1
|
Limwagu AJ, Msugupakulya BJ, Ngowo HS, Mwalugelo YA, Kilalangongono MS, Samli FA, Abbasi SK, Okumu FO, Ngasala BE, Lyimo IN. The bionomics of Anopheles arabiensis and Anopheles funestus inside local houses and their implications for vector control strategies in areas with high coverage of insecticide-treated nets in South-eastern Tanzania. PLoS One 2024; 19:e0295482. [PMID: 39637234 PMCID: PMC11620649 DOI: 10.1371/journal.pone.0295482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Residual malaria transmissions in Africa may be associated with improved coverage of insecticide-treated nets, house features, and livestock husbandry. These human-land use activities may drive the ecology and behaviour of malaria vectors which sustain residual malaria transmission. This study was conducted to assess changes in the ecology and behaviour of Anopheles funestus and Anopheles arabiensis in villages with high coverage of insecticide-treated nets to guide the selection of complementary vector control strategies against residual malaria transmission. METHODS Mosquitoes were collected using a CDC-light trap, miniaturized double net trap, and Prokopack aspirator from 222 households in three villages (Ebuyu, Chirombora, and Mzelezi) within Kilombero Valley. Anopheles mosquitoes were morphologically identified to their physiological status and species-complex levels. A sub-sample of Anopheles mosquitoes was exposed to laboratory analyses of sibling species, host preference, and sporozoite rates. Additionally, the local houses were geo-referenced using Global Positioning Systems (GPS) devise, and house features were recorded and associated with vector abundance. RESULTS The population of An. funestus s.s was abundant with high Plasmodium sporozoite rates inside houses compared to An. arabiensis. However, these vector species equally blood-fed on humans inside houses, but they also flexibly mixed human and animal blood meal. Fewer An. funestus were caught in houses with metal- than grass roofs and houses with and without animals. Contrastingly, fewer An. arabiensis were caught from houses with screened eaves compared to houses with open eaves. CONCLUSIONS This study confirms that An. funestus dominates residual malaria transmission over An. arabiensis. These vector species exhibit anthropophily and opportunistic blood-feeding behaviour in areas with high coverage of insecticide-treated nets, but they numerically respond differently to local house improvements. These results imply that integrating mosquito-proof houses, improved insecticide-treated nets, and livestock-based interventions could effectively reduce and eventually eliminate residual malaria transmission.
Collapse
Affiliation(s)
- Alex J. Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Parasitology and Medical Entomology Department, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Betwel J. Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Yohana A. Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Masoud S. Kilalangongono
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Faraji A. Samli
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Said K. Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science & Technology, Arusha, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, G128QQ, University of Glasgow, Glasgow, United Kingdom
| | - Billy E. Ngasala
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- Parasitology and Medical Entomology Department, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Issa N. Lyimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science & Technology, Arusha, Tanzania
| |
Collapse
|
2
|
Tarekegn M, Dugassa S, Negash Y, Tekie H, Woldehawariat Y. A survey of malaria vectors feeding preference, biting site and resting behaviour in the malaria elimination settings of Dembiya District, north-western Ethiopia. Malar J 2024; 23:352. [PMID: 39568036 PMCID: PMC11580510 DOI: 10.1186/s12936-024-05148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Despite the progress in scaling vector control interventions in Ethiopia, malaria is still a major health problem in the country. Monitoring of the local vector populations and the effectiveness of vector control strategies is necessary to guide programme decisions to optimize malaria prevention efforts. This study investigated the feeding preference, the biting behaviour and resting behaviours of Anopheles mosquitoes in selected localities of Dembiya District. METHODS Adult Anopheles mosquitoes were sampled indoors and outdoors from June 2018 to May 2019 using CDC light traps, pyrethrum spray catches, artificial pit shelters, and mouth aspirators at both Guramba Bata and Arebiya study sites. Anopheles mosquitoes were identified to the species level. Their blood meal source and Plasmodium sporozoite infections were determined using an enzyme-linked immunosorbent assay. RESULTS Anopheles mosquitoes belonging to 11 species were identified from 2,055 collected mosquito specimens. Anopheles pharoensis was the predominant species at both the Guramba Bata (46.5%) and Arebiya (46.2%) study sites. The CDC light traps caught the highest number of Anopheles mosquitoes in both study sites. In Guramba Bata the density of outdoor host-seeking and resting Anopheles mosquitoes were higher than indoors (P ≤ 0.05). The human blood indexes (HBI) of indoor and outdoor host-seeking Anopheles arabiensis were 17.4% and 15.3%, respectively. The entomological inoculation rate (EIR) of outdoor host-seeking An. arabiensis was 4.7 infective bites/person/year. Additionally, the outdoor EIR of host-seeking Anopheles coustani was 25.7ib/p/year. CONCLUSIONS Anopheles mosquitoes in Dembiya district were more likely to seek a host and rest outdoors than indoors. A reevaluation of vector control strategies is needed to ensure Ethiopia remains on the path to malaria elimination. The detection of Plasmodium circumsporozoite protein in potential secondary vectors, such as An. coustani requires further investigation to substantiate their role in malaria transmission.
Collapse
Affiliation(s)
- Mihretu Tarekegn
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
- Department of Biological Sciences, College of Natural and Computational Sciences, Woldia University, PO. Box, 400, Ethiopia, Woldia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Yohannes Negash
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Habte Tekie
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa
| | - Yitbarek Woldehawariat
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, PO. Box, 1176, Ethiopia, Addis Ababa.
| |
Collapse
|
3
|
Machani MG, Nzioki I, Onyango SA, Onyango B, Githure J, Atieli H, Wang C, Lee MC, Githeko AK, Afrane YA, Ochomo E, Yan G. Insecticide resistance and its intensity in urban Anopheles arabiensis in Kisumu City, Western Kenya: Implications for malaria control in urban areas. PLoS One 2024; 19:e0303921. [PMID: 39536003 PMCID: PMC11560014 DOI: 10.1371/journal.pone.0303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The rise of insecticide resistance poses a growing challenge to the effectiveness of vector control tools, particularly in rural areas. However, the urban setting has received comparatively less focus despite its significance in attracting rural to urban migration. Unplanned urbanization, often overlooked, exacerbates insecticide resistance as Anopheles mosquitoes adapt to the polluted environments of rapidly expanding cities. This study aimed to assess the insecticide susceptibility status of malaria vectors and identify potential underlying mechanisms across three distinct ecological settings characterized by differing levels of urbanization in Kisumu County, Kenya. METHODS The study was conducted in 2022-2023 in Kisumu County, western Kenya. Field-derived An. gambiae (s.l.) larvae collected from a long stretch of urban-to-rural continuum were phenotyped as either resistant or susceptible to six different insecticides using the World Health Organization (WHO) susceptibility test. Polymerase chain reaction (PCR) techniques were used to identify the species of the An. gambiae complex and screened for mutations at voltage-gated sodium channels (Vgsc-1014F, Vgsc-1014S, Vgsc-1575Y) and acetylcholinesterase (Ace1) target site mutation 119S. Metabolic enzyme activities (non-specific β-esterases and monooxygenases) were evaluated in mosquitoes not exposed to insecticides using microplate assays. Additionally, during larval sampling, a retrospective questionnaire survey was conducted to determine pesticide usage by the local inhabitants. RESULTS Anopheles arabiensis dominated in urban (96.2%) and peri-urban (96.8%) areas, while An. gambiae (s.s.) was abundant in rural settings (82.7%). Urban mosquito populations showed high resistance intensity to deltamethrin (Mortality rate: 85.2% at 10x) and suspected resistance to Pirimiphos-methyl and bendiocarb while peri-urban and rural populations exhibited moderate resistance intensity to deltamethrin (mortality rate >98% at 10x). Preexposure of mosquitoes to a synergist piperonyl butoxide (PBO) significantly increased mortality rates: from 40.7% to 88.5% in urban, 51.9% to 90.3% in peri-urban, and 55.4% to 87.6% in rural populations for deltamethrin, and from 41.4% to 78.8% in urban, 43.7% to 90.7% in peri-urban, and 35% to 84.2% in rural populations for permethrin. In contrast, 100% mortality to chlorfenapyr and clothianidin was observed in all the populations tested. The prevalence of L1014F mutation was notably higher in urban An. arabiensis (0.22) unlike the peri-urban (0.11) and rural (0.14) populations while the L1014S mutation was more prevalent in rural An. gambiae (0.93). Additionally, urban An. arabiensis exhibited elevated levels of mixed function oxidases (0.8/mg protein) and non-specific esterases (2.12/mg protein) compared to peri-urban (0.57/mg protein and 1.5/mg protein, respectively) and rural populations (0.6/mg protein and 1.8/mg protein, respectively). Pyrethroids, apart from their use in public health through LLINs, were being highly used for agricultural purposes across all ecological settings (urban 38%, peri-urban 36% and rural 37%) followed by amidine group, with organophosphates, neonicotinoids and carbamates being of secondary importance. CONCLUSION These findings show high resistance of An. arabiensis to insecticides commonly used for vector control, linked with increased levels of detoxification enzymes. The observed intensity of resistance underscores the pressing issue of insecticide resistance in urban areas, potentially compromising the effectiveness of vector control measures, especially pyrethroid-treated LLINs. Given the species' unique behavior and ecology compared to An. gambiae, tailored vector control strategies are needed to address this concern in urban settings.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Irene Nzioki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Brenda Onyango
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Chloe Wang
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| |
Collapse
|
4
|
Li D, Hegde S, Sunil Kumar A, Zacharias A, Mehta P, Mukthineni V, Srimath S, Patel S, Suin M, Chellappa R, Acharya S. Towards transforming malaria vector surveillance using VectorBrain: a novel convolutional neural network for mosquito species, sex, and abdomen status identifications. Sci Rep 2024; 14:23647. [PMID: 39384771 PMCID: PMC11464746 DOI: 10.1038/s41598-024-71856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/01/2024] [Indexed: 10/11/2024] Open
Abstract
Malaria is a major public health concern, causing significant morbidity and mortality globally. Monitoring the local population density and diversity of the vectors transmitting malaria is critical to implementing targeted control strategies. However, the current manual identification of mosquitoes is a time-consuming and intensive task, posing challenges in low-resource areas like sub-Saharan Africa; in addition, existing automated identification methods lack scalability, mobile deployability, and field-test validity. To address these bottlenecks, a mosquito image database with fresh wild-caught specimens using basic smartphones is introduced, and we present a novel CNN-based architecture, VectorBrain, designed for identifying the species, sex, and abdomen status of a mosquito concurrently while being efficient and lightweight in computation and size. Overall, our proposed approach achieves 94.44±2% accuracy with a macro-averaged F1 score of 94.10±2% for the species classification, 97.66±1% accuracy with a macro-averaged F1 score of 96.17±1% for the sex classification, and 82.20±3.1% accuracy with a macro-averaged F1 score of 81.17±3% for the abdominal status classification. VectorBrain running on local mobile devices, paired with a low-cost handheld imaging tool, is promising in transforming the mosquito vector surveillance programs by reducing the burden of expertise required and facilitating timely response based on accurate monitoring.
Collapse
Affiliation(s)
- Deming Li
- Center for Bioengineering Innovation and Design, Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shruti Hegde
- Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aravind Sunil Kumar
- Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Atul Zacharias
- Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Parthvi Mehta
- Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Venkat Mukthineni
- Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Satwik Srimath
- Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sunny Patel
- Center for Bioengineering Innovation and Design, Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Maitreya Suin
- Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rama Chellappa
- Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Soumyadipta Acharya
- Center for Bioengineering Innovation and Design, Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Belay AK, Asale A, Sole CL, Yusuf AA, Torto B, Mutero CM, Tchouassi DP. Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasit Vectors 2024; 17:412. [PMID: 39363366 PMCID: PMC11451063 DOI: 10.1186/s13071-024-06496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Surveillance of the host-anopheline mosquitoes' interaction is important for assessing malaria transmission risk and guiding vector control. We assume that changes in malaria vector species' feeding habits, as well as the surrounding environment, have a substantial impact on varied malaria transmission. In this study, we determined the vertebrate host feeding patterns of anopheline mosquitoes to characterize entomologic risk factors for malaria in Jabi Tehnan, Northwestern Ethiopia. METHODS Blood-fed anophelines surveyed during malaria surveillance in Jabi Tehnan district of northwestern Ethiopia were utilized in this study. They were collected using Centers for Disease Control and Prevention (CDC) light traps deployed in selected households per village, placed indoors and outdoors, spanning three agroecological settings (dry mountain, plateau, and semiarid highlands) between June 2020 and May 2021. The engorged mosquitoes were analyzed for host blood meal sources and Plasmodium infection via polymerase chain reaction (PCR) and/or sequencing. Infection rates and bovine and human blood indices were calculated and compared for abundant species; between indoors and outdoors and between agroecology using a chi-squared test for equality of proportion in R package at a significant level of p ≤ 0.05. RESULTS A total of 246 mosquitoes were successfully typed (indoor, 121; outdoor, 125), with greater relative abundance indoors in mountain and plateau highlands, and outdoors in semiarid areas. Despite ecological differences in blood-fed capture rates, cattle served as the most utilized blood meal source by 11 anopheline species with an overall bovine blood index (BBI) of 74.4%. This trend was dictated by Anopheles gambiae s.l. (198/246; BBI = 73.7%), which exhibited the most plastic feeding habits that included humans (human blood index = 15.7%) and other livestock and rodents. A total of five anopheline species (An. gambiae s.l., An. funestus s.l., An. coustani s.l., An. pretoriensis, and An. pharoensis) fed on humans, of which the first three were found infected with Plasmodium parasites. Most of the infected specimens were An. arabiensis (5.6%, 11/198) and had recently fed mainly on cattle (72.7%, 8/11); one each of infected An. funestus s.l. and An. coustani s.l. had fed on humans and cattle, respectively. CONCLUSIONS The results demonstrate communal feeding on cattle by anophelines including primary and secondary malaria vectors. This study also indicates the importance of cattle-targeted interventions for sustainable control of malaria vectors in the study areas.
