyrille Diedhiou
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| |
Collapse
|
5
|
Quashie NB, Duah-Quashie NO. Treatment of COVID-19 with Chloroquine: Implication for Malaria Chemotherapy Using ACTs in Disease Endemic Countries. J Trop Pediatr 2021; 67:fmaa089. [PMID: 33367880 PMCID: PMC7798598 DOI: 10.1093/tropej/fmaa089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Based on reports of parasite resistance and on World Health Organization recommendation, chloroquine was replaced with the artemisinin-based combination therapies (ACTs) as the first choice of drugs for the treatment of uncomplicated malaria. Disuse of chloroquine led to restoration of drug-sensitive parasite to some extent in certain countries. Ever since chloroquine and hydroxychloroquine were touted as potential treatment for coronavirus disease 2019 (COVID-19), there has been a dramatic surge in demand for the drugs. Even in areas where chloroquine is proscribed, there has been an unexpected increase in demand and supply of the drug. This situation is quite worrying as the indiscriminate use of chloroquine may produce drug-resistant parasites which may impact negatively on the efficacy of amodiaquine due to cross-resistance. Amodiaquine is a partner drug in one of the ACTs and in some of the drugs used for intermittent preventive treatment. We herein discuss the consequences of the escalated use of chloroquine in the management of COVID-19 on chemotherapy or chemoprevention of malaria and offer an advice. We speculate that parasite strains resistant to chloroquine will escalate due to the increased and indiscriminate use of the drug and consequently lead to cross-resistance with amodiaquine which is present in some drug schemes aforementioned. Under the circumstance, the anticipated hope of reverting to the use of the 'resurrected chloroquine' to manage malaria in future is likely to diminish. The use of chloroquine and its derivatives for the management of COVID-19 should be controlled.
Collapse
Affiliation(s)
- Neils Ben Quashie
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Traoré K, Diakité SAS, Bah S, Konaté DS, Dabitao D, Sanogo I, Sangaré M, Dama S, Keita B, Doumbouya M, Guindo MA, Doumbia S, Diakité M. Ex-vivo Sensitivity of Plasmodium falciparum to Common Anti-malarial Drugs: The Case of Kéniéroba, a Malaria Endemic Village in Mali. Drugs R D 2020; 20:249-255. [PMID: 32557086 PMCID: PMC7419409 DOI: 10.1007/s40268-020-00313-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In 2006, the National Malaria Control Program in Mali recommended artemisinin-based combination therapy as the first-line treatment for uncomplicated malaria. Since the introduction of artemisinin-based combination therapy, few reports are available on the level of resistance of Plasmodium falciparum to the most common anti-malarial drugs in Mali. METHODS From 2016 to 2017, we assessed the ex-vivo drug sensitivity of P. falciparum isolates in Kéniéroba, a village located in a rural area of southern Mali. We collected P. falciparum isolates from malaria-infected children living in Kéniéroba. The isolates were tested for ex-vivo sensitivity to commonly used anti-malarial drugs, namely chloroquine, quinine, amodiaquine, mefloquine, lumefantrine, dihydroartermisinin, and piperaquine. We used the 50% inhibitory concentration determination method, which is based on the incorporation of SYBR® Green into the parasite's genetic material. RESULTS Plasmodium falciparum isolates were found to have a reduced ex-vivo sensitivity to quinine (25.7%), chloroquine (12.2%), amodiaquine (2.7%), and mefloquine (1.3%). In contrast, the isolates were 100% sensitive to lumefantrine, dihydroartermisinin, and piperaquine. A statistically significant correlation was found between 50% inhibitory concentration values of quinine and amodiaquine (r = 0.80; p < 0.0001). CONCLUSIONS Plasmodium falciparum isolates were highly sensitive to dihydroartermisinin, lumefantrine, and piperaquine and less sensitive to amodiaquine (n = 2), mefloquine (n = 1), and quinine (n = 19). Therefore, our data support the previously reported increasing trend in chloroquine sensitivity in Mali.
