1
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Sobota RS, Goron AR, Berry AA, Bailey JA, Coulibaly D, Adams M, Kone AK, Kouriba B, Doumbo OK, Sztein MB, Felgner PL, Plowe CV, Lyke KE, Thera MA, Travassos MA. Serologic and Cytokine Profiles of Children with Concurrent Cerebral Malaria and Severe Malarial Anemia Are Distinct from Other Subtypes of Severe Malaria. Am J Trop Med Hyg 2022; 107:315-319. [PMID: 35895583 PMCID: PMC9393435 DOI: 10.4269/ajtmh.22-0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 11/07/2022] Open
Abstract
We used a protein microarray featuring Plasmodium falciparum field variants of a merozoite surface antigen to examine malaria exposure in Malian children with different severe malaria syndromes. Unlike children with cerebral malaria alone or severe malarial anemia alone, those with concurrent cerebral malaria and severe malarial anemia had serologic responses demonstrating a broader prior parasite exposure pattern than matched controls with uncomplicated disease. Comparison of levels of malaria-related cytokines revealed that children with the concurrent phenotype had elevated levels of interleukin (IL)-6, IL-8, and IL-10. Our results suggest that the pathophysiology of this severe subtype is unique and merits further investigation.
Collapse
Affiliation(s)
- Rafal S. Sobota
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, Illinois
| | - Abby R. Goron
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason A. Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Marcelo B. Sztein
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Zhou AE, Jain A, Nakajima R, Shrestha B, Stucke EM, Joshi S, Strauss KA, Hedde PN, Berry AA, Felgner PL, Travassos MA. Protein Microarrays as a Tool to Analyze Antibody Responses to Variant Surface Antigens Expressed on the Surface of Plasmodium falciparum-Infected Erythrocytes. Methods Mol Biol 2022. [PMID: 35881357 DOI: 10.1007/978-1-0716-2189-9_25/cover] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) remain the gold standard for measuring antibodies, but are time-consuming and use significant amounts of precious sample and reagents. Protein microarrays represent an appealing alternative, particularly for studies focused on large gene families such as those encoding variant surface antigens in the malaria parasite Plasmodium falciparum. Such microarrays represent an ideal high-throughput platform to study antibody responses to hundreds of malaria parasite variant surface antigens at once, providing critical insights into the development of natural immunity to malaria. We describe the essential background and approach to run an assay using a P. falciparum microarray populated with variant surface antigens. This allows the user to define serologic profiles and identify serodominant antigens that represent promising targets for vaccine or therapeutic development.
Collapse
Affiliation(s)
- Albert E Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aarti Jain
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rie Nakajima
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Biraj Shrestha
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sudhaunshu Joshi
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy A Strauss
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Per N Hedde
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip L Felgner
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Zhou AE, Jain A, Nakajima R, Shrestha B, Stucke EM, Joshi S, Strauss KA, Hedde PN, Berry AA, Felgner PL, Travassos MA. Protein Microarrays as a Tool to Analyze Antibody Responses to Variant Surface Antigens Expressed on the Surface of Plasmodium falciparum-Infected Erythrocytes. Methods Mol Biol 2022; 2470:343-358. [PMID: 35881357 DOI: 10.1007/978-1-0716-2189-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) remain the gold standard for measuring antibodies, but are time-consuming and use significant amounts of precious sample and reagents. Protein microarrays represent an appealing alternative, particularly for studies focused on large gene families such as those encoding variant surface antigens in the malaria parasite Plasmodium falciparum. Such microarrays represent an ideal high-throughput platform to study antibody responses to hundreds of malaria parasite variant surface antigens at once, providing critical insights into the development of natural immunity to malaria. We describe the essential background and approach to run an assay using a P. falciparum microarray populated with variant surface antigens. This allows the user to define serologic profiles and identify serodominant antigens that represent promising targets for vaccine or therapeutic development.