Collapse
Affiliation(s)
- Aklilu K Belay
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Abebe Asale
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-5689, Addis Ababa, Ethiopia
| | - Catherine L Sole
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
6
|
Machani MG, Onyango SA, Nzioki I, Milanoi S, Nattoh G, Githure J, Atieli H, Wang C, Lee MC, Zhou G, Githeko A, Afrane YA, Ochomo E, Yan G. Bionomics and distribution of malaria vectors in Kisumu city, Western Kenya: Implications for urban malaria transmission. RESEARCH SQUARE 2024:rs.3.rs-4943539. [PMID: 39372941 PMCID: PMC11451649 DOI: 10.21203/rs.3.rs-4943539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Increasing urbanization in tropical Africa may create new niches for malaria vectors, potentially leading to higher disease transmission rates. Vector control efforts remain largely targeted at ecologically rural bio-complexities with multiple hosts. Understanding mosquito species composition, ecology, host diversity and biting behavior in urban areas is crucial for planning effective control. This study assessed mosquito species diversity, abundance, behavioral patterns, and Plasmodium sporozoite infection rates of Anopheles vectors along an urban-rural transect in Kisumu city, western Kenya. Methods Indoor and outdoor host-seeking and resting adult mosquitoes were collected using Centers for Disease Control and Prevention miniature light traps (CDC-LT) and mechanical aspirators (Prokopack) along an urban-rural transect. Females Anopheles mosquitoes collected were identified using morphological taxonomic keys to species level. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further processed using polymerase chain reaction (PCR) to identify members of each complex/group. Subsequently, sporozoite infection rates of the anopheline mosquitoes were determined using a multiplexed real-time quantitative PCR (qPCR) assay. Result A total of 3,394 female Anopheles mosquitoes were collected and identified. These comprised of An. gambiae s.l. (68%), An. funestus group (19.8%), An. coustani (7.8%), An. pharoensis (2.6%), An. maculipalipis (1.6%), and An. leesoni(0.2%). All six species were found in urban zone, but only three were found in peri-urban and rural sites. Overall, urban collections accounted for the majority of these collections (55.5%) of mosquitoes collected, followed by those from peri-urban (30%) and rural sites (14.5%). Species distribution across the three ecotypes showed Anopheles arabiensis was the dominant species in urban (84.3%) and peri-urban (89%) sites, while An. gambiae s.s. was predominantly found in the rural zone (60.2%) alongside An. arabiensis (39.7%). Anopheles funestus was the predominant species in peri-urban (98.4%) and rural (85.7%) areas, with An. leesoni accounted for 1.6% and 14.3%, respectively. In urban areas, all samples from the An. funestus group were identified as An. funestus s.s.. Majority (55.5%) of Anopheles mosquitoes were collected indoors, while secondary vectors were primarily caught outdoors. Overall, sporozoite rates were higher outdoors 3.5% compared to indoors 1.45% in rural areas. Specifically, sporozoite infectivity rates for An. funestus, An. gambiae s.s and An. arabiensis collected indoors in the rural zone was 2.5%, 1.4% and 1% respectively. Outdoors in rural areas, An. gambiae had a sporozoite rate of 5.3%, while An. arabiensis had a rate of 2.1%. In peri-urban areas An. gambiae had a sporozoite rate of 2.3%. No sporozoites were detected in samples from urban sites. Conclusion The study highlights a shift of diversity of Anopheles species towards urban areas with increased outdoor activity, and significant outdoor malaria transmission in rural and peri-urban areas, emphasizing the need for tools targeting outdoor-biting mosquitoes. The presence of An. funestus in urban settings is of interest and highlights the critical importance of sustained entomological surveillance to inform integrated vector control and prevent future transmission risks.
Collapse
Affiliation(s)
| | | | | | | | | | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | | | | | | | | | - Yaw A Afrane
- University of Ghana Medical School, College of Health Sciences, University of Ghana, Ghana
| | | | | |
Collapse
|
7
|
Ojianwuna CC, Enwemiwe VN, Esiwo E, Ifeta S, Aghahowa EO. Resistance of mosquitoes to Lambda-Cyhalothrin and DDT in a Niger Delta Region of Nigeria. Trop Parasitol 2024; 14:100-107. [PMID: 39411682 PMCID: PMC11473011 DOI: 10.4103/tp.tp_19_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background The escalation of insecticide resistance across the World Health Organization (WHO) African region calls for the routine monitoring of insecticide resistance in mosquitoes. While pyrethroids are recommended for use and dichlorodiphenyltrichloroethane (DDT) has been prescribed, it is imperative to reevaluate their efficacy across diverse geographical settings. The extent of resistance among mosquitoes to DDT and lambda-cyhalothrin remains understudied in Ika North East, Delta State, Nigeria, where the yellow fever virus was reported in 2019. Materials and Methods We investigated the susceptibility of female mosquitoes to DDT (4%) and lambda-cyhalothrin (0.05%) in this specific study area. Adult female mosquitoes of Anopheles gambiae, Culex quinquefasciatus, and Aedes albopictus, aged between 2 and 4 days, were subjected to these insecticides utilizing the WHO bioassay method. The assessment of knockdown was done between 10 and 60 min, then mortality after 24 h. Results C. quinquefasciatus and A. albopictus mosquitoes exposed to DDT and lambda-cyhalothrin exhibited high susceptibility, resulting in complete mortality (100%); however, A. gambiae displayed resistance, with mortality rates of 19% and 76%, respectively . Notably, A. gambiae mosquitoes exposed to piperonyl butoxide (PBO)-DDT and PBO-lambda-cyhalothrin exhibited enhanced mortality, reaching 95% (indicating suspected resistance) and 100% (indicating susceptibility), respectively. Knockdown time (KDT) for 50% in mosquitoes exposed to lambda-cyhalothrin ranged from 3.94 to 33.51 min. Similarly, KDT model for 95% ranged from 19.04 to 84.15 min. Among the tested mosquito species, Culex mosquitoes exhibited the shortest knockdown resistance time for lambda-cyhalothrin, recorded at 3.94 min. Similarly, the KDT for DDT ranged from 24.97 to 187.06 min for 50% mortality and from 61.04 to 431.03 min for 95% mortality, respectively. Anopheles mosquitoes exposed to PBO + DDT recorded the lowest KDT. Conclusion Our study underscores the potential of exercising caution in the use of DDT and lambda-cyhalothrin insecticides for the control of mosquitoes due to emerging resistance.
Collapse
Affiliation(s)
- Chioma C. Ojianwuna
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta, Nigeria
| | - Victor N. Enwemiwe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta, Nigeria
- Centre for Biotechnology Research, Delta State University, Abraka, Delta, Nigeria
| | - Eric Esiwo
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta, Nigeria
| | - Sarah Ifeta
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta, Nigeria
| | - Ehimwenma O. Aghahowa
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Delta, Nigeria
| |
Collapse
|
8
|
Kenyeres Z. Drivers of autochthonous malaria cases over time: could the Central European present the African future? Malar J 2024; 23:181. [PMID: 38858778 PMCID: PMC11163750 DOI: 10.1186/s12936-024-05004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Results of spatial and temporal comparison of malaria hotspots and coldspots could improve the health measures of malaria control and eradication strategies. The study aimed to reveal the spatially and temporally independent correlations between the potentially most effective background variables and the number of autochthonous malaria cases. METHODS Relationships between malaria cases and background variables were studied in 2 km × 2 km sized quadrates (10 Central European and 10 African). In addition to the current habitat structure of the African sites, annual precipitation, and annual mean temperature, data of the above parameters detected in the nineteenth and twentieth centuries and currently in the Central European sites were included in the analyses (n = 40). Mann-Whitney tests, Principal Component Analysis, and Generalized Linear Models were used for the examinations. RESULTS In addition to the apparent significant positive correlation of malaria cases with annual rainfall and mean temperature, several correlations were found for habitat parameters. The cover of marshlands in the 19th-century habitat structure of Central European quadrates was considerably the same as in the recent African ones. The extent of rural residential areas was significantly smaller in the 19th-century habitat structure of Central European quadrats than in present-day African ones. According to the revealed correlations, the surface cover of rural residential areas is the main driver of the number of autochthonous malaria cases that we can directly impact. CONCLUSIONS The study confirmed with historical comparison that not only the annual rainfall and mean temperature, the cover of marshlands and other habitats with breeding sites, but also the elements of the rural human environment play a significant role in the high number of autochthonous malaria cases, probably through the concentration and enhancing sites for vector mosquitoes. The latter confirms that a rapid urbanization process could reduce malaria cases in the most infected areas of Africa. Until the latter happens, extensive biological control of Anopheles larvae and chemical control (both outdoor and indoor) of their imagoes, further mosquito nets, repellents, and carbon dioxide traps will need to be applied more widely in the most heavily infested areas.
Collapse
Affiliation(s)
- Zoltán Kenyeres
- Acrida Conservational Research L.P., Deák F. St. 7., Tapolca, 8300, Hungary.
| |
Collapse
|
9
|
Degefa T, Yewhalaw D, Yan G. Methods of sampling malaria vectors and their reliability in estimating entomological indices in Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:573-583. [PMID: 38394375 PMCID: PMC11078579 DOI: 10.1093/jme/tjae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
In efforts to intensify malaria control through vector control and hasten the progress towards elimination, the impact of control interventions needs to be evaluated. This requires sampling vector population using appropriate trapping methods. The aim of this article is to critically review methods of sampling malaria vectors and their reliability in estimating entomological indicators of malaria transmission in Africa. The standard methods are human landing catch (HLC), pyrethrum spray catch, and pit shelter for sampling host-seeking, indoor resting, and outdoor resting malaria vectors, respectively. However, these methods also have drawbacks such as exposure of collectors to infective mosquito bites, sampling bias, and feasibility issue. Centers for Disease Control and Prevention (CDC) light traps placed beside human-occupied bed nets have been used as an alternative to the HLC for sampling host-seeking malaria vectors. Efforts have been made to evaluate the CDC light traps against HLC to generate a conversion factor in order to use them as a proxy estimator of human biting rate and entomological inoculation rates in Africa. However, a reproducible conversion factor was not found, indicating that the trapping efficiency of the CDC light traps varies between different geographical locations. Several other alternative traps have also been developed and evaluated in different settings but most of them require further standardization. Among these, human-baited double net trap/CDC light trap combination and mosquito electrocuting trap have the potential to replace the HLC for routine malaria vector surveillance. Further research is needed to optimize the alternative sampling methods and/or develop new surveillance tools based on vector behavior.
Collapse
Affiliation(s)
- Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Zhou G, Githure J, Lee MC, Zhong D, Wang X, Atieli H, Githeko AK, Kazura J, Yan G. Malaria transmission heterogeneity in different eco-epidemiological areas of western Kenya: a region-wide observational and risk classification study for adaptive intervention planning. Malar J 2024; 23:74. [PMID: 38475793 PMCID: PMC10935946 DOI: 10.1186/s12936-024-04903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Understanding of malaria ecology is a prerequisite for designing locally adapted control strategies in resource-limited settings. The aim of this study was to utilize the spatial heterogeneity in malaria transmission for the designing of adaptive interventions. METHODS Field collections of clinical malaria incidence, asymptomatic Plasmodium infection, and malaria vector data were conducted from 108 randomly selected clusters which covered different landscape settings including irrigated farming, seasonal flooding area, lowland dryland farming, and highlands in western Kenya. Spatial heterogeneity of malaria was analyzed and classified into different eco-epidemiological zones. RESULTS There was strong heterogeneity and detected hot/cold spots in clinical malaria incidence, Plasmodium prevalence, and vector abundance. The study area was classified into four zones based on clinical malaria incidence, parasite prevalence, vector density, and altitude. The two irrigated zones have either the highest malaria incidence, parasite prevalence, or the highest malaria vector density; the highlands have the lowest vector density and parasite prevalence; and the dryland and flooding area have the average clinical malaria incidence, parasite prevalence and vector density. Different zones have different vector species, species compositions and predominant species. Both indoor and outdoor transmission may have contributed to the malaria transmission in the area. Anopheles gambiae sensu stricto (s.s.), Anopheles arabiensis, Anopheles funestus s.s., and Anopheles leesoni had similar human blood index and malaria parasite sporozoite rate. CONCLUSION The multi-transmission-indicator-based eco-epidemiological zone classifications will be helpful for making decisions on locally adapted malaria interventions.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA.
| | - John Githure
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Harrysone Atieli
- Sub-Saharan International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
11
|
Abong’o B, Agumba S, Moshi V, Simwero J, Otima J, Ochomo E. Insecticide treated eaves screens provide additional marginal protection compared to untreated eave screens under semi-field conditions in western Kenya. MALARIAWORLD JOURNAL 2024; 15:1. [PMID: 38322708 PMCID: PMC10842374 DOI: 10.5281/zenodo.10567425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Introduction Human habitats remain the main point of human-vector interaction leading to malaria transmission despite the sustained use of insecticide-treated nets and indoor residual spraying. Simple structural modifications involving screening of doors, windows and eaves have great potential for reducing indoor entry of mosquitoes. Moreover, insecticide treatment of the screen material may provide additional benefit in mosquito population reduction. Materials and Methods Four huts, each constructed inside a semi-field structure, were used in the study. Two had untreated eave and door screens and screened air cavities in place of windows (experiment 1) or were similar but with the eave screens treated with Actellic® 300CS insecticide (experiment 2). The other two huts remained unscreened throughout the study. Two hundred, 3-day old adults of F1 generation Anopheles funestus collected by aspiration or F0 reared from An. arabiensis larvae or An. arabiensis (Dongola strain) were released in each semi-field structure at dusk and recaptured the following morning. A single volunteer slept in each hut under an untreated bednet each night of the study. Recaptured mosquitoes were counted and recorded by location, either indoor or outdoor of each hut in the different semi-field structures. Results Based on modelled estimates, significantly fewer, 10% An. arabiensis from Ahero, 11% An. arabiensis Dongola strain and 10% An. funestus from Siaya were observed inside modified huts compared to unmodified ones. Treating of eave screen material with Actellic® 300CS significantly reduced indoor numbers of An. arabiensis from Ahero, to nearly 0%, and An. arabiensis Dongola strain, to 3%, compared to huts with untreated eave screens, while eliminating An. funestus indoors. These modifications cost US$180 /structure and have been observed to last more than 15 years in a different location. Conclusions Eave, door and window screening are effective ways of reducing mosquito entry into houses. Additionally, treatment of eave screen material with an effective insecticide further reduces the Anopheles population in and around the screened huts under semi-field conditions and could greatly complement existing vector control efforts.
