1
|
Kwapong SS, Asare KK, Kusi KA, Pappoe F, Ndam N, Tahar R, Poinsignon A, Amoah LE. Mosquito bites and stage-specific antibody responses against Plasmodium falciparum in southern Ghana. Malar J 2023; 22:126. [PMID: 37061695 PMCID: PMC10105943 DOI: 10.1186/s12936-023-04557-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The human host elicits specific immune responses after exposure to various life stages of the malaria parasite as well as components of mosquito saliva injected into the host during a mosquito bite. This study describes differences in IgG responses against antigens derived from the sporozoite (PfCSP), asexual stage parasite (PfEBA175) and the gametocyte (Pfs230), in addition to an Anopheles gambiae salivary gland antigen (gSG6-P1), in two communities in Ghana with similar blood stage malaria parasite prevalence. METHODS This study used archived plasma samples collected from an earlier cross-sectional study that enrolled volunteers aged from 6 months to 70 years from Simiw, peri-urban community (N = 347) and Obom, rural community (N = 291). An archived thick and thin blood smear for microscopy was used for the estimation of Plasmodium parasite density and species and DNA extraction from blood spots and P. falciparum confirmation was performed using PCR. This study used the stored plasma samples to determine IgG antibody levels to P. falciparum and Anopheles salivary antigens using indirect ELISA. RESULTS Individuals from Simiw had significantly higher levels of IgG against mosquito gSG6-P1 [median (95%CI)] [2.590 (2.452-2.783) ng/mL] compared to those from Obom [2.119 (1.957-2.345) ng/mL], p < 0.0001. Both IgG responses against Pfs230proC (p = 0.0006), and PfCSP (p = 0.002) were significantly lower in volunteers from Simiw compared to the participants from Obom. The seroprevalence of PfEBA-175.5R (p = 0.8613), gSG6-P1 (p = 0.0704), PfCSP (p = 0.7798) IgG were all similar in Obom and Simiw. However, Pfs230 seroprevalence was significantly higher at Obom compared to Simiw (p = 0.0006). Spearman correlation analysis showed no significant association between IgG responses against gSG6-P1, PfCSP, Pfs230proC and PfEBA-175.5R and parasite density at both Obom and Simiw (p > 0.05). CONCLUSION In conclusion, the study showed that participants from Simiw had higher concentrations of circulating gSG6-P1 IgG antibodies but lower concentrations of P. falciparum antibodies, PfCSP IgG and Pfs230proC IgG compared to participants from Obom.
Collapse
Affiliation(s)
- Sebastian Shine Kwapong
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Nicaise Ndam
- MERIT, IRD, Université de Paris Cité, 75006, Paris, France
| | - Rachida Tahar
- MERIT, IRD, Université de Paris Cité, 75006, Paris, France
| | - Anne Poinsignon
- IRD, CNRS, MIVEGEC, University of Montpellier, 34000, Montpellier, France
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
2
|
Futagbi G, Otu PS, Abdul-Rahman M, Aidoo EK, Lo AC, Gyan BA, Afrane YA, Amoah LE. Association of TNF-Alpha, MBL2, NOS2, and G6PD with Malaria Outcomes in People in Southern Ghana. Genet Res (Camb) 2022; 2022:6686406. [PMID: 35291755 PMCID: PMC8901335 DOI: 10.1155/2022/6686406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background One major issue that has set back the gains of the numerous malaria control interventions that national malaria control programs have implemented is asymptomatic malaria. Certain host genetic factors are known to influence symptomatic malaria; however, not much is known about how host genetics influences the acquisition of asymptomatic malaria. Methods Genomic DNA was extracted from whole blood collected from 60 symptomatic and 149 nonfebrile (asymptomatic, N = 109, and uninfected, N = 40) volunteers aged between 2 and 69 years from a high (Obom) and a low (Asutsuare) malaria transmission setting in Southern Ghana. Restriction fragment length polymorphism (RFLP) was used to determine polymorphisms at the MBL2 54, TNF-α 308, NOS2 954, and G6PD 202/376 gene loci. Results Polymorphisms at the MBL2 54 and TNF-α 308 loci were significantly different amongst the three categories of volunteers in both Asutsuare (p = 0.006) and Obom (p=0.05). In Asutsuare, a low malaria transmission area, the allele G has significantly higher odds (3.15) of supporting asymptomatic malaria as against symptomatic malaria. There were significantly higher odds of TNF-α genotype GA being associated with symptomatic malaria as against asymptomatic malaria in both sites, Obom (p=0.027) and Asutsuare (p=0.027). The allele B of the G6PD gene was more prevalent in symptomatic rather than asymptomatic parasite-infected individuals in both Obom (p=0.001) and Asutsuare (p=0.003). Conclusion Individuals in Southern Ghana carrying the TNF-α 308 GA genotype are more likely to exhibit symptoms of malaria when infected with the malaria parasite as opposed to harboring an asymptomatic infection. Also, the B allele of the G6PD gene is likely to prevent a P. falciparum-infected person from exhibiting symptoms and thereby promote asymptomatic parasite carriage.
