1
|
Kunkeaw N, Nguitragool W, Takashima E, Kangwanrangsan N, Muramatsu H, Tachibana M, Ishino T, Lin PJC, Tam YK, Pichyangkul S, Tsuboi T, Pardi N, Sattabongkot J. A Pvs25 mRNA vaccine induces complete and durable transmission-blocking immunity to Plasmodium vivax. NPJ Vaccines 2023; 8:187. [PMID: 38092803 PMCID: PMC10719277 DOI: 10.1038/s41541-023-00786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium vivax (P. vivax) is the major malaria parasite outside of Africa and no vaccine is available against it. A vaccine that interrupts parasite transmission (transmission-blocking vaccine, TBV) is considered highly desirable to reduce the spread of P. vivax and to accelerate its elimination. However, the development of a TBV against this pathogen has been hampered by the inability to culture the parasite as well as the low immunogenicity of the vaccines developed to date. Pvs25 is the most advanced TBV antigen candidate for P. vivax. However, in previous phase I clinical trials, TBV vaccines based on Pvs25 yielded low antibody responses or had unacceptable safety profiles. As the nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine platform proved to be safe and effective in humans, we generated and tested mRNA-LNP vaccines encoding several versions of Pvs25 in mice. We found that in a prime-boost vaccination schedule, all Pvs25 mRNA-LNP vaccines elicited robust antigen-specific antibody responses. Furthermore, when compared with a Pvs25 recombinant protein vaccine formulated with Montanide ISA-51 adjuvant, the full-length Pvs25 mRNA-LNP vaccine induced a stronger and longer-lasting functional immunity. Seven months after the second vaccination, vaccine-induced antibodies retained the ability to fully block P. vivax transmission in direct membrane feeding assays, whereas the blocking activity induced by the protein/ISA-51 vaccine dropped significantly. Taken together, we report on mRNA vaccines targeting P. vivax and demonstrate that Pvs25 mRNA-LNP outperformed an adjuvanted Pvs25 protein vaccine suggesting that it is a promising candidate for further testing in non-human primates.
Collapse
Affiliation(s)
- Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Sathit Pichyangkul
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals (Basel) 2023; 16:ph16030334. [PMID: 36986434 PMCID: PMC10058461 DOI: 10.3390/ph16030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Vaccines against parasites have lagged centuries behind those against viral and bacterial infections, despite the devastating morbidity and widespread effects of parasitic diseases across the globe. One of the greatest hurdles to parasite vaccine development has been the lack of vaccine strategies able to elicit the complex and multifaceted immune responses needed to abrogate parasitic persistence. Viral vectors, especially adenovirus (AdV) vectors, have emerged as a potential solution for complex disease targets, including HIV, tuberculosis, and parasitic diseases, to name a few. AdVs are highly immunogenic and are uniquely able to drive CD8+ T cell responses, which are known to be correlates of immunity in infections with most protozoan and some helminthic parasites. This review presents recent developments in AdV-vectored vaccines targeting five major human parasitic diseases: malaria, Chagas disease, schistosomiasis, leishmaniasis, and toxoplasmosis. Many AdV-vectored vaccines have been developed for these diseases, utilizing a wide variety of vectors, antigens, and modes of delivery. AdV-vectored vaccines are a promising approach for the historically challenging target of human parasitic diseases.
Collapse
|
3
|
Kaslow DC. Efforts to Develop Pfs25 Vaccines. Am J Trop Med Hyg 2022; 107:tpmd211326. [PMID: 35895392 DOI: 10.4269/ajtmh.21-1326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 02/18/2024] Open
Abstract
Acknowledging the fallibilities of recalling events from more than three decades ago, the recollection of Richard Carter's impact on the identification and development of Pfs25, a major surface protein of Plasmodium falciparum zygotes and ookinetes, and target of malaria transmission-blocking vaccines, remains unassailable. In fondest memories of Richard Carter's many contributions, herein retells some memorable events along the tortuous journey toward the development of Pfs25 vaccines.