Collapse
Affiliation(s)
- Karim Traoré
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali.
| | - Seidina A S Diakité
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Sekou Bah
- Hospital of Point-G/University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa S Konaté
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Djeneba Dabitao
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Ibrahim Sanogo
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Modibo Sangaré
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Souleymane Dama
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Bourama Keita
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Mory Doumbouya
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| | - Mahamadou Diakité
- Malaria Research and Training Center, Mali International Center for Excellence in Research (Mali-ICER), University of Sciences, Techniques and Technologies of Bamako (USTTB), BP 1805, Bamako, Mali
| |
Collapse
|
7
|
Foguim FT, Robert MG, Gueye MW, Gendrot M, Diawara S, Mosnier J, Amalvict R, Benoit N, Bercion R, Fall B, Madamet M, Pradines B. Low polymorphisms in pfact, pfugt and pfcarl genes in African Plasmodium falciparum isolates and absence of association with susceptibility to common anti-malarial drugs. Malar J 2019; 18:293. [PMID: 31455301 PMCID: PMC6712813 DOI: 10.1186/s12936-019-2919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to all available anti-malarial drugs has emerged and spread including artemisinin derivatives and their partner drugs. Several genes involved in artemisinin and partner drugs resistance, such as pfcrt, pfmdr1, pfK13 or pfpm2, have been identified. However, these genes do not properly explain anti-malarial drug resistance, and more particularly clinical failures observed in Africa. Mutations in genes encoding for Plasmodium falciparum proteins, such as P. falciparum Acetyl-CoA transporter (PfACT), P. falciparum UDP-galactose transporter (PfUGT) and P. falciparum cyclic amine resistance locus (PfCARL) have recently been associated to resistance to imidazolopiperazines and other unrelated drugs. Methods Mutations on pfugt, pfact and pfcarl were characterized on 86 isolates collected in Dakar, Senegal and 173 samples collected from patients hospitalized in France after a travel in African countries from 2015 and 2016 to assess their potential association with ex vivo susceptibility to chloroquine, quinine, lumefantrine, monodesethylamodiaquine, mefloquine, dihydroartemisinin, artesunate, doxycycline, pyronaridine and piperaquine. Results No mutations were found on the genes pfugt and pfact. None of the pfcarl described mutations were identified in these samples from Africa. The K784N mutation was found in one sample and the K734M mutation was identified on 7.9% of all samples for pfcarl. The only significant differences in ex vivo susceptibility according to the K734M mutation were observed for pyronaridine for African isolates from imported malaria and for doxycycline for Senegalese parasites. Conclusion No evidence was found of involvement of these genes in reduced susceptibility to standard anti-malarial drugs in African P. falciparum isolates.
Collapse
Affiliation(s)
- Francis Tsombeng Foguim
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | | | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Silman Diawara
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Raymond Bercion
- Laboratoire d'analyses médicales, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bécaye Fall
- Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France. .,IRD, SSA, AP-HM, VITROME, Aix Marseille Université, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal. .,Centre national de référence du Paludisme, Marseille, France.
| | | |
Collapse
|
8
|
Malaria, tuberculosis and HIV: what's new? Contribution of the Institut Hospitalo-Universitaire Méditerranée Infection in updated data. New Microbes New Infect 2018; 26:S23-S30. [PMID: 30402240 PMCID: PMC6205578 DOI: 10.1016/j.nmni.2018.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 11/22/2022] Open
Abstract
The Institut Hospitalo-Universitaire Méditerranée Infection is positioned for the diagnosis, prevention and treatment of the ‘big three’ killer diseases: malaria, tuberculosis and HIV. We implemented the use of new diagnostic samples such as stools and new diagnostic tests such as mass spectrometry for the dual identification of vectors and pathogens. Furthermore, advances in the prevention and treatment of malaria and tuberculosis are reviewed, along with advances in the understanding of the role of microbiota in the resistance to HIV infection. These achievements represent a major step towards a better management of the ‘big three’ diseases worldwide.