Collapse
Affiliation(s)
- Godfred Futagbi
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Paulina S Otu
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Mubarak Abdul-Rahman
- Department of Pathology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Ebenezer K Aidoo
- Department of Medical Laboratory, Accra Technical University, Accra, Ghana
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Broni FK, Acquah FK, Obiri-Yeboah D, Obboh EK, Sarpong E, Amoah LE. Profiling the Quality and Quantity of Naturally Induced Antibody Responses Against Pfs230 and Pfs48/45 Among Non-Febrile Children Living in Southern Ghana: A Longitudinal Study. Front Cell Infect Microbiol 2021; 11:770821. [PMID: 34900755 PMCID: PMC8656302 DOI: 10.3389/fcimb.2021.770821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022] Open
Abstract
A clear understanding of the properties of naturally induced antibody responses against transmission-blocking vaccine candidates can accelerate the understanding of the development of transmission-blocking immunity. This study characterized the naturally induced IgG responses against two leading transmission-blocking vaccine antigens, Pfs230 and Pfs48/45, in non-febrile children living in Simiw, Ghana. Consecutive sampling was used to recruit 84 non-febrile children aged from 6 to 12 years old into the 6-month (November 2017 until May 2018) longitudinal study. Venous blood (1 ml) was collected once every 2 months and used to determine hemoglobin levels, P. falciparum prevalence using microscopy and polymerase chain reaction, and the levels and relative avidity of IgG responses against Pfs230 and Pfs48/45 using indirect ELISA. IgG levels against Pfs230 and Pfs48/45 decreased from the start (November) to the middle (January) and end (March) of the dry season respectively, then they began to increase. Participants, especially older children (10-12 years old) with active infections generally had lower antibody levels against both antigens. The relative avidities of IgG against both antigens followed the trend of IgG levels until the middle of the dry season, after which the relative avidities of both antigens correlated inversely with the antibody levels. In conclusion, although IgG antibody levels against both Pfs48/45 and Pfs230 began to increase by the early rainy season, they were inversely correlated to their respective relative avidities.