Collapse
Affiliation(s)
- Bernard Abong’o
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| | - Silas Agumba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Moshi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jacob Simwero
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Jane Otima
- Habitat for Humanity International, Lenana Road, Nairobi
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Research World Limited, Kisumu, Kenya
| |
Collapse
|
12
|
Zeleke G, Duchateau L, Yewhalaw D, Suleman S, Devreese M. In-vitro susceptibility and ex-vivo evaluation of macrocyclic lactone endectocides sub-lethal concentrations against Plasmodium vivax oocyst development in Anopheles arabiensis. Malar J 2024; 23:26. [PMID: 38238768 PMCID: PMC10797976 DOI: 10.1186/s12936-024-04845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., ivermectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and moxidectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis. METHODS The 7-day sub-lethal concentrations of 25% (LC25) and 5% (LC5) were determined from in-vitro susceptibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted using P. vivax gametocytes infected patient's blood spiked with the LC25 and LC5 of the MLs. At 7-days post-feeding, each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solution, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model with binomially distributed error terms. RESULTS A 7-day lethal concentration of 25% (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, a lethal concentration of 5% (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and control groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5). CONCLUSIONS The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, particularly by reducing the vectors lifespan and causing mortality before completing the parasite's sporogony cycle or reducing their vector capacity as it affects the locomotor activity of the mosquito.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium.
| |
Collapse
|
13
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Mnyone LL, Hill SR, Govella NJ. Effect of non-human hosts on the human biting rate of primary and secondary malaria vectors in Tanzania. Malar J 2023; 22:340. [PMID: 37940967 PMCID: PMC10631174 DOI: 10.1186/s12936-023-04778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Malaria vectors vary in feeding preference depending on their innate behaviour, host availability and abundance. Host preference and human biting rate in malaria vectors are key factors in establishing zooprophylaxis and zoopotentiation. This study aimed at assessing the impact of non-human hosts in close proximity to humans on the human biting rate of primary and secondary malaria vectors, with varying host preferences. METHODS The effect of the presence of non-human hosts in close proximity to the human host on the mean catches per person per night, as a proxy for mosquito biting rate, was measured using mosquito-electrocuting traps (METs), in Sagamaganga, Kilombero Valley, Tanzania. Two experiments were designed: (1) a human versus a calf, each enclosed in a MET, and (2) a human surrounded by three calves versus a human alone, with each human volunteer enclosed individually in a MET spaced 10 m apart. Each experiment was conducted on alternate days and lasted for 36 nights per experiment. During each experiment, the positions of hosts were exchanged daily (except the human in experiment 2). All anopheline mosquitoes caught were assayed for Plasmodium sporozoites using enzyme-linked immunosorbent assay. RESULTS A total of 20,574 mosquitoes were captured and identified during the study, of which 3608 were anophelines (84.4% primary and 15.6% secondary malaria vectors) and 17,146 were culicines. In experiment 1, the primary malaria vector, Anopheles arabiensis, along with Culex spp. demonstrated a preference for cattle, while the primary vectors, Anopheles funestus, preferred humans. In experiment 2, both primary vectors, An. arabiensis and An. funestus, as well as the secondary vector Anopheles rivolurum, demonstrated behaviours amenable to zooprophylaxis, whereas Culex spp. increased their attraction to humans in the presence of nearby cattle. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS The findings of this study provide support for the zooprophylaxis model for malaria vectors present in the Kilombero Valley, and for the zoopotentiation model, as it pertains to the Culex spp. in the region. However, the factors regulating zooprophylaxis and zoopotentiation are complex, with different species-dependent mechanisms regulating these behaviours, that need to be considered when designing integrated vector management programmes.
Collapse
Affiliation(s)
- Godfrey C Katusi
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R G Hermy
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Samwely M Makayula
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
| | - Rickard Ignell
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden
| | - Ladslaus L Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| | - Sharon R Hill
- Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22, Lomma, Sweden.
| | - Nicodem J Govella
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, P.O. Box 53, Ifakara, Morogoro, Tanzania
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
14
|
Msugupakulya BJ, Urio NH, Jumanne M, Ngowo HS, Selvaraj P, Okumu FO, Wilson AL. Changes in contributions of different Anopheles vector species to malaria transmission in east and southern Africa from 2000 to 2022. Parasit Vectors 2023; 16:408. [PMID: 37936155 PMCID: PMC10631025 DOI: 10.1186/s13071-023-06019-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Malaria transmission in Africa is facilitated by multiple species of Anopheles mosquitoes. These vectors have different behaviors and vectorial capacities and are affected differently by vector control interventions, such as insecticide-treated nets and indoor residual spraying. This review aimed to assess changes in the contribution of different vector species to malaria transmission in east and southern Africa over 20 years of widespread insecticide-based vector control. METHODS We searched PubMed, Global Health, and Web of Science online databases for articles published between January 2000 and April 2023 that provided species-specific sporozoite rates for different malaria vectors in east and southern Africa. We extracted data on study characteristics, biting rates, sporozoite infection proportions, and entomological inoculation rates (EIR). Using EIR data, the proportional contribution of each species to malaria transmission was estimated. RESULTS Studies conducted between 2000 and 2010 identified the Anopheles gambiae complex as the primary malaria vector, while studies conducted from 2011 to 2021 indicated the dominance of Anopheles funestus. From 2000 to 2010, in 57% of sites, An. gambiae demonstrated higher parasite infection prevalence than other Anopheles species. Anopheles gambiae also accounted for over 50% of EIR in 76% of the study sites. Conversely, from 2011 to 2021, An. funestus dominated with higher infection rates than other Anopheles in 58% of sites and a majority EIR contribution in 63% of sites. This trend coincided with a decline in overall EIR and the proportion of sporozoite-infected An. gambiae. The main vectors in the An. gambiae complex in the region were Anopheles arabiensis and An. gambiae sensu stricto (s.s.), while the important member of the An. funestus group was An. funestus s.s. CONCLUSION The contribution of different vector species in malaria transmission has changed over the past 20 years. As the role of An. gambiae has declined, An. funestus now appears to be dominant in most settings in east and southern Africa. Other secondary vector species may play minor roles in specific localities. To improve malaria control in the region, vector control should be optimized to match these entomological trends, considering the different ecologies and behaviors of the dominant vector species.
Collapse
Affiliation(s)
- Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Naomi H Urio
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Mohammed Jumanne
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Prashanth Selvaraj
- Institute for Disease Modeling, Bill and Melinda Gates Foundation, Seattle, USA
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Johannesburg, Republic of South Africa.
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
15
|
Nzioki I, Machani MG, Onyango SA, Kabui KK, Githeko AK, Ochomo E, Yan G, Afrane YA. Differences in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems of western Kenya. Parasit Vectors 2023; 16:376. [PMID: 37864217 PMCID: PMC10590029 DOI: 10.1186/s13071-023-05944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/24/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.
Collapse
Affiliation(s)
- Irene Nzioki
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | - Kevin K Kabui
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
16
|
Zeleke G, Duchateau L, Yewhalaw D, Suleman S, Devreese M. Pharmacokinetics of macrocyclic lactone endectocides in indigenous Zebu cattle and their insecticidal efficacy on Anopheles arabiensis. Exp Parasitol 2023; 253:108605. [PMID: 37659710 DOI: 10.1016/j.exppara.2023.108605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Outdoor biting, outdoor resting, and early evening biting of Anopheles arabiensis is a challenge in current malaria control and elimination efforts in Africa. Zooprophylaxis using livestock treated with macrocyclic lactones is a novel approach to control zoophilic vectors. Therefore, the present study aimed to investigate the pharmacokinetics and insecticidal efficacy of ivermectin (IVER), doramectin (DORA), and moxidectin (MOXI) subcutaneous (SC) formulations in treated calves. The study was conducted using indigenous (Bos indicus) calves treated with SC formulation at a dosage of 0.5, 0.2 or 0.05 mg/kg body weight (BW) IVER or DORA and 0.2 or 0.05 mg/kg BW MOXI. Direct skin feeding of mosquitoes and animal blood sampling were performed at 4, 8, 12, and 24 h and on days 2, 3, 5, 7, 10, 14, 21, 28, and 35 post treatment. The survival of fully fed A. arabiensis mosquitoes was monitored for 10 days. Plasma samples were analyzed using UHPLC-MS/MS. A. arabiensis mortality percentages in the 0.5 mg/kg BW DORA and IVER groups were 65.74% (95% CI: [54.98; 76.50]) and 64.53% (95% CI: [53.77; 75.29]), respectively, over 35 days post treatment. At the recommended dose (0.2 mg/kg BW), promising overall A. arabiensis mortality rates of 61.79% (95% CI: [51.55; 72.03]) and 61.78% (95% CI: [51.02; 72.54]) were observed for IVER and DORA, respectively. In contrast, A. arabiensis mortality in the MOXI group was 50.23% (95% CI: [39.87, 60.58]). At 0.2 mg/kg BW dose, area under the plasma concentration versus time curve (AUC0-inf) values for IVER, DORA, and MOXI were 382.53 ± 133.25, 395.41 ± 132.12, and 215.85 ± 63.09 ng day/mL, respectively. An extended elimination half-life (T1/2el) was recorded for DORA (4.28 ± 0.93 d), at 0.2 mg/kg BW dose level, compared to that for IVER (3.16 ± 1.47 d). The T1/2el of MOXI was 2.17 ± 0.44 day. A maximum plasma concentration (Cmax) was recorded earlier for MOXI (10 h) than for IVER (1.6 days) and longer for DORA (3.0 days). For DORA and IVER, significant differences were found in T1/2el (P<0.05), Cmax (P<0.01), and AUC0-inf (P<0.01) between the higher 0.5 mg/kg BW and the lower 0.05 mg/kg BW doses. The T1/2el and AUC0-inf of DORA and IVER in the present study were significantly (p < 0.05) correlated with the observed insecticidal efficacy against A. arabiensis mosquitoes at 0.2 mg/kg a dose. Therefore, treating cattle with IVER or DORA could complement the malaria vector control interventions, especially in Ethiopia, where the zoophilic malaria vector A. arabiensis majorly contribute for residual malaria transmission.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Salisburylaan 133, Merelbeke, Belgium; School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Sultan Suleman
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Salisburylaan 133, Merelbeke, Belgium.
| |
Collapse
|
17
|
Gueye A, Ngom EHM, Diagne A, Ndoye BB, Dione ML, Sambe BS, Sokhna C, Diallo M, Niang M, Dia I. Host feeding preferences of malaria vectors in an area of low malaria transmission. Sci Rep 2023; 13:16410. [PMID: 37775717 PMCID: PMC10542387 DOI: 10.1038/s41598-023-43761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Studying the behaviour and trophic preferences of mosquitoes is an important step in understanding the exposure of vertebrate hosts to vector-borne diseases. In the case of human malaria, transmission increases when mosquitoes feed more on humans than on other animals. Therefore, understanding the spatio-temporal dynamics of vectors and their feeding preferences is essential for improving vector control measures. In this study, we investigated the feeding behaviour of Anopheles mosquitoes at two sites in the Sudanian areas of Senegal where transmission is low following the implementation of vector control measures. Blood-fed mosquitoes were collected monthly from July to November 2022 by pyrethrum spray catches in sleeping rooms of almost all houses in Dielmo and Ndiop villages, and blood meals were identified as from human, bovine, ovine, equine and chicken by ELISA. Species from the An. gambiae complex were identified by PCR. The types and numbers of potential domestic animal hosts were recorded in each village. The Human Blood Index (HBI) and the Manly Selection Ratio (MSR) were calculated to determine whether hosts were selected in proportion to their abundance. Spatio-temporal variation in HBI was examined using the Moran's index. A total of 1251 endophilic Anopheles females were collected in 115 bedrooms, including 864 blood fed females of 6 species. An. arabiensis and An. funestus were predominant in Dielmo and Ndiop, respectively. Of the 864 blood meals tested, 853 gave a single host positive result mainly on bovine, equine, human, ovine and chicken in decreasing order in both villages. Overall, these hosts were not selected in proportion to their abundance. The human host was under-selected, highlighting a marked zoophily for the vectors. Over time and space, the HBI were low with no obvious trend, with higher and lower values observed in each of the five months at different points in each village. These results highlight the zoophilic and exophagic behaviour of malaria vectors. This behaviour is likely to be a consequence of the distribution and use of LLINs in both villages and may increase risk of residual outdoor transmission. This underlines the need to study the feeding host profile of outdoor resting populations and how domestic animals may influence malaria epidemiology in order to tailor effective malaria vector control strategies in the two villages.