Collapse
|
9
|
Thera MA, Kone AK, Tangara B, Diarra E, Niare S, Dembele A, Sissoko MS, Doumbo OK. School-aged children based seasonal malaria chemoprevention using artesunate-amodiaquine in Mali. Parasite Epidemiol Control 2018; 3:96-105. [PMID: 29988270 PMCID: PMC6011810 DOI: 10.1016/j.parepi.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 11/01/2022] Open
Abstract
Introduction Malaria is still a public health problem in Africa. Seasonal Malaria Chemoprevention (SMC) is an efficient control strategy recommended by WHO that targets children under five year old living in areas of seasonal malaria transmission. SMC uses the combination amodiaquine (AQ) - sulfadoxine-pyrimethamine (SP). However SP selects rapidly drug resistant parasites. And malaria burden may increase in older children where SMC is implemented. We initiated a pilot study to assess an alternative approach to SMC in older children in Mali. Methods A randomized open-label clinical trial was conducted to test the efficacy and safety of SMC using artesunate - amodiaquine in school aged children in Mali. Two hundred pupils aged 6-15 years old were enrolled and randomized into two arms of 100 each, to receive either artesunate-amodiaquine (ASAQ) monthly or no intervention. Both arms were followed and clinical malaria were diagnosed and treated with arthemeter-lumefanthrine as recommended by Mali National Malaria Control Program. ASAQ was administered 3 days under study team direct observation and during 4 consecutive months starting in October 2013. Follow up was continued until April 2014. Results Overall, 20 cases of uncomplicated clinical malaria were encountered in the Control arm and three cases in the ASAQ arm, showing a protective efficacy of 85% 95% CI [80.1-89.9] against clinical malaria. Protective efficacy against malaria infection was 69.6% 95% CI [58.6-21.4]. No effect on anemia was observed. ASAQ was well tolerated. Most common solicited adverse events were abdominal pain and headaches of mild intensity in respectively 64% and 44% of children that swallowed ASAQ. Conclusion ASAQ is effective and well tolerated as SMC targeting older children in a peri urban setting in Mali. Its administration at schools is a feasible and accepted strategy to deliver the intervention.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Abdoulaye K Kone
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Bourama Tangara
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Elizabeth Diarra
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Sirama Niare
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Abdramane Dembele
- Service of Psychiatry, University and Hospital Center of Point G, Bamako, Mali
| | - Mahamadou S Sissoko
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER), Department of Epidemiology of Parasitic Diseases, Faculty of Medicine and Dentistry, USTTB, Point G, BP 1805 Bamako, Mali
| |
Collapse
|
10
|
Gaillard T, Briolant S, Madamet M, Pradines B. The end of a dogma: the safety of doxycycline use in young children for malaria treatment. Malar J 2017; 16:148. [PMID: 28407772 PMCID: PMC5390373 DOI: 10.1186/s12936-017-1797-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Anti-malarial drug resistance to chloroquine and sulfadoxine–pyrimethamine has spread from Southeast Asia to Africa. Furthermore, the recent emergence of resistance to artemisinin-based combination therapy (ACT) in Southeast Asia highlights the need to identify new anti-malarial drugs. Doxycycline is recommended for malaria chemoprophylaxis for travel in endemic areas, or in combination with the use of quinine for malaria treatment when ACT is unavailable or when the treatment of severe malaria with artesunate fails. However, doxycycline is not used in young children under 8 years of age due to its contraindication due to the risk of yellow tooth discolouration and dental enamel hypoplasia. Doxycycline was developed after tetracycline and was labelled with the same side-effects as the earlier tetracyclines. However, recent studies report little or no effects of doxycycline on tooth staining or dental enamel hypoplasia in children under 8 years of age. In the United States, the Centers for Disease Control and Prevention have recommended the use of doxycycline for the treatment of acute and chronic Q fever and tick-borne rickettsial diseases in young children. It is time to rehabilitate doxycycline and to recommend it for malaria treatment in children under 8 years of age.
Collapse
Affiliation(s)
- Tiphaine Gaillard
- Fédération des Laboratoires, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - Sébastien Briolant
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, HIA Laveran, Boulevard Laveran, 13013, Marseille, France.,Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, HIA Laveran, Boulevard Laveran, 13013, Marseille, France.,Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Bruno Pradines
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, HIA Laveran, Boulevard Laveran, 13013, Marseille, France. .,Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-universitaire Méditerranée Infection, Marseille, France. .,Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|