Collapse
Affiliation(s)
- Fermin K. Broni
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Festus K. Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- Directorate of Research, Innovation and Consultancy, University of Cape Coast, Cape Coast, Ghana
| | - Evans K. Obboh
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Esther Sarpong
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Linda E. Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Ayanful-Torgby R, Sarpong E, Abagna HB, Donu D, Obboh E, Mensah BA, Adjah J, Williamson KC, Amoah LE. Persistent Plasmodium falciparum infections enhance transmission-reducing immunity development. Sci Rep 2021; 11:21380. [PMID: 34725428 PMCID: PMC8560775 DOI: 10.1038/s41598-021-00973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Subclinical infections that serve as reservoir populations to drive transmission remain a hurdle to malaria control. Data on infection dynamics in a geographical area is required to strategically design and implement malaria interventions. In a longitudinal cohort, we monitored Plasmodium falciparum infection prevalence and persistence, and anti-parasite immunity to gametocyte and asexual antigens for 10 weeks. Of the 100 participants, only 11 were never infected, whilst 16 had persistent infections detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and one participant had microscopic parasites at all visits. Over 70% of the participants were infected three or more times, and submicroscopic gametocyte prevalence was high, ≥ 48% of the parasite carriers. Naturally induced responses against recombinant Pfs48/45.6C, Pfs230proC, and EBA175RIII-V antigens were not associated with either infection status or gametocyte carriage, but the antigen-specific IgG titers inversely correlated with parasite and gametocyte densities consistent with partial immunity. Longitudinal analysis of gametocyte diversity indicated at least four distinct clones circulated throughout the study period. The high prevalence of children infected with distinct gametocyte clones coupled with marked variation in infection status at the individual level suggests ongoing transmission and should be targeted in malaria control programs.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dickson Donu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joshua Adjah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
5
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
6
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Does Antibody Avidity to Plasmodium falciparum Merozoite Antigens Increase with Age in Individuals Living in Malaria-Endemic Areas? Infect Immun 2021; 89:IAI.00522-20. [PMID: 33722929 DOI: 10.1128/iai.00522-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
High-avidity antibodies (Abs) are acquired after a few Plasmodium falciparum infections in low transmission areas, but it remains unclear if Ab avidity to different merozoite antigens increases with age in individuals with persistent antigenemia and, if so, when a fully mature Ab response occurs. The study used plasma samples collected between 1996 and 1998 from 566 individuals aged 4 to 84 years in Simbok, Cameroon, where residents received an estimated 1.6 infectious mosquito bites/person/night. Plasma samples were examined for Ab levels (median fluorescence intensity [MFI]) and Ab avidity index (AI) (where AI = [MFI after treatment with 2 M NH4SCN/MFI without salt] × 100) using a bead-based multiplex immunoassay for recombinant AMA1, EBA-175, MSP1-42 (3D7, FVO), MSP2 (3D7, Fc27), and MSP3. Blood-smear positivity for P. falciparum declined with age from 54.3% at 4 to 5 years to 18% at 16 to 40 years and <11% at >40 years of age, although most individuals had submicroscopic parasitemia. Ab affinity maturation, based on age-related patterns of median AI, percentage of individuals with AI of ≥50, and strength of association between MFI and AI, occurred at different rates among the antigens; they developed rapidly before age 4 years for AMA1, increased gradually with age for EBA-175 and MSP1 until ∼16 to 25 years, but occurred negligibly for MSP2 and MSP3. In a hyperendemic area with perennial transmission, affinity maturation resulting in an increase in the proportion of high-avidity Abs occurred for some merozoite antigens, in parallel with a decline in malaria slide passivity, but not for others.
Collapse
|
8
|
Bamgbose T, Anvikar AR, Alberdi P, Abdullahi IO, Inabo HI, Bello M, Cabezas-Cruz A, de la Fuente J. Functional Food for the Stimulation of the Immune System Against Malaria. Probiotics Antimicrob Proteins 2021; 13:1254-1266. [PMID: 33791994 PMCID: PMC8012070 DOI: 10.1007/s12602-021-09780-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance has become a threat to global health, and new interventions are needed to control major infectious diseases. The composition of gut microbiota has been linked to human health and has been associated with severity of malaria. Fermented foods contribute to the community of healthy gut bacteria. Despite the studies connecting gut microbiota to the prevention of malaria transmission and severity, research on developing functional foods for the purpose of manipulating the gut microbiota for malaria control is limited. This review summarizes recent knowledge on the role of the gut microbiota in malaria prevention and treatment. This information should encourage the search for lactic acid bacteria expressing α-Gal and those that exhibit the desired immune stimulating properties for the development of functional food and probiotics for malaria control.