Collapse
|
4
|
Ochwedo KO, Onyango SA, Omondi CJ, Orondo PW, Ondeto BM, Lee MC, Atieli HE, Ogolla SO, Githeko AK, Otieno ACA, Mukabana WR, Yan G, Zhong D, Kazura JW. Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya. PLoS One 2022; 17:e0266394. [PMID: 35390042 PMCID: PMC8989228 DOI: 10.1371/journal.pone.0266394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Leading transmission-blocking vaccine candidates such as Plasmodium falciparum surface protein 25 (Pfs25 gene) may undergo antigenic alterations which may render them ineffective or allele-specific. This study examines the level of genetic diversity, signature of selection and drivers of Pfs25 polymorphisms of parasites population in regions of western Kenya with varying malaria transmission intensities. METHODS Dry blood spots (DBS) were collected in 2018 and 2019 from febrile outpatients with malaria at health facilities in malaria-endemic areas of Homa Bay, Kisumu (Chulaimbo) and the epidemic-prone highland area of Kisii. Parasites DNA were extracted from DBS using Chelex method. Species identification was performed using real-time PCR. The 460 base pairs (domains 1-4) of the Pfs25 were amplified and sequenced for a total of 180 P. falciparum-infected blood samples. RESULTS Nine of ten polymorphic sites were identified for the first time. Overall, Pfs25 exhibited low nucleotide diversity (0.04×10-2) and low mutation frequencies (1.3% to 7.7%). Chulaimbo had the highest frequency (15.4%) of mutated sites followed by Kisii (6.7%) and Homa Bay (5.1%). Neutrality tests of Pfs25 variations showed significant negative values of Tajima's D (-2.15, p<0.01) and Fu's F (-10.91, p<0.001) statistics tests. Three loci pairs (123, 372), (364, 428) and (390, 394) were detected to be under linkage disequilibrium and none had history of recombination. These results suggested that purifying selection and inbreeding might be the drivers of the observed variation in Pfs25. CONCLUSION Given the low level of nucleotide diversity, it is unlikely that a Pfs25 antigen-based vaccine would be affected by antigenic variations. However, continued monitoring of Pfs25 immunogenic domain 3 for possible variants that might impact vaccine antibody binding is warranted.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS, Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Front Immunol 2021; 12:694759. [PMID: 34335606 PMCID: PMC8318801 DOI: 10.3389/fimmu.2021.694759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration Clinicaltrials.gov NCT02532049.
Collapse
Affiliation(s)
- Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Carol A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lee Li
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Diane Gbesemete
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J Brendish
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Filipa Martins
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Saul N Faust
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
McLeod B, Miura K, Scally SW, Bosch A, Nguyen N, Shin H, Kim D, Volkmuth W, Rämisch S, Chichester JA, Streatfield S, Woods C, Schief WR, Emerling D, King CR, Julien JP. Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25. Nat Commun 2019; 10:4328. [PMID: 31551421 PMCID: PMC6760140 DOI: 10.1038/s41467-019-11980-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023] Open
Abstract
Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines. Pfs25 is a transmission-blocking vaccine candidate for Plasmodium. Here, McLeod et al. analyze the antibody response to Pfs25 in sera from a clinical trial evaluating a Pfs25 vaccine candidate, identify a potent transmission-blocking antibody and determine recognized epitopes on Pfs25.
Collapse
Affiliation(s)
- Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Ngan Nguyen
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Hanjun Shin
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Dongkyoon Kim
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Wayne Volkmuth
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Sebastian Rämisch
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica A Chichester
- Gene Therapy Program & Orphan Disease Center, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology CMB, 9 Innovation Way, Newark, DE, 19711, USA
| | - Colleen Woods
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel Emerling
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, Weaver EA, Tuaillon E, Kremer EJ. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18:597-613. [PMID: 31132024 DOI: 10.1080/14760584.2019.1588113] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types correlate with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types vectors with lower seroprevalence. However, global seroepidemiological data are incomplete. Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs types that are currently used in the clinic, or are in the developmental pipeline. Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-based vaccines have undeniable potential, but optimization is needed and antivector immunity remains a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps in our knowledge and the need for updated worldwide epidemiological data.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Océane Paris
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Aline Raissa Ouoba
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France.,b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Sofia Salazar Arenas
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Sodiomon B Sirima
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso.,e Groupe de Recherche Action en Santé (GRAS) , Ouagadougou , Burkina Faso
| | - Guy R Takoudjou Dzomo
- f Complexe Hospitalo Universitaire « Le Bon Samaritain » , N'Djamena , Republic of Chad
| | - Amidou Diarra
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Isidore T Traore
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Dramane Kania
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Karsten Eichholz
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Eric A Weaver
- g University of Nebraska-Lincoln, School of Biological Sciences , Lincoln , NE , USA
| | - Edouard Tuaillon
- b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| | - Eric J Kremer
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| |
Collapse
|
9
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
10
|
Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25. Nat Commun 2017; 8:1568. [PMID: 29146922 PMCID: PMC5691035 DOI: 10.1038/s41467-017-01924-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens. Plasmodium falciparum protein Pfs25 is a promising malaria transmission blocking vaccine antigen. Here, Scally et al. determine the crystal structure of Pfs25 and identify antigenic sites that are recognized by transmission-blocking antibodies elicited in human immunoglobulin loci transgenic mice.
Collapse
|