Collapse
Affiliation(s)
- Assiyatou Gueye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - El Hadji Malick Ngom
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Aissatou Diagne
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Baye Bado Ndoye
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Mamadou Lamine Dione
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Babacar Souleymane Sambe
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Cheikh Sokhna
- UMR Vecteurs Infections Tropicales et Mediterraneennes (VITROME), Campus International UCAD-IRD, Route des Peres Maristes, BP 1386, Dakar, Senegal
| | - Mawlouth Diallo
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Makhtar Niang
- Pole Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal
| | - Ibrahima Dia
- Pole de Zoologie Medicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Senegal.
| |
Collapse
|
18
|
Mbare O, Njoroge MM, Ong'wen F, Bukhari T, Fillinger U. Evaluation of the solar-powered Silver Bullet 2.1 (Lumin 8) light trap for sampling malaria vectors in western Kenya. Malar J 2023; 22:277. [PMID: 37716987 PMCID: PMC10505323 DOI: 10.1186/s12936-023-04707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Centers for Disease Control and Prevention (CDC) light traps are widely used for sampling mosquitoes. However, this trap, manufactured in the USA, poses challenges for use in sub-Saharan Africa due to procurement costs and shipping time. Traps that are equally efficient than the CDC light trap, but which are amenable for use in remote African settings and made in Africa, are desirable to improve local vector surveillance. This study evaluated a novel solar-powered light trap made in South Africa (Silver Bullet trap; SB), for its efficiency in malaria vector sampling in western Kenya. METHODS Large cage (173.7 m3) experiments and field evaluations were conducted to compare the CDC-incandescent light trap (CDC-iLT), CDC-UV fluorescent tube light trap (CDC-UV), SB with white diodes (SB-White) and SB with UV diodes (SB-UV) for sampling Anopheles mosquitoes. Field assessments were done indoors and outdoors following a Latin square design. The wavelengths and absolute spectral irradiance of traps were compared using spectrometry. RESULTS The odds of catching a released Anopheles in the large cage experiments with the SB-UV under ambient conditions in the presence of a CDC-iLT in the same system was three times higher than what would have been expected when the two traps were equally attractive (odds ratio (OR) 3.2, 95% confidence interval CI 2.8-3.7, P < 0.01)). However, when the white light diode was used in the SB trap, it could not compete with the CDC-iLT (OR 0.56, 95% CI 0.48-0.66, p < 0.01) when the two traps were provided as choices in a closed system. In the field, the CDC and Silver Bullet traps were equally effective in mosquito sampling. Irrespective of manufacturer, traps emitting UV light performed better than white or incandescent light for indoor sampling, collecting two times more Anopheles funestus sensu lato (s.l.) (RR 2.5; 95% CI 1.7-3.8) and Anopheles gambiae s.l. (RR 2.5; 95% 1.7-3.6). Outdoor collections were lower than indoor collections and similar for all light sources and traps. CONCLUSIONS The solar-powered SB trap compared well with the CDC trap in the field and presents a promising new surveillance device especially when charging on mains electricity is challenging in remote settings.
Collapse
Affiliation(s)
- Oscar Mbare
- International Centre of Insect Physiology and Ecology, Human Health Theme, 30772 - 00100, Nairobi, Kenya.
| | - Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology, Human Health Theme, 30772 - 00100, Nairobi, Kenya
| | - Fedinand Ong'wen
- International Centre of Insect Physiology and Ecology, Human Health Theme, 30772 - 00100, Nairobi, Kenya
| | - Tullu Bukhari
- International Centre of Insect Physiology and Ecology, Human Health Theme, 30772 - 00100, Nairobi, Kenya
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Human Health Theme, 30772 - 00100, Nairobi, Kenya
| |
Collapse
|
19
|
Keïta M, Sissoko I, Sogoba N, Konaté M, Diawara SI, Kané F, Thiam S, Touré M, Konaté D, Diakité M, Beier JC, Doumbia S. Resurgence of Malaria Transmission and Incidence after Withdrawal of Indoor Residual Spraying in the District of Koulikoro, Mali. Am J Trop Med Hyg 2023; 109:616-620. [PMID: 37549902 PMCID: PMC10484277 DOI: 10.4269/ajtmh.22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 08/09/2023] Open
Abstract
In Mali, malaria vector control relies mostly on long-lasting insecticidal nets and indoor residual spraying (IRS). From 2008 to 2016, an IRS program was implemented in the district of Koulikoro. After a significant reduction in malaria indicators, IRS was stopped in 2016. This study evaluated the effect of IRS withdrawal on entomological parameters of malaria transmission and incidence in children aged 6 months to 10 years in the district of Koulikoro. Entomological parameters of malaria transmission during the last year of IRS implementation in 2016 were compared with those obtained 2 years after IRS withdrawal in 2018 in two villages of Koulikoro. Mosquito vectors were collected by mouth aspiration and pyrethrum spray catches in the villages to monitor these transmission parameters. A sharp increase (10.8 times higher) in vector abundance after IRS withdrawal was observed. The infection rate of Anopheles gambiae sensu lato to Plasmodium falciparum increased from zero during IRS implementation to 14.8% after IRS withdrawal. The average entomological inoculation rate, which was undetectable before, was 1.22 infected bites per person per month 2 years after IRS was withdrawn, and the cumulative malaria incidence rate observed after IRS was 4.12 times (15.2% versus 3.7%) higher than that observed in 2016 in the villages before IRS withdrawal. This study showed a resurgence of malaria transmission and incidence in the Koulikoro health district after IRS was withdrawn. Thus, to manage the potential consequences of malaria transmission resurgence, alternative approaches are needed when stopping successful malaria control interventions.
Collapse
Affiliation(s)
- Moussa Keïta
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ibrahim Sissoko
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Konaté
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sory Ibrahim Diawara
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fousseyni Kané
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Salif Thiam
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamoudou Touré
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Konaté
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou Diakité
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - John C. Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
| | - Seydou Doumbia
- West African International Center for Excellence in Malaria Research/Malaria Research and Training Center/International Center for Excellence in Research/University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
20
|
Yadouleton A, Badou Y, Sanoussi F, Hounkanrin G, Tchibozo C, Adewumi P, Baba-Moussa L. Development of rice farming: a cause of the emergence of multiple insecticide resistance in populations of Anopheles gambiae s.l and its impact on human health in Malanville, Bénin. Malawi Med J 2023; 35:170-176. [PMID: 38362286 PMCID: PMC10865060 DOI: 10.4314/mmj.v35i3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Aim The rise in rice production in the district of Malanville, Northen Benin, is a present concern, as it has resulted in the widespread usage of pesticides for crop protection. This could impact human health but also life cycle of Anopheles gambiae, the main vector of malaria. Methods Therefore, insecticide susceptibility bioassays were carried out on populations of An. gambiae s.l aged to 3-5 days old (two from areas where insecticide is highly used and other two areas of low insecticide use) and subjected to insecticide-impregnated papers (Permethrin 0.75%; deltamethrin 0.05%; DDT 4% and bendiocarb 0.1%) following WHO protocol. Polymerase Chain Reactions (PCRs) were used for the detection of Acethlylcholinestrase (Ace-1) and the knock down resistance (kdr) L1014F mutations in An. gambiae populations. Finally, indirect bioassays were conducted for the investigating on the factors affecting the life cycle of An. gambiae due to the use of pesticides. Results An. gambiae from the four sites were resistant to DDT (6 to 8% and 10 to 14% respectively from areas of high and low dose), pyrethroids (22 to 26% and 30 to 36% for permethrin, from areas of high and low dose respectively and 66 to 70% and 72 to 80% for deltamethrin, from high and low dose) but susceptible to carbamate. The kdr L1014F mutation was detected in An. gambiae populations (0.88 to 0.90 and 0.84 to 0.88 from high and low dose, respectively). The ace-1 was detected at low frequencies (<0.002). Bioassays on the impacts of the use of pesticides in the life cycle of An. gambiae showed that soil substrates with pesticides residues have a negative impact on the life cycle eggs of An. gambiae. Conclusion These findings confirmed the negative impacts of pesticides use in rice farming and its impacts on the life cycle of An. gambiae.
Collapse
Affiliation(s)
- Anges Yadouleton
- Ecole Normale Supérieure de Natitingou ; Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM)
- Centre de Recherche Entomologique de Cotonou
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Yvette Badou
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Falilath Sanoussi
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Gildas Hounkanrin
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Carine Tchibozo
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Praise Adewumi
- Laboratoire des Fièvres Hémorragiques Virales et des Arbovirus du Bénin
| | - Lamine Baba-Moussa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie/Département de Biochimie et de Biologie Cellulaire/Faculté des Sciences et Techniques/Université d'Abomey-Calavi/ 05 BP 1604 Cotonou, Benin
| |
Collapse
|
21
|
Fillinger U, Denz A, Njoroge MM, Tambwe MM, Takken W, van Loon JJA, Moore SJ, Saddler A, Chitnis N, Hiscox A. A randomized, double-blind placebo-control study assessing the protective efficacy of an odour-based 'push-pull' malaria vector control strategy in reducing human-vector contact. Sci Rep 2023; 13:11197. [PMID: 37433881 DOI: 10.1038/s41598-023-38463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023] Open
Abstract
Novel malaria vector control strategies targeting the odour-orientation of mosquitoes during host-seeking, such as 'attract-and-kill' or 'push-and-pull', have been suggested as complementary tools to indoor residual spraying and long-lasting insecticidal nets. These would be particularly beneficial if they can target vectors in the peri-domestic space where people are unprotected by traditional interventions. A randomized double-blind placebo-control study was implemented in western Kenya to evaluate: a 'push' intervention (spatial repellent) using transfluthrin-treated fabric strips positioned at open eave gaps of houses; a 'pull' intervention placing an odour-baited mosquito trap at a 5 m distance from a house; the combined 'push-pull' package; and the control where houses contained all elements but without active ingredients. Treatments were rotated through 12 houses in a randomized-block design. Outdoor biting was estimated using human landing catches, and indoor mosquito densities using light-traps. None of the interventions provided any protection from outdoor biting malaria vectors. The 'push' reduced indoor vector densities dominated by Anopheles funestus by around two thirds. The 'pull' device did not add any benefit. In the light of the high Anopheles arabiensis biting densities outdoors in the study location, the search for efficient outdoor protection and effective pull components needs to continue.
Collapse
Affiliation(s)
- Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (Icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adrian Denz
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Margaret M Njoroge
- International Centre of Insect Physiology and Ecology (Icipe), Human Health Theme, Nairobi, 00100, Kenya
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Mohamed M Tambwe
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU), Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Sarah J Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU), Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU), Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Telethon Kids Institute, Perth, Australia
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Alexandra Hiscox
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Arctech Innovation Ltd., The Cube, Londoneast-Uk Business and Technical Park, Yew Tree Avenue, Dagenham, RM10 7FN, UK
| |
Collapse
|
22
|
Yalla N, Polo B, McDermott DP, Kosgei J, Omondi S, Agumba S, Moshi V, Abong'o B, Gimnig JE, Harris AF, Entwistle J, Long PR, Ochomo E. A comparison of the attractiveness of flowering plant blossoms versus attractive targeted sugar baits (ATSBs) in western Kenya. PLoS One 2023; 18:e0286679. [PMID: 37279239 DOI: 10.1371/journal.pone.0286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field.
Collapse
Affiliation(s)
- Nick Yalla
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Brian Polo
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Daniel P McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jackline Kosgei
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Seline Omondi
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Silas Agumba
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Vincent Moshi
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Bernard Abong'o
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E Gimnig
- Division of Parasitic Diseases and Malaria, Centre for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Angela F Harris
- Innovative Vector Control Consortium, Liverpool, United Kingdom
| | | | - Peter R Long
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Eric Ochomo
- Entomology Department, Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| |
Collapse
|
23
|
Nzioki I, Machani MG, Onyango SA, Kabui KK, Githeko AK, Ochomo E, Yan G, Afrane YA. Current observations on shifts in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems in Western Kenya. RESEARCH SQUARE 2023:rs.3.rs-2772202. [PMID: 37090522 PMCID: PMC10120786 DOI: 10.21203/rs.3.rs-2772202/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae) (98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s (hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yaw A Afrane
- University of Ghana Medical School, University of Ghana
| |
Collapse
|
24
|
Otambo WO, Ochwedo KO, Omondi CJ, Lee MC, Wang C, Atieli H, Githeko AK, Zhou G, Kazura J, Githure J, Yan G. Community case management of malaria in Western Kenya: performance of community health volunteers in active malaria case surveillance. Malar J 2023; 22:83. [PMID: 36890544 PMCID: PMC9993668 DOI: 10.1186/s12936-023-04523-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND In western Kenya, not all malaria cases are reported as stipulated in the community case management of malaria (CCMm) strategy. This underreporting affects the equity distribution of malaria commodities and the evaluation of interventions. The current study aimed to evaluate the effectiveness of community health volunteers' active case detection and management of malaria in western Kenya. METHODS Cross-sectional active case detection (ACD) of malaria survey was carried out between May and August 2021 in three eco-epidemiologically distinct zones in Kisumu, western Kenya: Kano Plains, Lowland lakeshore and Highland Plateau. The CHVs conducted biweekly ACD of malaria household visits to interview and examine residents for febrile illness. The Community Health Volunteers (CHVs) performance during the ACD of malaria was observed and interviews done using structured questionnaires. RESULTS Of the total 28,800 surveyed, 2597 (9%) had fever and associated malaria symptoms. Eco-epidemiological zones, gender, age group, axillary body temperature, bed net use, travel history, and survey month all had a significant association with malaria febrile illness (p < 0.05). The qualification of the CHV had a significant influence on the quality of their service. The number of health trainings received by the CHVs was significantly related to the correctness of using job aid (χ2 = 6.261, df = 1, p = 0.012) and safety procedures during the ACD activity (χ2 = 4.114, df = 1, p = 0.043). Male CHVs were more likely than female CHVs to correctly refer RDT-negative febrile residents to a health facility for further treatment (OR = 3.94, 95% CI = 1.85-5.44, p < 0.0001). Most of RDT-negative febrile residents who were correctly referred to the health facility came from the clusters with a CHV having 10 years of experience or more (OR = 1.29, 95% CI = 1.05-1.57, p = 0.016). Febrile residents in clusters managed by CHVs with more than 10 years of experience (OR = 1.82, 95% CI = 1.43-2.31, p < 0.0001), who had a secondary education (OR = 1.53, 95% CI = 1.27-1.85, p < 0.0001), and were over the age of 50 (OR = 1.44, 95% CI = 1.18-1.76, p < 0.0001), were more likely to seek malaria treatment in public hospitals. All RDT positive febrile residents were given anti-malarial by the CHVs, and RDT negatives were referred to the nearest health facility for further treatment. CONCLUSIONS The CHV's years of experience, education level, and age had a significant influence on their service quality. Understanding the qualifications of CHVs can assist healthcare systems and policymakers in designing effective interventions that assist CHVs in providing high-quality services to their communities.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- International Centre of Excellence for Malaria Research, Tom Mboya University, University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University, University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Collince J. Omondi
- International Centre of Excellence for Malaria Research, Tom Mboya University, University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA USA
| | - Chloe Wang
- Program in Public Health, University of California Irvine, Irvine, CA USA
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University, University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Andew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- Program in Public Health, University of California Irvine, Irvine, CA USA
| | - James Kazura
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University, University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA USA
| |
Collapse
|
25
|
Namountougou M, Kientega M, Kaboré PDA, Soma DD, Pare Toe L, Sawadogo JME, Birba WJ, Gnankiné O, Dabiré KR, Okumu F, Diabaté A. Residual Malaria Transmission: magnitude and drivers of persistent Plasmodium infections despite high coverage of control interventions in Burkina Faso, West Africa. Acta Trop 2023; 242:106913. [PMID: 36997012 DOI: 10.1016/j.actatropica.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
This study collected baseline data on malaria vectors to characterize the drivers and the factors of persistent malaria transmission in two villages in the western part of Burkina Faso. Mosquitoes were collected in each village using the Human landing catch and pyrethrum spray catch and identified using the morphological keys. Molecular analyses were performed for the identification of An. gambiae complex species, the detection of Plasmodium infection and kdr-995F mutation. Anopheles mosquito larvae were also collected in the same villages, reared to adult's stage for the WHO tube and cone tests performing. The physical integrity of the LLINs already used by people in each village was assessed using the proportional hole index (pHI). An. gambiae s.l. was the main malaria vector accounting for 79.82% (5560/6965) of all collected mosquitoes. The biting pattern of An. gambiae s.l. was almost constant during the survey with an early aggressiveness before 8 p.m. and later biting activity after 6 a.m. The EIR varied from 0.13 to 2.55 infected bites per human per night (average: 1.03 infected bites per human per night). An. gambiae s.l. populations were full susceptible to Chlorpyrifos-methyl (0.4%) and Malathion (5%) with high kdr-995F mutation frequencies (>0.8). The physical integrity assessment showed high proportion of good nets in Santidougou compared to those collected in Kimidougou. This study highlighted a persistence of malaria transmission despite the intense use of vector control tools as LLINs and IRS by correlating mosquito biting time and human behavior. It provided a baseline guide for the monitoring of the residual malaria transmission in sub-Saharan Africa and encouraging the development of new alternative strategies to support the current malaria control tools.