Collapse
Affiliation(s)
- Timothy Bamgbose
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Anupkumar R Anvikar
- ICMR, -National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isa O Abdullahi
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Helen I Inabo
- Department of Microbiology, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Mohammed Bello
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Samaru Zaria, Kaduna, Nigeria
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire D'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
Acquah FK, Donu D, Obboh EK, Bredu D, Mawuli B, Amponsah JA, Quartey J, Amoah LE. Diagnostic performance of an ultrasensitive HRP2-based malaria rapid diagnostic test kit used in surveys of afebrile people living in Southern Ghana. Malar J 2021; 20:125. [PMID: 33653356 PMCID: PMC7927401 DOI: 10.1186/s12936-021-03665-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background The Alere™ Malaria Ag P.f Ultra-sensitive RDT (UsmRDT) kit is an HRP2-based malaria rapid diagnostic test (RDT) with enhanced sensitivity relative to the SD Bioline Malaria Ag P.f RDT (mRDT) kit. However, the diagnostic performance of the UsmRDT kit has not been evaluated in Ghana. Methods A total of 740 afebrile participants aged between 3 and 88 years old were recruited from the Central and Greater Accra Regions of Ghana during the off-peak malaria season. Axillary body temperature was measured, and a volume of 1 ml venous blood was drawn from each participant. Prior to separating the blood into plasma and packed cell pellets via centrifugation, the blood was spotted onto one UsmRDT and one mRDT kit and also used to prepare thick and thin blood smears as well as filter paper blood spots. Plasmodium falciparum specific polymerase chain reaction (PCR) was performed on gDNA extracted from 100 µl of the whole blood. Results The overall positivity rate for microscopy, PCR, UsmRDT and mRDT kit were 20.4%, 40.8%, 31.3% and 30.8%, respectively. Overall, the UsmRDT identified 9.3% (28/302) more PCR positive samples than the mRDT kits. All samples that were negative by the UsmRDT kit were also negative by the mRDT kit. Overall, the sensitivity and specificity of the UsmRDT was 73% (221/302) and 89% (388/436), respectively, while that for the mRDT kit was 58% and 90%, respectively. Conclusion Although the UsmRDT kit was not as sensitive as PCR at detecting asymptomatic P. falciparum carriage, it correctly identified P. falciparum in 9.3% of the study participants that were not captured by the mRDT kit. In malaria endemic settings, the UsmRDT would provide an added advantage by identifying more asymptomatic P. falciparum carriers than the mRDT kit for targeted treatment interventions.
Collapse
Affiliation(s)
- Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Dickson Donu
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Evans K Obboh
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dorcas Bredu
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Bernice Mawuli
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jones A Amponsah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Joseph Quartey
- Parasitology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
| |
Collapse
|
10
|
Large Variations in Malaria Parasite Carriage by Afebrile School Children Living in Nearby Communities in the Central Region of Ghana. J Trop Med 2020; 2020:4125109. [PMID: 33029151 PMCID: PMC7528039 DOI: 10.1155/2020/4125109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Indicators of successful malaria control interventions include a reduction in the prevalence and densities of malaria parasites contained in both symptomatic and asymptomatic infections as well as a reduction in malaria transmission. Individuals harboring malaria parasites in asymptomatic infections serve as reservoirs for malaria transmission. This study determined the prevalence of asymptomatic malaria parasite carriage in afebrile children attending six different schools in two districts, the Cape Coast Metropolitan Assembly (CCMA) and the Komenda Edina Eguafo Abirem (KEEA) of the Central Region of Ghana. Methods This cross sectional study recruited afebrile children aged between 3 and 15 years old from six randomly selected schools in the Central Region of Ghana. Finger-pricked blood was collected and used to prepare thick and thin blood smears as well as spot a strip of filter paper (Whatman #3). Nested PCR was used to identify Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax in DNA extracted from the filter paper spots. The multiplicity of P. falciparum infection was determined using merozoite surface protein 2 genotyping. Results Out of the 528 children sampled, PCR identified 27.1% to harbor Plasmodium parasites in asymptomatic infections, whilst microscopy identified malaria parasites in 10.6% of the children. The overall PCR estimated prevalence of P. falciparum and P. malariae was 26.6% and 1.3%, respectively, with no P. ovale or P. vivax identified by PCR or microscopy. The RDT positivity rate ranged from 55.8% in Simiw to 4.5% in Kuful. Children from the Simiw Basic School accounted for 87.5% of all the asymptomatic infections. The multiplicity of P. falciparum infection was predominantly monoclonal and biclonal. Conclusions The low prevalence of asymptomatic malaria parasite carriage by the children living in the Cape Coast Metropolis suggests that the malaria control interventions in place in CCMA are highly effective and that additional malaria control interventions are required for the KEEA district to reduce the prevalence of asymptomatic malaria parasite carriers. No molecular evidence of P. ovale and P. vivax was identified in the afebrile children sampled from the selected schools.