Collapse
Affiliation(s)
- Albert E Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aarti Jain
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rie Nakajima
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Biraj Shrestha
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sudhaunshu Joshi
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathy A Strauss
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Per N Hedde
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip L Felgner
- Vaccine R&D Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 2021; 20:378. [PMID: 34556121 PMCID: PMC8461960 DOI: 10.1186/s12936-021-03915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Screening malaria-specific antibody responses on protein microarrays can help identify immune factors that mediate protection against malaria infection, disease, and transmission, as well as markers of past exposure to both malaria parasites and mosquito vectors. Most malaria protein microarray work has used serum as the sample matrix, requiring prompt laboratory processing and a continuous cold chain, thus limiting applications in remote locations. Dried blood spots (DBS) pose minimal biohazard, do not require immediate laboratory processing, and are stable at room temperature for transport, making them potentially superior alternatives to serum. The goals of this study were to assess the viability of DBS as a source for antibody profiling and to use DBS to identify serological signatures of low-density Plasmodium falciparum infections in malaria-endemic regions of Myanmar. METHODS Matched DBS and serum samples from a cross-sectional study in Ingapu Township, Myanmar were probed on protein microarrays populated with P. falciparum antigen fragments. Signal and trends in both sample matrices were compared. A case-control study was then performed using banked DBS samples from malaria-endemic regions of Myanmar, and a regularized logistic regression model was used to identify antibody signatures of ultrasensitive PCR-positive P. falciparum infections. RESULTS Approximately 30% of serum IgG activity was recovered from DBS. Despite this loss of antibody activity, antigen and population trends were well-matched between the two sample matrices. Responses to 18 protein fragments were associated with the odds of asymptomatic P. falciparum infection, albeit with modest diagnostic characteristics (sensitivity 58%, specificity 85%, negative predictive value 88%, and positive predictive value 52%). CONCLUSIONS Malaria-specific antibody responses can be reliably detected, quantified, and analysed from DBS, opening the door to serological studies in populations where serum collection, transport, and storage would otherwise be impossible. While test characteristics of antibody signatures were insufficient for individual diagnosis, serological testing may be useful for identifying exposure to asymptomatic, low-density malaria infections, particularly if sero-surveillance strategies target individuals with low previous exposure as sentinels for population exposure.
Collapse
|
6
|
Ventimiglia NT, Stucke EM, Coulibaly D, Berry AA, Lyke KE, Laurens MB, Bailey JA, Adams M, Niangaly A, Kone AK, Takala-Harrison S, Kouriba B, Doumbo OK, Felgner PL, Plowe CV, Thera MA, Travassos MA. Malian adults maintain serologic responses to virulent PfEMP1s amid seasonal patterns of fluctuation. Sci Rep 2021; 11:14401. [PMID: 34257318 PMCID: PMC8277812 DOI: 10.1038/s41598-021-92974-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein-1s (PfEMP1s), diverse malaria proteins expressed on the infected erythrocyte surface, play an important role in pathogenesis, mediating adhesion to host vascular endothelium. Antibodies to particular non-CD36-binding PfEMP1s are associated with protection against severe disease. We hypothesized that given lifelong P. falciparum exposure, Malian adults would have broad PfEMP1 serorecognition and high seroreactivity levels during follow-up, particularly to non-CD36-binding PfEMP1s such as those that attach to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1). Using a protein microarray, we determined serologic responses to 166 reference PfEMP1 fragments during a dry and subsequent malaria transmission season in Malian adults. Malian adult sera had PfEMP1 serologic responses throughout the year, with decreased reactivity to a small subset of PfEMP1 fragments during the dry season and increases in reactivity to a different subset of PfEMP1 fragments during the subsequent peak malaria transmission season, especially for intracellular PfEMP1 domains. For some individuals, PfEMP1 serologic responses increased after the dry season, suggesting antigenic switching during asymptomatic infection. Adults were more likely to experience variable serorecognition of CD36-binding PfEMP1s than non-CD36-binding PfEMP1s that bind EPCR or ICAM-1, which remained serorecognized throughout the year. Sustained seroreactivity to non-CD36-binding PfEMP1s throughout adulthood amid seasonal fluctuation patterns may reflect underlying protective severe malaria immunity and merits further investigation.
Collapse
Affiliation(s)
| | - Emily M Stucke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Drissa Coulibaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E Lyke
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jason A Bailey
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amadou Niangaly
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Kone
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - Bourema Kouriba
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Ogobara K Doumbo
- University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | | | | | | |
Collapse
|