Collapse
|
26
|
Salomé G, Riddin M, Braack L. Species Composition, Seasonal Abundance, and Biting Behavior of Malaria Vectors in Rural Conhane Village, Southern Mozambique. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3597. [PMID: 36834293 PMCID: PMC9966379 DOI: 10.3390/ijerph20043597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Malaria vector surveillance provides important data to inform the effective planning of vector control interventions at a local level. The aim of this study was to determine the species diversity and abundance, biting activity, and Plasmodium infectivity of Anopheles mosquitoes from a rural village in southern Mozambique. Human landing catches were performed monthly between December 2020 and August 2021. All collected Anopheles were identified to the species level and tested for the presence of malaria parasites. Eight Anopheles species were identified among the 1802 collected anophelines. Anopheles gambiae sensu lato (s.l.) were the most abundant (51.9%) and were represented by Anopheles quadriannulatus and Anopheles arabiensis. Anopheles funestus s.l. represented 4.5%. The biting activity of An. arabiensis was more pronounced early in the evening and outdoors, whereas that of An. funestus sensu stricto (s.s.) was more intense late in the night, with no significant differences in location. One An. funestus s.s. and one An. arabiensis, both collected outdoors, were infected with Plasmodium falciparum. The overall entomologic inoculation rate was estimated at 0.015 infective bites per person per night. The significant outdoor and early evening biting activity of An. arabiensis and An. funestus found in this village may negatively impact the effectiveness of current vector control interventions. Additional vector control tools that can target these mosquitoes are needed.
Collapse
Affiliation(s)
- Graça Salomé
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Department of Physiological Sciences, Faculty of Medicine, Eduardo Mondlane University, 702 Salvador Allende Ave., Maputo P.O. Box 257, Mozambique
| | - Megan Riddin
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Malaria Consortium, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavithi Rd, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
27
|
Eba K, Habtewold T, Asefa L, Degefa T, Yewhalaw D, Duchateau L. Effect of Ivermectin ® on survivorship and fertility of Anopheles arabiensis in Ethiopia: an in vitro study. Malar J 2023; 22:12. [PMID: 36624480 PMCID: PMC9830892 DOI: 10.1186/s12936-023-04440-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Innovative vector control tools are needed to counteract insecticide resistance and residual malaria transmission. One of such innovative methods is an ivermectin (IVM) treatment to reduce vector survival. In this study, a laboratory experiment was conducted to investigate the effect of ivermectin on survivorship, fertility and egg hatchability rate of Anopheles arabiensis in Ethiopia. METHODS An in vitro experiment was conducted using 3-5 days old An. arabiensis adults from a colony maintained at insectary of Tropical and Infectious Diseases Research Center, Jimma University (laboratory population) and Anopheles mosquitoes reared from larvae collected from natural mosquito breeding sites (wild population). The mosquitoes were allowed to feed on cattle blood treated with different doses of ivermectin (0 ng/ml, 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml and 80 ng/ml). During each feeding experiment, the mosquitoes were held in cages and blood-fed using a Hemotek feeder. Mortality and egg production were then recorded daily for up to 9 days. Time to death was analysed by a Cox frailty model with replicate as frailty term and source of mosquito (wild versus laboratory), treatment type (ivermectin vs control) and their interaction as categorical fixed effects. Kaplan Meier curves were plotted separately for wild and laboratory populations for a visual interpretation of mosquito survival as a function of treatment. RESULTS Both mosquito source and treatment had a significant effect on survival (P < 0.001), but their interaction was not significant (P = 0.197). Compared to the controls, the death hazard of An. arabiensis that fed on ivermectin-treated blood was 2.3, 3.5, 6.5, 11.5 and 17.9 times that of the control for the 5 ng/ml, 10 ng/ml, 20 ng/ml, 40 ng/ml, and 80 ng/ml dose, respectively. With respect to the number of hatched larvae, hatched pupae and emerged adults per fed mosquitoes, a significant difference was found between the control and the 5 ng/ml dose group (P < 0.001). The number of hatched larvae and pupae, and emerged adults decreased further for the 10 ng/ml dose group and falls to zero for the higher doses. CONCLUSION Treating cattle blood with ivermectin reduced mosquito survival, fertility, egg hatchability, larval development and adult emergence of An. arabiensis in all tested concentrations of ivermectin in both the wild and laboratory populations. Thus, ivermectin application in cattle could be used as a supplementary vector control method to tackle residual malaria transmission and ultimately achieve malaria elimination in Ethiopia.
Collapse
Affiliation(s)
- Kasahun Eba
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Tibebu Habtewold
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Lechisa Asefa
- grid.411903.e0000 0001 2034 9160Department of Environmental Health Science and Technology, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.472427.00000 0004 4901 9087Department of Environmental Health Sciences, Bule Hora University, P.O. Box 144, Bule Hora, Ethiopia
| | - Teshome Degefa
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia ,grid.411903.e0000 0001 2034 9160Tropical and Infectious Diseases Research Center, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Luc Duchateau
- grid.5342.00000 0001 2069 7798Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Katusi GC, Hermy MRG, Makayula SM, Ignell R, Govella NJ, Hill SR, Mnyone LL. Seasonal variation in abundance and blood meal sources of primary and secondary malaria vectors within Kilombero Valley, Southern Tanzania. Parasit Vectors 2022; 15:479. [PMID: 36539892 PMCID: PMC9768911 DOI: 10.1186/s13071-022-05586-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Existing control tools have significantly reduced malaria over the past two decades. However, progress has been stalled due to increased resistance in primary vectors and the increasing role of secondary vectors. This study aimed to investigate the impact of seasonal change on primary and secondary vector abundance and host preference. Understanding the impact of seasonal dynamics of primary and secondary vectors on disease transmission will inform effective strategies for vector management and control. METHODS Vector abundance was measured through longitudinal collection of mosquitoes, conducted monthly during the wet and dry seasons, in Sagamaganga, a village in the Kilombero Valley, Tanzania. Mosquitoes were collected indoors using CDC light traps and backpack aspirators, and outdoors using resting buckets baited with cattle urine. In addition, a direct measure of host preference was taken monthly using human- and cattle-baited mosquito electrocuting traps. A host census was conducted to provide an indirect measure of host preference together with monthly blood meal source analysis. All collected mosquitoes were assayed for Plasmodium sporozoites. RESULTS A total of 2828 anophelines were collected, of which 78.5% and 21.4%, were primary and secondary vectors, respectively. The abundance of the primary vectors, Anopheles arabiensis and Anopheles funestus, and of the secondary vectors varied seasonally. Indirect measures of host preference indicated that all vectors varied blood meal choice seasonally, with the direct measure confirming this for An. arabiensis. All anopheline mosquitoes tested negative for sporozoites. CONCLUSIONS At the study location, the abundance of both primary and secondary vectors changed seasonally. Indirect and direct measures of host preference demonstrated that An. arabiensis varied from being zoophilic to being more opportunistic during the wet and dry seasons. A similar trend was observed for the other vectors.
Collapse
Affiliation(s)
- Godfrey C. Katusi
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.11887.370000 0000 9428 8105Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Marie R. G. Hermy
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Samwely M. Makayula
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Nicodem J. Govella
- grid.414543.30000 0000 9144 642XDepartment of Environmental Health and Ecological Sciences, Ifakara Health Institute, Off Mlabani Passage, Ifakara, P.O. Box 53, Morogoro, Tanzania ,grid.451346.10000 0004 0468 1595School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Sharon R. Hill
- grid.6341.00000 0000 8578 2742Disease Vector Group, Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Ladslaus L. Mnyone
- grid.11887.370000 0000 9428 8105Pest Management Centre, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| |
Collapse
|
29
|
Abong’o B, Gimnig JE, Omoke D, Ochomo E, Walker ED. Screening eaves of houses reduces indoor mosquito density in rural, western Kenya. Malar J 2022; 21:377. [PMID: 36494664 PMCID: PMC9733111 DOI: 10.1186/s12936-022-04397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the scale-up of insecticide-treated nets and indoor residual spraying, the bulk of malaria transmission in western Kenya still occurs indoors, late at night. House improvement is a potential long-term solution to further reduce malaria transmission in the region. METHODS The impact of eave screening on mosquito densities was evaluated in two rural villages in western Kenya. One-hundred-and-twenty pairs of structurally similar, neighbouring houses were used in the study. In each pair, one house was randomly selected to receive eave screening at the beginning of the study while the other remained unscreened until the end of the sampling period. Mosquito sampling was performed monthly by motorized aspiration method for 4 months. The collected mosquitoes were analysed for species identification. RESULTS Compared to unscreened houses, significantly fewer female Anopheles funestus (RR = 0.40, 95% CI 0.29-0.55), Anopheles gambiae Complex (RR = 0.46, 95% CI 0.34-0.62) and Culex species (RR = 0.53, 95% CI 0.45-0.61) were collected in screened houses. No significant differences in the densities of the mosquitoes were detected in outdoor collections. Significantly fewer Anopheles funestus were collected indoors from houses with painted walls (RR = 0.05, 95% CI 0.01-0.38) while cooking in the house was associated with significantly lower numbers of Anopheles gambiae Complex indoors (RR = 0.60, 95% CI 0.45-0.79). Nearly all house owners (99.6%) wanted their houses permanently screened, including 97.7% that indicated a willingness to use their own resources. However, 99.2% required training on house screening. The cost of screening a single house was estimated at KES6,162.38 (US$61.62). CONCLUSION Simple house modification by eave screening has the potential to reduce the indoor occurrence of both Anopheles and Culex mosquito species. Community acceptance was very high although education and mobilization may be needed for community uptake of house modification for vector control. Intersectoral collaboration and favourable government policies on housing are important links towards the adoption of house improvements for malaria control.
Collapse
Affiliation(s)
- Bernard Abong’o
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - John E. Gimnig
- grid.416738.f0000 0001 2163 0069Centers for Disease Control and Prevention, Division of Parasitic Diseases, Atlanta, GA 30341 USA
| | - Diana Omoke
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Eric Ochomo
- grid.33058.3d0000 0001 0155 5938Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
| | - Edward D. Walker
- grid.17088.360000 0001 2150 1785Michigan State University, 6169 Biomedical Physical Sciences Building, East Lansing, MI 48824 USA
| |
Collapse
|
30
|
Ondeto BM, Wang X, Atieli H, Orondo PW, Ochwedo KO, Omondi CJ, Otambo WO, Zhong D, Zhou G, Lee MC, Muriu SM, Odongo DO, Ochanda H, Kazura J, Githeko AK, Yan G. Malaria vector bionomics and transmission in irrigated and non-irrigated sites in western Kenya. Parasitol Res 2022; 121:3529-3545. [PMID: 36203064 DOI: 10.1007/s00436-022-07678-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 10/10/2022]
Abstract
Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.