Collapse
|
11
|
O'Flaherty K, Ataíde R, Zaloumis SG, Ashley EA, Powell R, Feng G, Reiling L, Dondorp AM, Day NP, Dhorda M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Faiz MA, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Contribution of Functional Antimalarial Immunity to Measures of Parasite Clearance in Therapeutic Efficacy Studies of Artemisinin Derivatives. J Infect Dis 2020; 220:1178-1187. [PMID: 31075171 PMCID: PMC6735958 DOI: 10.1093/infdis/jiz247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Antibodies to the blood stages of malaria parasites enhance parasite clearance and antimalarial efficacy. The antibody subclass and functions that contribute to parasite clearance during antimalarial treatment and their relationship to malaria transmission intensity have not been characterized. Methods Levels of immunoglobulin G (IgG) subclasses and C1q fixation in response to Plasmodium falciparum merozoite antigens (erythrocyte-binding antigen [EBA] 175RIII-V, merozoite surface protein 2 [MSP-2], and MSP-142) and opsonic phagocytosis of merozoites were measured in a multinational trial assessing the efficacy of artesunate therapy across 11 Southeast Asian sites. Regression analyses assessed the effects of antibody seropositivity on the parasite clearance half-life (PC½), having a PC½ of ≥5 hours, and having parasitemia 3 days after treatment. Results IgG3, followed by IgG1, was the predominant IgG subclass detected (seroprevalence range, 5%–35% for IgG1 and 27%–41% for IgG3), varied across study sites, and was lowest in study sites with the lowest transmission intensity and slowest mean PC½. IgG3, C1q fixation, and opsonic-phagocytosis seropositivity were associated with a faster PC½ (range of the mean reduction in PC½, 0.47–1.16 hours; P range, .001–.03) and a reduced odds of having a PC½ of ≥5 hours and having parasitemia 3 days after treatment. Conclusions The prevalence of IgG3, complement-fixing antibodies, and merozoite phagocytosis vary according to transmission intensity, are associated with faster parasite clearance, and may be sensitive surrogates of an augmented clearance capacity of infected erythrocytes. Determining the functional immune mechanisms associated with parasite clearance will improve characterization of artemisinin resistance.
Collapse
Affiliation(s)
- Katherine O'Flaherty
- Burnet Institute, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Ricardo Ataíde
- Burnet Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Gaoqian Feng
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Worldwide Antimalarial Resistance Network, University of Oxford, United Kingdom.,Howard Hughes Medical Institute, Chevy Chase, Baltimore.,Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | - Tran Tinh Hien
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Mahosot Hospital, Lao People's Democratic Republic.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao People's Democratic Republic
| | - M Abul Faiz
- Malaria Research Group, Chittagong, Bangladesh.,Dev Care Foundation, Chittagong, Bangladesh
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Microbiology, Monash University, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Taylor DW, Bobbili N, Kayatani A, Tassi Yunga S, Kidima W, Leke RFG. Measuring antibody avidity to Plasmodium falciparum merozoite antigens using a multiplex immunoassay approach. Malar J 2020; 19:171. [PMID: 32357882 PMCID: PMC7195780 DOI: 10.1186/s12936-020-03243-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration. Methods The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to (i) identify the assay with the widest range of AI (discriminatory power), (ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and (iii) evaluate assay repeatability. Results Overall, 4 M GdHCl and 8 M urea were weaker chaotropes than 3 M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2 M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 1-year old infants in Cameroon showed that 2.1 M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8 M ± 0.23 M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2 M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.
Collapse
Affiliation(s)
- Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Alex Kayatani
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Samuel Tassi Yunga
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Winifrida Kidima
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 561 Ilalo Street, Honolulu, HI, 96813, USA
| | - Rose F G Leke
- Faculty of Medicine and Biomedical Sciences, The Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon
| |
Collapse
|
13
|
Acquah FK, Lo AC, Akyea-Mensah K, Abagna HB, Faye B, Theisen M, Gyan BA, Amoah LE. Stage-specific Plasmodium falciparum immune responses in afebrile adults and children living in the Greater Accra Region of Ghana. Malar J 2020; 19:64. [PMID: 32041620 PMCID: PMC7011432 DOI: 10.1186/s12936-020-3146-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/30/2020] [Indexed: 12/02/2022] Open
Abstract
Background Asymptomatic carriage of Plasmodium falciparum is widespread in adults and children living in malaria-endemic countries. This study identified the prevalence of malaria parasites and the corresponding levels of naturally acquired anti-parasite antibody levels in afebrile adults living in two communities in the Greater Accra Region of Ghana. Methods Two cross-sectional studies conducted in January and February 2016 and repeated in July and August 2016 recruited subjects aged between 6 and 75 years from high parasite prevalence (Obom) and low parasite prevalence (Asutsuare) communities. Whole blood (5 ml) was collected from each volunteer, plasma was aliquoted and frozen until needed. An aliquot (10 µl) of the blood was used to prepare thick and thin blood smears, 100 µl was preserved in Trizol and the rest was separated into plasma and blood cells and each stored at − 20 °C until needed. Anti-MSP3 and Pfs230 antibody levels were measured using ELISA. Results Asexual parasite and gametocyte prevalence were higher in Obom than Asutsuare. Antibody (IgG, IgG1, IgG3, IgM) responses against the asexual parasite antigen MSP3 and gametocyte antigen Pfs230 were higher in Obom during the course of the study except for IgM responses against Pfs230, which was higher in Asutsuare than in Obom during the rainy season. Antibody responses in Asutsuare were more significantly associated with age than the responses measured in Obom. Conclusion The pattern of antibody responses measured in people living in the high and low malaria transmission setting was similar. All antibody responses measured against the asexual antigen MSP3 increased, however, IgG and IgG1 responses against gametocyte antigen Pfs230 decreased in moving from the dry to the peak season in both sites. Whilst asexual and gametocyte prevalence was similar between the seasons in the low transmission setting, in the high transmission setting asexual parasite prevalence increased but gametocyte prevalence decreased in the rainy season relative to the dry season.
Collapse
Affiliation(s)
- Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana.,Parasitology Department, University Cheikh Anta Diop, Dakar, Senegal
| | - Kwadwo Akyea-Mensah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Hamza B Abagna
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Babacar Faye
- Parasitology Department, University Cheikh Anta Diop, Dakar, Senegal
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Accra, Ghana. .,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
| |
Collapse
|
14
|
Amoah LE, Donu D, Abuaku B, Ahorlu C, Arhinful D, Afari E, Malm K, Koram KA. Probing the composition of Plasmodium species contained in malaria infections in the Eastern region of Ghana. BMC Public Health 2019; 19:1617. [PMID: 31791319 PMCID: PMC6889690 DOI: 10.1186/s12889-019-7989-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Asymptomatic falciparum and non-falciparum malaria infections are major challenges to malaria control interventions, as they remain a source of continual infection in the community. This becomes even more important as the debate moves towards elimination and eradication. This study sought to quantify the burden of Plasmodium malaria infection in seven communities in the Eastern Region of Ghana. METHODS The cross-sectional study recruited 729 participants aged 85 years old and below from 7 closely linked communities. Finger pricked blood was used to prepare thick and thin blood smears as well as spot filter paper and an histidine rich protein 2 (HRP2) rapid diagnostic test kit (RDT). Genomic DNA was extracted from the filter paper dry blood spot (DBS) and used in PCR to amplify the Plasmodium 18S rRNA gene using species specific PCR. RESULTS 96.6% of the