Collapse
Affiliation(s)
- Benyl M Ondeto
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya. .,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Harrysone Atieli
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Pauline Winnie Orondo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Kevin O Ochwedo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Collince J Omondi
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya.,Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya
| | - Wilfred O Otambo
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Department of Zoology, Maseno University, Maseno, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | - Simon M Muriu
- Department of Biological Sciences, Pwani University, Kilifi, 80108, Kenya
| | - David O Odongo
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - Horace Ochanda
- Department of Biology, University of Nairobi, Nairobi, 00100, Kenya
| | - James Kazura
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew K Githeko
- Sub-Saharan Africa International Center of Excellence for Malaria Research, Tom Mboya University, Homa Bay, 40300, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, 40100, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
31
|
Yan G, Lee MC, Zhou G, Jiang AL, Degefa T, Zhong D, Wang X, Hemming-Schroeder E, Mukabana WR, Dent AE, King CL, Hsu K, Beeson J, Githure JI, Atieli H, Githeko AK, Yewhalaw D, Kazura JW. Impact of Environmental Modifications on the Ecology, Epidemiology, and Pathogenesis of Plasmodium falciparum and Plasmodium vivax Malaria in East Africa. Am J Trop Med Hyg 2022; 107:5-13. [PMID: 36228918 PMCID: PMC9662213 DOI: 10.4269/ajtmh.21-1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Food insecurity, recurrent famine, and poverty threaten the health of millions of African residents. Construction of dams and rural irrigation schemes is key to solving these problems. The sub-Saharan Africa International Center of Excellence for Malaria Research addresses major knowledge gaps and challenges in Plasmodium falciparum and Plasmodium vivax malaria control and elimination in malaria-endemic areas of Kenya and Ethiopia where major investments in water resource development are taking place. This article highlights progress of the International Center of Excellence for Malaria Research in malaria vector ecology and behavior, epidemiology, and pathogenesis since its inception in 2017. Studies conducted in four field sites in Kenya and Ethiopia show that dams and irrigation increased the abundance, stability, and productivity of larval habitats, resulting in increased malaria transmission and a greater disease burden. These field studies, together with hydrological and malaria transmission modeling, enhance the ability to predict the impact of water resource development projects on vector larval ecology and malaria risks, thereby facilitating the development of optimal water and environmental management practices in the context of malaria control efforts. Intersectoral collaborations and community engagement are crucial to develop and implement cost-effective malaria control strategies that meet food security needs while controlling malaria burden in local communities.
Collapse
Affiliation(s)
- Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California;,Address correspondence to Guiyun Yan, Program in Public Health, Room 3038, Hewitt Hall, University of California, Irvine, CA 92697-4050, E-mail: or James W. Kazura, Center for Global Health & Diseases, Case Western Reserve University, 2109 Adelbert Road Cleveland, OH 44106, E-mail:
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Ai-Ling Jiang
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - Teshome Degefa
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, California
| | | | | | - Arlene E. Dent
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Christopher L. King
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Kuolin Hsu
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - James Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia;,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - James W. Kazura
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio;,Address correspondence to Guiyun Yan, Program in Public Health, Room 3038, Hewitt Hall, University of California, Irvine, CA 92697-4050, E-mail: or James W. Kazura, Center for Global Health & Diseases, Case Western Reserve University, 2109 Adelbert Road Cleveland, OH 44106, E-mail:
| |
Collapse
|
32
|
Githure JI, Yewhalaw D, Atieli H, Hemming-Schroeder E, Lee MC, Wang X, Zhou G, Zhong D, King CL, Dent A, Mukabana WR, Degefa T, Hsu K, Githeko AK, Okomo G, Dayo L, Tushune K, Omondi CO, Taffese HS, Kazura JW, Yan G. Enhancing Malaria Research, Surveillance, and Control in Endemic Areas of Kenya and Ethiopia. Am J Trop Med Hyg 2022; 107:14-20. [PMID: 36228905 PMCID: PMC9662210 DOI: 10.4269/ajtmh.21-1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria control programs in Africa encounter daunting challenges that hinder progressive steps toward elimination of the disease. These challenges include widespread insecticide resistance in mosquito vectors, increasing outdoor malaria transmission, lack of vector surveillance and control tools suitable for outdoor biting vectors, weakness in malaria surveillance, and an inadequate number of skilled healthcare personnel. Ecological and epidemiological changes induced by environmental modifications resulting from water resource development projects pose additional barriers to malaria control. Cognizant of these challenges, our International Center of Excellence for Malaria Research (ICEMR) works in close collaboration with relevant government ministries and agencies to align its research efforts with the objectives and strategies of the national malaria control and elimination programs for the benefit of local communities. Our overall goal is to assess the impact of water resource development projects, shifting agricultural practices, and vector interventions on Plasmodium falciparum and P. vivax malaria in Kenya and Ethiopia. From 2017 to date, the ICEMR has advanced knowledge of malaria epidemiology, transmission, immunology, and pathogenesis, and developed tools to enhance vector surveillance and control, improved clinical malaria surveillance and diagnostic methods, and strengthened the capacity of local healthcare providers. Research findings from the ICEMR will inform health policy and strategic planning by ministries of health in their quest to sustain malaria control and achieve elimination goals.
Collapse
Affiliation(s)
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia;,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Christopher L. King
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Arlene Dent
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | | | - Teshome Degefa
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kuolin Hsu
- Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, California
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Gordon Okomo
- Ministry of Health, Homa Bay County, Homa Bay, Kenya
| | - Lilyana Dayo
- Ministry of Health, Kisumu County, Kisumu, Kenya
| | - Kora Tushune
- Department of Health Management and Policy, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | | | - Hiwot S. Taffese
- National Malaria Program, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - James W. Kazura
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio;,Address correspondence to Guiyun Yan, Program in Public Health, University of California at Irvine, Irvine, CA, E-mail: or James Kazura, Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH, E-mail:
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California;,Address correspondence to Guiyun Yan, Program in Public Health, University of California at Irvine, Irvine, CA, E-mail: or James Kazura, Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH, E-mail:
| |
Collapse
|
33
|
Otambo WO, Onyango PO, Wang C, Olumeh J, Ondeto BM, Lee MC, Atieli H, Githeko AK, Kazura J, Zhong D, Zhou G, Githure J, Ouma C, Yan G. Influence of landscape heterogeneity on entomological and parasitological indices of malaria in Kisumu, Western Kenya. Parasit Vectors 2022; 15:340. [PMID: 36167549 PMCID: PMC9516797 DOI: 10.1186/s13071-022-05447-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Identification and characterization of larval habitats, documentation of Anopheles spp. composition and abundance, and Plasmodium spp. infection burden are critical components of integrated vector management. The present study aimed to investigate the effect of landscape heterogeneity on entomological and parasitological indices of malaria in western Kenya. Methods A cross-sectional entomological and parasitological survey was conducted along an altitudinal transect in three eco-epidemiological zones: lakeshore along the lakeside, hillside, and highland plateau during the wet and dry seasons in 2020 in Kisumu County, Kenya. Larval habitats for Anopheles mosquitoes were identified and characterized. Adult mosquitoes were sampled using pyrethrum spray catches (PSC). Finger prick blood samples were taken from residents and examined for malaria parasites by real-time PCR (RT-PCR). Results Increased risk of Plasmodium falciparum infection was associated with residency in the lakeshore zone, school-age children, rainy season, and no ITNs (χ2 = 41.201, df = 9, P < 0.0001). Similarly, lakeshore zone and the rainy season significantly increased Anopheles spp. abundance. However, house structures such as wall type and whether the eave spaces were closed or open, as well as the use of ITNs, did not affect Anopheles spp. densities in the homes (χ2 = 38.695, df = 7, P < 0.0001). Anopheles funestus (41.8%) and An. arabiensis (29.1%) were the most abundant vectors in all zones. Sporozoite prevalence was 5.6% and 3.2% in the two species respectively. The lakeshore zone had the highest sporozoite prevalence (4.4%, 7/160) and inoculation rates (135.2 infective bites/person/year). High larval densities were significantly associated with lakeshore zone and hillside zones, animal hoof prints and tire truck larval habitats, wetland and pasture land, and the wet season. The larval habitat types differed significantly across the landscape zones and seasonality (χ2 = 1453.044, df = 298, P < 0.0001). Conclusion The empirical evidence on the impact of landscape heterogeneity and seasonality on vector densities, parasite transmission, and Plasmodium infections in humans emphasizes the importance of tailoring specific adaptive environmental management interventions to specific landscape attributes to have a significant impact on transmission reduction. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05447-9.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya. .,International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.
| | | | - Chloe Wang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Julius Olumeh
- School of Natural and Environmental Science, Newcastle University, Newcastle, UK
| | - Benyl M Ondeto
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya.,Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James Kazura
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Centre for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College-University of California Irvine Joint Lab, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Forson AO, Hinne IA, Dhikrullahi SB, Sraku IK, Mohammed AR, Attah SK, Afrane YA. The resting behavior of malaria vectors in different ecological zones of Ghana and its implications for vector control. Parasit Vectors 2022; 15:246. [PMID: 35804461 PMCID: PMC9270803 DOI: 10.1186/s13071-022-05355-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa there is widespread use of long-lasting insecticidal nets and indoor residual spraying to help control the densities of malaria vectors and decrease the incidence of malaria. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of the increasing insecticide resistance of malaria vectors in sub-Saharan Africa. METHODS Indoor and outdoor resting anopheline mosquitoes were sampled during the dry and rainy seasons in five sites in three ecological zones [Sahel savannah (Kpalsogo, Pagaza, Libga); coastal savannah (Anyakpor); and forest (Konongo)]. Polymerase chain reaction-based molecular diagnostics were used to determine speciation, genotypes for knockdown resistance mutations (L1014S and L1014F) and the G119S ace1 mutation, specific host blood meal origins and sporozoite infection in the field-collected mosquitoes. RESULTS Anopheles gambiae sensu lato (s.l.) predominated (89.95%, n = 1718), followed by Anopheles rufipes (8.48%, n = 162) and Anopheles funestus s.l. (1.57%, n = 30). Sibling species of the Anopheles gambiae s.l. revealed Anopheles coluzzii accounted for 63% (95% confidence interval = 57.10-68.91) and 27% (95% confidence interval = 21.66-32.55) was Anopheles gambiae s. s.. The mean resting density of An. gambiae s.l. was higher outdoors (79.63%; 1368/1718) than indoors (20.37%; 350/1718) (Wilcoxon rank sum test, Z = - 4.815, P < 0.0001). The kdr west L1014F and the ace1 mutation frequencies were higher in indoor resting An. coluzzii and An. gambiae in the Sahel savannah sites than in the forest and coastal savannah sites. Overall, the blood meal analyses revealed that a larger proportion of the malaria vectors preferred feeding on humans (70.2%) than on animals (29.8%) in all of the sites. Sporozoites were only detected in indoor resting An. coluzzii from the Sahel savannah (5.0%) and forest (2.5%) zones. CONCLUSIONS This study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and the presence of malaria vectors indoors despite the use of long-lasting insecticidal nets and indoor residual spraying. Continuous monitoring of changes in the resting behavior of mosquitoes and the implementation of complementary malaria control interventions that target outdoor resting Anopheles mosquitoes are necessary in Ghana.
Collapse
Affiliation(s)
- Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A. Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Shittu B. Dhikrullahi
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
35
|
Namango IH, Marshall C, Saddler A, Ross A, Kaftan D, Tenywa F, Makungwa N, Odufuwa OG, Ligema G, Ngonyani H, Matanila I, Bharmal J, Moore J, Moore SJ, Hetzel MW. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) compared to the human landing catch (HLC) for measuring Anopheles biting in rural Tanzania. Malar J 2022; 21:181. [PMID: 35690745 PMCID: PMC9188237 DOI: 10.1186/s12936-022-04192-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vector mosquito biting intensity is an important measure to understand malaria transmission. Human landing catch (HLC) is an effective but labour-intensive, expensive, and potentially hazardous entomological surveillance tool. The Centres for Disease Control light trap (CDC-LT) and the human decoy trap (HDT) are exposure-free alternatives. This study compared the CDC-LT and HDT against HLC for measuring Anopheles biting in rural Tanzania and assessed their suitability as HLC proxies. Methods Indoor mosquito surveys using HLC and CDC-LT and outdoor surveys using HLC and HDT were conducted in 2017 and in 2019 in Ulanga, Tanzania in 19 villages, with one trap/house/night. Species composition, sporozoite rates and density/trap/night were compared. Aggregating the data by village and month, the Bland–Altman approach was used to assess agreement between trap types. Results Overall, 66,807 Anopheles funestus and 14,606 Anopheles arabiensis adult females were caught with 6,013 CDC-LT, 339 indoor-HLC, 136 HDT and 195 outdoor-HLC collections. Indoors, CDC-LT caught fewer An. arabiensis (Adjusted rate ratio [Adj.RR] = 0.35, 95% confidence interval [CI]: 0.27–0.46, p < 0.001) and An. funestus (Adj.RR = 0.63, 95%CI: 0.51–0.79, p < 0.001) than HLC per trap/night. Outdoors, HDT caught fewer An. arabiensis (Adj.RR = 0.04, 95%CI: 0.01–0.14, p < 0.001) and An. funestus (Adj.RR = 0.10, 95%CI: 0.07–0.15, p < 0.001) than HLC. The bias and variability in number of mosquitoes caught by the different traps were dependent on mosquito densities. The relative efficacies of both CDC-LT and HDT in comparison to HLC declined with increased mosquito abundance. The variability in the ratios was substantial for low HLC counts and decreased as mosquito abundance increased. The numbers of sporozoite positive mosquitoes were low for all traps. Conclusions CDC-LT can be suitable for comparing mosquito populations between study arms or over time if accuracy in the absolute biting rate, compared to HLC, is not required. CDC-LT is useful for estimating sporozoite rates because large numbers of traps can be deployed to collect adequate mosquito samples. The present design of the HDT is not amenable for use in large-scale entomological surveys. Use of HLC remains important for estimating human exposure to mosquitoes as part of estimating the entomological inoculation rate (EIR). Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04192-9.
Collapse
Affiliation(s)
- Isaac Haggai Namango
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland. .,University of Basel, Basel, Switzerland. .,Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.
| | - Carly Marshall
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Adam Saddler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.,Telethon Kids Institute, Perth, Australia
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - David Kaftan
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.,New York University Grossman School of Medicine, New York, NY, USA
| | - Frank Tenywa
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Noely Makungwa
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland.,Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.,London School of Hygiene and Tropical Medicine, London, UK
| | - Godfrey Ligema
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Hassan Ngonyani
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Isaya Matanila
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jameel Bharmal
- Innovative Vector Control Consortium, Dar es Salaam, Tanzania
| | - Jason Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland.,Vector Control Product Testing Unit, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Otambo WO, Omondi CJ, Ochwedo KO, Onyango PO, Atieli H, Lee MC, Wang C, Zhou G, Githeko AK, Githure J, Ouma C, Yan G, Kazura J. Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya. PLoS One 2022; 17:e0268463. [PMID: 35576208 PMCID: PMC9109926 DOI: 10.1371/journal.pone.0268463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Persons with submicroscopic malaria infection are a major reservoir of gametocytes that sustain malaria transmission in sub-Saharan Africa. Despite recent decreases in the national malaria burden in Kenya due to vector control interventions, malaria transmission continues to be high in western regions of the country bordering Lake Victoria. The objective of this study was to advance knowledge of the topographical, demographic and behavioral risk factors associated with submicroscopic malaria infection in the Lake Victoria basin in Kisumu County. METHODS Cross-sectional community surveys for malaria infection were undertaken in three eco-epidemiologically distinct zones in Nyakach sub-County, Kisumu. Adjacent regions were topologically characterized as lakeshore, hillside and highland plateau. Surveys were conducted during the 2019 and 2020 wet and dry seasons. Finger prick blood smears and dry blood spots (DBS) on filter paper were collected from 1,777 healthy volunteers for microscopic inspection and real time-PCR (RT-PCR) diagnosis of Plasmodium infection. Persons who were PCR positive but blood smear negative were considered to harbor submicroscopic infections. Topographical, demographic and behavioral risk factors were correlated with community prevalence of submicroscopic infections. RESULTS Out of a total of 1,777 blood samples collected, 14.2% (253/1,777) were diagnosed as submicroscopic infections. Blood smear microscopy and RT-PCR, respectively, detected 3.7% (66/1,777) and 18% (319/1,777) infections. Blood smears results were exclusively positive for P. falciparum, whereas RT-PCR also detected P. malariae and P. ovale mono- and co-infections. Submicroscopic infection prevalence was associated with topographical variation (χ2 = 39.344, df = 2, p<0.0001). The highest prevalence was observed in the lakeshore zone (20.6%, n = 622) followed by the hillside (13.6%, n = 595) and highland plateau zones (7.9%, n = 560). Infection prevalence varied significantly according to season (χ2 = 17.374, df = 3, p<0.0001). The highest prevalence was observed in residents of the lakeshore zone in the 2019 dry season (29.9%, n = 167) and 2020 and 2019 rainy seasons (21.5%, n = 144 and 18.1%, n = 155, respectively). In both the rainy and dry seasons the likelihood of submicroscopic infection was higher in the lakeshore (AOR: 2.71, 95% CI = 1.85-3.95; p<0.0001) and hillside (AOR: 1.74, 95% CI = 1.17-2.61, p = 0.007) than in the highland plateau zones. Residence in the lakeshore zone (p<0.0001), male sex (p = 0.025), school age (p = 0.002), and living in mud houses (p = 0.044) increased the risk of submicroscopic malaria infection. Bed net use (p = 0.112) and occupation (p = 0.116) were not associated with submicroscopic infection prevalence. CONCLUSION Topographic features of the local landscape and seasonality are major correlates of submicroscopic malaria infection in the Lake Victoria area of western Kenya. Diagnostic tests more sensitive than blood smear microscopy will allow for monitoring and targeting geographic sites where additional vector interventions are needed to reduce malaria transmission.
Collapse
Affiliation(s)
- Wilfred Ouma Otambo
- Department of Zoology, Maseno University, Kisumu, Kenya
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J. Omondi
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Kevin O. Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Harrysone Atieli
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Chloe Wang
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Guofa Zhou
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- International Centre of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Kisumu, Kenya
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, United States of America
| | - James Kazura
- Centre for Global Health & Diseases, Case Western University Reserve, Cleveland, Ohio, United States of America
| |
Collapse
|
37
|
Kinya F, Mutero CM, Sang R, Owino EA, Rotich G, Ogola EO, Wondji CS, Torto B, Tchouassi DP. Outdoor malaria vector species profile in dryland ecosystems of Kenya. Sci Rep 2022; 12:7131. [PMID: 35505087 PMCID: PMC9065082 DOI: 10.1038/s41598-022-11333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Outdoor biting by anopheline mosquitoes is one of the contributors to residual malaria transmission, but the profile of vectors driving this phenomenon is not well understood. Here, we studied the bionomics and genetically characterized populations of An. gambiae and An. funestus complexes trapped outdoors in three selected dryland areas including Kerio Valley, Nguruman and Rabai in Kenya. We observed a higher abundance of Anopheles funestus group members (n = 639, 90.6%) compared to those of the An. gambiae complex (n = 66, 9.4%) with An. longipalpis C as the dominant vector species with a Plasmodium falciparum sporozoite rate (Pfsp) of 5.2% (19/362). The known malaria vectors including An. funestus s.s. (8.7%, 2/23), An. gambiae (14.3%, 2/14), An. rivulorum (14.1%, 9/64), An. arabiensis (1.9%, 1/52) occurred in low densities and displayed high Pfsp rates, which varied with the site. Additionally, six cryptic species found associated with the An. funestus group harbored Pf sporozoites (cumulative Pfsp rate = 7.2%, 13/181). We detected low frequency of resistant 119F-GSTe2 alleles in An. funestus s.s. (15.6%) and An. longipalpis C (3.1%) in Kerio Valley only. Evidence of outdoor activity, emergence of novel and divergent vectors and detection of mutations conferring metabolic resistance to pyrethroid/DDT could contribute to residual malaria transmission posing a threat to effective malaria control.
Collapse
Affiliation(s)
- Fiona Kinya
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,University of Nairobi, P.O. Box 30197-30100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Eunice A Owino
- University of Nairobi, P.O. Box 30197-30100, Nairobi, Kenya
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Edwin O Ogola
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.,LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 1359, Yaoundé, Cameroon
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.,Department of Zoology and Entomology, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
38
|
Chi PC, Owino EA, Jao I, Bejon P, Kapulu M, Marsh V, Kamuya D. Ethical considerations around volunteer payments in a malaria human infection study in Kenya: an embedded empirical ethics study. BMC Med Ethics 2022; 23:46. [PMID: 35443642 PMCID: PMC9019790 DOI: 10.1186/s12910-022-00783-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Human Infection Studies (HIS) have emerged as an important research approach with the potential to fast track the global development of vaccines and treatments for infectious diseases, including in low resource settings. Given the high level of burdens involved in many HIS, particularly prolonged residency and biological sampling requirements, it can be challenging to identify levels of study payments that provide adequate compensation but avoid 'undue' levels of inducement to participate. Through this embedded ethics study, involving 97 healthy volunteers and other research stakeholders in a malaria HIS programme in Kenya, and using in-depth interviews, focus group discussions and observations during and after a malaria HIS, we give a grounded account of ethical issues emerging in relation to study payments in this setting. While careful community, national, international scientific and ethics review processes meant that risks of serious harm were highly unlikely, the levels of motivation to join HIS seen could raise concerns about study payments being too high. Particular value was placed on the reliability, rather than level, of study payment in this setting, where subsistence livelihoods are common. Study volunteers were generally clear about the study aims at the point of recruitment, and this knowledge was retained over a year later, although most reported experiencing more burdens than anticipated at enrolment. Strict study screening procedures, regular clinical and laboratory monitoring of volunteers, with prompt treatment with antimalarial at predetermined endpoints suggested that the risks of serious harm were highly unlikely. Ethical concerns emerged in relation to volunteers' attempts to conceal symptoms, hoping to prolong residency periods and increase study payments; and volunteers making decisions that compromised important family relationships and personal values. Our findings support an interpretation that, although study volunteers were keen to join the study to access cash payments, they also paid attention to other features of the study and the general clinical research landscape, including levels of risk associated with study participation. Overall, our analysis shows that the ethical concerns emerging from the study payments can be addressed through practical measures, hinged on reducing burdens and strengthening communication, raising important issues for research policy and planning.
Collapse
Affiliation(s)
- Primus Che Chi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Esther Awuor Owino
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Irene Jao
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University Oxford, Oxford, UK
| | - Melissa Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University Oxford, Oxford, UK
| | - Vicki Marsh
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University Oxford, Oxford, UK
| | - Dorcas Kamuya
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University Oxford, Oxford, UK
| |
Collapse
|
39
|
Machani MG, Ochomo E, Amimo F, Mukabana WR, Githeko AK, Yan G, Afrane YA. Behavioral responses of pyrethroid resistant and susceptible Anopheles gambiae mosquitoes to insecticide treated bed net. PLoS One 2022; 17:e0266420. [PMID: 35390050 PMCID: PMC8989192 DOI: 10.1371/journal.pone.0266420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. However, with increasing insecticide resistance little is known about how physiologically resistant malaria vectors behave around a human-occupied bed net, despite their importance in malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents host-seeking mosquitoes from reaching the human host baiting the trap. Methods Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes aged 3–5 days old were used in this study. The laboratory-bred mosquitoes were color-marked with fluorescent powders and released inside a semi-field environment where a human subject slept inside a bednet trap erected in a traditional African hut. The netting panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mosquitoes were released outside the hut. Only female mosquitoes were used. A window exit trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mosquitoes were also used in these experiments. Results The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ± 1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated (mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3) (OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a treated bed net was present compared to the susceptible mosquitoes. The number of susceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6 ± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7–2.9]; P<0.001). Conclusion The results show that deltamethrin-treatment of netting panels inside the bednet trap did not alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On the contrary, susceptible females exited the hut and remained outdoors when a treated net was used. However, further investigations of the behavior of resistant mosquitoes under natural conditions should be undertaken to confirm these observations and improve the current intervention which are threatened by insecticide resistance and altered vector behavior.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
- * E-mail: (MGM); (YAA)
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Andrew K. Githeko
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (MGM); (YAA)
| |
Collapse
|
40
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2022. [DOI: 10.12688/aasopenres.13317.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed, attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
|
41
|
Nalinya S, Musoke D, Deane K. Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low- and middle-income countries: a scoping review. Malar J 2022; 21:31. [PMID: 35109848 PMCID: PMC8812253 DOI: 10.1186/s12936-022-04052-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Significant progress in malaria prevention during the past two decades has prompted increasing global dialogue on malaria elimination. Recent reviews on malaria strategies have focused mainly on long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), with little emphasis on other prevention methods. This article is a scoping review of literature on malaria prevention methods beyond LLINs and IRS in low- and middle-income countries (LMICs). METHODS This scoping review found articles published between from 1994 to 2020. Studies were obtained from a search of the PubMed, the Cochrane Library and Social Science abstracts. Grey literature and manual search of secondary references was also done. The search strategy included all study designs but limited only to English. Three independent reviewers performed the selection and characterization of articles, and the data collected were synthesized qualitatively. RESULTS A total of 10,112 studies were identified among which 31 met the inclusion criteria. The results were grouped by the 3 emerging themes of: housing design; mosquito repellents; and integrated vector control. Housing design strategies included closing eves, screening of houses including windows, doors and ceilings, while mosquito repellents were mainly spatial repellents, use of repellent plants, and use of plant-based oils. Integrated vector control included larvae source management. Evidence consistently shows that improving housing design reduced mosquito entry and malaria prevalence. Spatial repellents also showed promising results in field experiments, while evidence on repellent plants is limited and still emerging. Recent literature shows that IVM has been largely ignored in recent years in many LMICs. Some malaria prevention methods such as spatial repellents and IVM are shown to have the potential to target both indoor and outdoor transmission of malaria, which are both important aspects to consider to achieve malaria elimination in LMICs. CONCLUSION The scoping review shows that other malaria prevention strategies beyond LLINs and IRS have increasingly become important in LMICs. These methods have a significant role in contributing to malaria elimination in endemic countries if they are adequately promoted alongside other conventional approaches.
Collapse
Affiliation(s)
- Sarah Nalinya
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Musoke
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
42
|
Cross DE, Healey AJE, McKeown NJ, Thomas CJ, Macarie NA, Siaziyu V, Singini D, Liywalii F, Sakala J, Silumesii A, Shaw PW. Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain. Sci Rep 2022; 12:240. [PMID: 34997149 PMCID: PMC8742069 DOI: 10.1038/s41598-021-04314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.
Collapse
Affiliation(s)
- Dónall Eoin Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Amy J E Healey
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Christopher James Thomas
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Nicolae Adrian Macarie
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Vincent Siaziyu
- Limulunga District Health Office, P.O. Box 910022, Mongu, Zambia
| | - Douglas Singini
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Francis Liywalii
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | - Jacob Sakala
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | | | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| |
Collapse
|
43
|
Makunin A, Korlević P, Park N, Goodwin S, Waterhouse RM, von Wyschetzki K, Jacob CG, Davies R, Kwiatkowski D, St Laurent B, Ayala D, Lawniczak MKN. A targeted amplicon sequencing panel to simultaneously identify mosquito species and Plasmodium presence across the entire Anopheles genus. Mol Ecol Resour 2022; 22:28-44. [PMID: 34053186 PMCID: PMC7612955 DOI: 10.1111/1755-0998.13436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/19/2021] [Indexed: 01/04/2023]
Abstract
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel's power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.