participants were identified as afebrile, with axillary temperatures below 37.5 °C. PCR identified 66% of the participants to harbor malaria parasites, with 9 P. malariae and 7 P. ovale mono-infections accounting for 2.2% and P. falciparum combined with either 36 P. malariae or 25 P. ovale infections, accounting for 13.3%. Parasite prevalence by microscopy (32%) was similar to the RDT positivity rate (33%). False positive RDT results ranged from 64.6% in children aged between 5 and 9 years to 10% in adults aged 20 years and above. No significant differences were observed in falciparum and non-falciparum parasite carriage at the community level, however young adults aged between 15 and 19 years had the highest prevalence (34.8% (16/46)) of P. falciparum and P. malariae parasite carriage whilst children aged between 5 and 9 years had the highest level (11.4% (14/123)) of P. ovale carriage. CONCLUSION The high rate of misidentification of non-falciparum parasites and the total absence of detection of P. ovale by microscopy suggests that more sensitive malaria diagnostic tools including molecular assays are required to accurately determine the prevalence of carriers of non-falciparum parasites and low density P. falciparum infections, especially during national surveillance exercises. Additionally, malaria control interventions targeting the non-falciparum species P. malariae and P. ovale parasites are needed.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana. .,West Africa Center for Cell biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Dickson Donu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Colins Ahorlu
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Daniel Arhinful
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Edwin Afari
- School of Public Health, University of Ghana, Accra, Ghana
| | - Keziah Malm
- National Malaria Control Program, Accra, Ghana
| | - Kwadwo Ansah Koram
- West Africa Center for Cell biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Amoah LE, Abagna HB, Ayanful-Torgby R, Blankson SO, Aryee NA. Diversity and immune responses against Plasmodium falciparum gametocytes in non-febrile school children living in Southern Ghana. Malar J 2019; 18:265. [PMID: 31370841 PMCID: PMC6676606 DOI: 10.1186/s12936-019-2895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background Natural exposure to gametocytes can result in the development of immunity against the gametocyte by the host as well as genetic diversity in the gametocyte. This study evaluated the quantity and quality of natural immune responses against a gametocyte antigen, Pfs230 as well as the prevalence and diversity of gametocytes circulating in children living in two communities in southern Ghana. Methods Whole blood (2.5 ml) was collected from 137 non-febrile school children aged between 6 and 12 years old quarterly for a 6-month period. A drop of blood was used to prepare thick and thin blood films for parasite prevalence and density estimation. Subsequently, stored plasma samples were used in ELISAs assays to measure antibody responses and avidity against Pfs230. RNA was extraction from Trizol preserved packed cells and subsequently converted to complementary DNA (cDNA) which was used for reverse transcriptase PCR (RT-PCR) to determine gametocytes prevalence and diversity. Results Gametocyte carriage in the peak season (July) determined by Pfg377 RT-PCR was 49.2% in Obom and 22.2% in Abura, and was higher than that determined by microscopy. Gametocyte diversity was low and predominated by the same allele at both sites. The relative avidity index for antibodies measured in Abura was higher than that recorded in Obom at all time points although Pfs230 IgG concentrations were significantly high (P < 0.0001) in Obom than in Abura at all time points. The IgG responses in Obom were significantly higher than that in Abura during the peak season. Conclusion Naturally induced antibody responses against Pfs230 in children living in both high perennial and low seasonal malaria transmission settings reduced significantly in moving from the peak to the off-peak season. The relative avidity of antibodies against Pfs230 in Abura was significantly higher than those measured in Obom, despite having lower IgG levels. Very limited diversity was identified in the gametocytes circulating in both Obom and Abura. Electronic supplementary material The online version of this article (10.1186/s12936-019-2895-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda E Amoah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana. .,West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.
| | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.,Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Samuel O Blankson
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nii A Aryee
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
16
|
Amoah LE, Abagna HB, Akyea-Mensah K, Lo AC, Kusi KA, Gyan BA. Characterization of anti-EBA175RIII-V in asymptomatic adults and children living in communities in the Greater Accra Region of Ghana with varying malaria transmission intensities. BMC Immunol 2018; 19:34. [PMID: 30453898 PMCID: PMC6245760 DOI: 10.1186/s12865-018-0271-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Antibodies against Region III-V of the erythrocyte binding antigen (EBA) 175 (EBA175RIII-V) have been suggested to provide protection from malaria in a natural infection. However, the quality and quantity of naturally induced antibodies to EBA175RIII-V has not been fully characterized in different cohorts of Ghanaians. This study sought to determine the characteristics of antibodies against EBA175RIII-V in asymptomatic adults and children living in two communities of varying P. falciparum parasite prevalence in southern Ghana. Methods Microscopic evaluation of thick and thin blood smears was used to identify asymptomatic Plasmodium falciparum carriage and indirect enzyme linked immunosorbent (ELISA) used to assess antibody concentrations and avidity. Results Parasite carriage estimated by microscopy in Obom was 35.6% as opposed to 3.5% in Asutsuare. Levels of IgG, IgG1, IgG2, IgG3 and IgG4 against EBA175RIII-V in the participants from Obom were significantly higher (P < 0.05, Dunn’s Multiple Comparison test) than those in Asutsuare. However the relative avidity of IgG antibodies against EBA175RIII-V was significantly higher (P < 0.0001, Mann Whitney test) in Asutsuare than in Obom. Conclusions People living in communities with limited exposure to P. falciparum parasites have low quantities of high avidity antibodies against EBA175RIII-V whilst people living in communities with high exposure to the parasites have high quantities of age-dependent but low avidity antibodies against EBA175RIII-V. Electronic supplementary material The online version of this article (10.1186/s12865-018-0271-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - H B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - K Akyea-Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - A C Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Present address: University Cheikh Anta DIOP, Dakar, Senegal
| | - K A Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - B A Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Seasonal variations in Plasmodium falciparum genetic diversity and multiplicity of infection in asymptomatic children living in southern Ghana. BMC Infect Dis 2018; 18:432. [PMID: 30157794 PMCID: PMC6114730 DOI: 10.1186/s12879-018-3350-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/21/2018] [Indexed: 11/11/2022] Open
Abstract
Background Genetic diversity in Plasmodium falciparum (P. falciparum) parasites is a major hurdle to the control of malaria. This study monitored changes in the genetic diversity and the multiplicity of P. falciparum parasite infection in asymptomatic children living in southern Ghana at 3 month intervals between April 2015 and January 2016. Methods Filter paper blood spots (DBS) were collected quarterly from children living in Obom, a community with perennial malaria transmission and Abura, a community with seasonal malaria transmission. Genomic DNA was extracted from the DBS and used in polymerase chain reaction (PCR)-based genotyping of the merozoite surface protein 1 (msp 1) and merozoite surface protein 2 (msp 2) genes. Results Out of a total of 787 samples that were collected from the two study sites, 59.2% (466/787) tested positive for P. falciparum. The msp 1 and msp 2 genes were successfully amplified from 73.8% (344/466) and 82.5% (385/466) of the P. falciparum positive samples respectively. The geometric mean MOI in Abura ranged between 1.17 (95% CI: 1.08–1.28) and 1.48 (95% CI: 1.36–1.60) and was significantly lower (p < 0.01, Dunn’s multiple comparison test) than that determined in Obom, where the geometric mean MOI ranged between 1.82 (95% CI: 1.58–2.08) and 2.50 (95% CI: 2.33–2.678) over the study period. Whilst the msp 1 R033:MAD20:KI allelic family ratio was dynamic, the msp 2 3D7:FC27 allelic family ratio remained relatively stable across the changing seasons in both sites. Conclusions This study shows that seasonal variations in parasite diversity in these communities can be better estimated by msp 1 rather than msp 2 due to the constantly changing relative intra allelic frequencies observed in msp 1 and the fact that the dominance of any msp 2 allele was dependent on the transmission setting but not on the season as opposed to the dominance of any msp 1 allele, which was dependent on both the season and the transmission setting. Electronic supplementary material The online version of this article (10.1186/s12879-018-3350-z) contains supplementary material, which is available to authorized users.
Collapse
|