Collapse
Affiliation(s)
- Alex Makunin
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Petra Korlević
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Naomi Park
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- CIRMF, Franceville, Gabon
| | | |
Collapse
|
44
|
Ochwedo KO, Omondi CJ, Magomere EO, Olumeh JO, Debrah I, Onyango SA, Orondo PW, Ondeto BM, Atieli HE, Ogolla SO, Githure J, Otieno ACA, Githeko AK, Kazura JW, Mukabana WR, Guiyan Y. Hyper-prevalence of submicroscopic Plasmodium falciparum infections in a rural area of western Kenya with declining malaria cases. Malar J 2021; 20:472. [PMID: 34930283 PMCID: PMC8685826 DOI: 10.1186/s12936-021-04012-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The gold standard for diagnosing Plasmodium falciparum infection is microscopic examination of Giemsa-stained peripheral blood smears. The effectiveness of this procedure for infection surveillance and malaria control may be limited by a relatively high parasitaemia detection threshold. Persons with microscopically undetectable infections may go untreated, contributing to ongoing transmission to mosquito vectors. The purpose of this study was to determine the magnitude and determinants of undiagnosed submicroscopic P. falciparum infections in a rural area of western Kenya. METHODS A health facility-based survey was conducted, and 367 patients seeking treatment for symptoms consistent with uncomplicated malaria in Homa Bay County were enrolled. The frequency of submicroscopic P. falciparum infection was measured by comparing the prevalence of infection based on light microscopic inspection of thick blood smears versus real-time polymerase chain reaction (RT-PCR) targeting P. falciparum 18S rRNA gene. Long-lasting insecticidal net (LLIN) use, participation in nocturnal outdoor activities, and gender were considered as potential determinants of submicroscopic infections. RESULTS Microscopic inspection of blood smears was positive for asexual P. falciparum parasites in 14.7% (54/367) of cases. All of these samples were confirmed by RT-PCR. 35.8% (112/313) of blood smear negative cases were positive by RT-PCR, i.e., submicroscopic infection, resulting in an overall prevalence by RT-PCR alone of 45.2% compared to 14.7% for blood smear alone. Females had a higher prevalence of submicroscopic infections (35.6% or 72 out of 202 individuals, 95% CI 28.9-42.3) compared to males (24.2%, 40 of 165 individuals, 95% CI 17.6-30.8). The risk of submicroscopic infections in LLIN users was about half that of non-LLIN users (OR = 0.59). There was no difference in the prevalence of submicroscopic infections of study participants who were active in nocturnal outdoor activities versus those who were not active (OR = 0.91). Patients who participated in nocturnal outdoor activities and use LLINs while indoors had a slightly higher risk of submicroscopic infection than those who did not use LLINs (OR = 1.48). CONCLUSION Microscopic inspection of blood smears from persons with malaria symptoms for asexual stage P. falciparum should be supplemented by more sensitive diagnostic tests in order to reduce ongoing transmission of P. falciparum parasites to local mosquito vectors.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Edwin O. Magomere
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Julius O. Olumeh
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Isaiah Debrah
- West Africa Centre for Cell Biology of Infectious Pathogen, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Githure
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH USA
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Yan Guiyan
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| |
Collapse
|
45
|
Hamid-Adiamoh M, Nwakanma D, Sraku I, Amambua-Ngwa A, A. Afrane Y. Is outdoor-resting behaviour in malaria vectors consistent? Short report from northern Ghana. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13317.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Recent studies have observed vectors resting predominantly outdoors in settings where anti-vector tools are extensively deployed, attributed to selection pressure from use of control tools. This present study examined if the outdoor resting behaviour in the vector population is random or indicative of a consistent preference of one resting site over the other. Methods: Mark-release-recapture experiments were conducted with outdoor-resting Anopheles gambiae and An. funestus mosquitoes collected from two villages in northern Ghana during rainy and dry seasons. Mosquitoes were marked with fluorescent dyes and released indoors. The experiments were controlled with indoor-resting mosquitoes, which were marked and released outdoors. Species of all recaptured mosquitoes were identified and assessed for consistency in their resting behaviour. Results: A total of 4,460 outdoor-resting mosquitoes comprising An. gambiae sensu lato (s.l.) (2,636, 59%) and An. funestus complex (1,824, 41%) were marked and released. Overall, 31 (0.7%) mosquitoes were recaptured mostly from outdoor location comprising 25 (81%) An. gambiae s.l. and 6 (19%) An. funestus complex. Only 3 (10%) of the recaptured mosquitoes were found resting indoors where they were released. The majority of the outdoor-recaptured mosquitoes were An. arabiensis (11, 39%), followed by An. coluzzii (7, 25%); whereas all indoor-recaptured mosquitoes were An. coluzzii. For the control experiment, 324 indoor-resting mosquitoes constituting 313 (97%) An. gambiae s.l. and 11 (3%) An. funestus complex were marked and released. However, none of these was recaptured neither indoors nor outdoors. More mosquitoes were captured and recaptured during rainy season, but this was not statistically significant (Z=0.79, P=0.21). Conclusions: These results suggested the tendency for the mosquitoes to retain their outdoor-resting behaviour. Further investigations are required to ascertain if emerging preference for outdoor resting behaviour in malaria vector populations is consistent or a random occurrence.
Collapse
|
46
|
Ruiz-Castillo P, Rist C, Rabinovich R, Chaccour C. Insecticide-treated livestock: a potential One Health approach to malaria control in Africa. Trends Parasitol 2021; 38:112-123. [PMID: 34756820 DOI: 10.1016/j.pt.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022]
Abstract
New vector-control tools are urgently needed to reduce malaria in areas where there is significant transmission after deployment of indoor residual spraying (IRS) and insecticide treated nets. Insecticide-treated livestock (ITL) is a potential novel strategy by which zoophagic mosquitos are killed after feeding upon animals treated with an insecticide. Although there are several insecticide candidates in the pipeline with a wide efficacy range against mosquitos, additional field studies with epidemiological outcomes are required to test the impact of this intervention on malaria transmission. Insecticides under consideration have long been used in livestock to improve animal health and productivity, but each has food and environmental safety considerations. Therefore, moving ITL from a concept to implementation will require a One Health framework.
Collapse
Affiliation(s)
| | - Cassidy Rist
- Virginia Maryland College of Veterinary Medicine at Virginia Tech, Blacksburg, VA, USA
| | - Regina Rabinovich
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Nicholas K, Bernard G, Bryson N, Mukabane K, Kilongosi M, Ayuya S, Mulama DH. Abundance and Distribution of Malaria Vectors in Various Aquatic Habitats and Land Use Types in Kakamega County, Highlands of Western Kenya. Ethiop J Health Sci 2021; 31:247-256. [PMID: 34158776 PMCID: PMC8188073 DOI: 10.4314/ejhs.v31i2.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Management of malaria transmission relies heavily on vector control. Implementation and sustenance of effective control measures require regular monitoring of malaria vector occurrences, species abundance and distribution. The study assessed mosquito larval species composition, distribution and productivity in Kakamega County, western Kenya. Methods A cross-sectional survey of Anopheline larvae was conducted in various aquatic habitats and land use types in Kakamega County, highlands of western Kenya between the month of March and June 2019. Results One thousand, five hundred and seventy six aquatic habitats were sampled in various land use types. The mean densities of An. gambiae s.l (46.2), An. funestus (5.3), An. coustani (1.7), An. implexus (0.13) and An. squamosus (2.0) were observed in fish ponds, burrow pits, drainage ditches, and tire tracks, respectively. High mean densities of An. gambiae s.l was reported in farmland (20.4) while high mean abundance of An. funestus s.l (8.2) and An. coustani s.l (4.0) were observed in artificial forests. Conclusion The study revealed that the productivity of anopheles larvae varied across various habitat types and land use types. Therefore, treatment of potential breeding sites should be considered as an additional strategy for malaria vector control in Kakamega County, western Kenya.
Collapse
Affiliation(s)
- Kitungulu Nicholas
- School of Public Health & Community Development, Maseno University, Kenya.,School of Natural Sciences, Biological Sciences Department, Masinde Muliro University of Science & Technology, Kenya
| | - Guyah Bernard
- School of Public Health & Community Development, Maseno University, Kenya
| | - Ndenga Bryson
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kipcho Mukabane
- School of Natural Sciences, Biological Sciences Department, Masinde Muliro University of Science & Technology, Kenya
| | | | - Stephen Ayuya
- School of Natural Sciences, Biological Sciences Department, Masinde Muliro University of Science & Technology, Kenya
| | - David Hughes Mulama
- School of Natural Sciences, Biological Sciences Department, Masinde Muliro University of Science & Technology, Kenya
| |
Collapse
|
48
|
Olkeba BK, Goethals PLM, Boets P, Duchateau L, Degefa T, Eba K, Yewhalaw D, Mereta ST. Mesocosm Experiments to Quantify Predation of Mosquito Larvae by Aquatic Predators to Determine Potential of Ecological Control of Malaria Vectors in Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136904. [PMID: 34199088 PMCID: PMC8296878 DOI: 10.3390/ijerph18136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Malaria parasites are transmitted to humans by infectious female Anopheles mosquitoes. Chemical-insecticide-based mosquito control has been successful in reducing the burden of malaria. However, the emergence of insecticide resistance in malaria vectors and concerns about the effect of the chemicals on the environment, human health, and non-target organisms present a need for new or alternative vector control intervention tools. Biocontrol methods using aquatic invertebrate predators have emerged as a potential alternative and additional tool to control mosquito populations. Ecological control specifically makes use of species insights for improving the physical habitat conditions of competitors and predators of vectors. A first step towards this is to gain knowledge on the predation potential of several typically present macroinvertebrates. Hence, this study aimed at (1) examining the influence of the predation of hemipterans on the number of emerging adult mosquitoes and (2) detecting Anopheles mosquito DNA in the gut of those predators. The prey and predators were collected from a range of water bodies located in the Gilgel Gibe watershed, southwest Ethiopia. A semi-field study was carried out using mesocosms which were constructed using plastic containers mimicking the natural aquatic habitat of immature Anopheles mosquitoes. Adult mosquitoes that emerged from the mesocosms were collected using a mechanical aspirator. At the end of the experiment, predators were withdrawn from the mesocosms and identified to genus level. Polymerase Chain Reaction (PCR) was employed to identify sibling species of Anopheles gambiae s.l. and to detect Anopheles mosquito DNA in the gut of the predators. Data were analysed using R software. Giant water bugs (belostomatids) were the most aggressive predators of Anopheles larvae, followed by backswimmers (notonectids) and water boatmen (corixids). All female Anopheles gambiae s.l. emerged from the mesocosms were identified as Anopheles arabiensis. Anopheles arabiensis DNA was detected in the gut content of hemipteran specimens analysed from the three families. The number of the adult mosquitoes emerging from the mesocosms was affected by the presence of predators. The findings of this study provide evidence of the potential use of aquatic macroinvertebrate predators as biocontrol agents against immature Anopheles mosquitoes and their potential to be considered as a component of integrated vector management for insecticide resistance and the combined restoration of aquatic ecosystems via smart ecological engineering.
Collapse
Affiliation(s)
- Beekam Kebede Olkeba
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
- Department of Environmental Health Science, Hawassa University, Hawassa P.O. Box 1560, Ethiopia
- Correspondence:
| | - Peter L. M. Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
| | - Pieter Boets
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Building F, 9000 Ghent, Belgium; (P.L.M.G.); (P.B.)
- Provincial Centre of Environmental Research, Godshuizenlaan 95, 9000 Ghent, Belgium
| | - Luc Duchateau
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.D.); (D.Y.)
| | - Kasahun Eba
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
- Biometrics Research Centre, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Jimma University, Jimma P.O. Box 378, Ethiopia; (T.D.); (D.Y.)
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Seid Tiku Mereta
- Department of Environmental Health Science and Technology, Jimma University, Jimma P.O. Box 378, Ethiopia; (K.E.); (S.T.M.)
| |
Collapse
|
49
|
Orondo PW, Nyanjom SG, Atieli H, Githure J, Ondeto BM, Ochwedo KO, Omondi CJ, Kazura JW, Lee MC, Zhou G, Zhong D, Githeko AK, Yan G. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors 2021; 14:335. [PMID: 34174946 PMCID: PMC8235622 DOI: 10.1186/s13071-021-04833-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. .,International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
50
|
Dambach P, Bärnighausen T, Yadouleton A, Dambach M, Traoré I, Korir P, Ouedraogo S, Nikiema M, Sauerborn R, Becker N, Louis VR. Is biological larviciding against malaria a starting point for integrated multi-disease control? Observations from a cluster randomized trial in rural Burkina Faso. PLoS One 2021; 16:e0253597. [PMID: 34143831 PMCID: PMC8213177 DOI: 10.1371/journal.pone.0253597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To evaluate the impact of anti-malaria biological larviciding with Bacillus thuringiensis israelensis on non-primary target mosquito species in a rural African setting. METHODS A total of 127 villages were distributed in three study arms, each with different larviciding options in public spaces: i) no treatment, ii) full or iii) guided intervention. Geographically close villages were grouped in clusters to avoid contamination between treated and untreated villages. Adult mosquitoes were captured in light traps inside and outside houses during the rainy seasons of a baseline and an intervention year. After enumeration, a negative binomial regression was used to determine the reductions achieved in the different mosquito species through larviciding. RESULTS Malaria larviciding interventions showed only limited or no impact against Culex mosquitoes; by contrast, reductions of up to 34% were achieved against Aedes when all detected breeding sites were treated. Culex mosquitoes were captured in high abundance in semi-urban settings while more Aedes were found in rural villages. CONCLUSIONS Future malaria larviciding programs should consider expanding onto the breeding habitats of other disease vectors, such as Aedes and Culex and evaluate their potential impact. Since the major cost components of such interventions are labor and transport, other disease vectors could be targeted at little additional cost.
Collapse
Affiliation(s)
- Peter Dambach
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Till Bärnighausen
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Anges Yadouleton
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Martin Dambach
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Issouf Traoré
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | - Patricia Korir
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Sauerborn
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Speyer, Germany
| | - Valérie R. Louis
- Institute for Global Health, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|