1
|
Mwalugelo YA, Mponzi WP, Muyaga LL, Mahenge HH, Katusi GC, Muhonja F, Omondi D, Ochieng AO, Kaindoa EW, Amimo FA. Livestock keeping, mosquitoes and community viewpoints: a mixed methods assessment of relationships between livestock management, malaria vector biting risk and community perspectives in rural Tanzania. Malar J 2024; 23:213. [PMID: 39020392 PMCID: PMC11253484 DOI: 10.1186/s12936-024-05039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Livestock keeping is one of the potential factors related to malaria transmission. To date, the impact of livestock keeping on malaria transmission remains inconclusive, as some studies suggest a zooprophylactic effect while others indicate a zoopotentiation effect. This study assessed the impact of livestock management on malaria transmission risks in rural Tanzania. Additionally, the study explored the knowledge and perceptions of residents about the relationships between livestock keeping and malaria transmission risks in a selected village. METHODS In a longitudinal entomological study in Minepa village, South Eastern Tanzania, 40 households were randomly selected (20 with livestock, 20 without). Weekly mosquito collection was performed from January to April 2023. Indoor and outdoor collections used CDC-Light traps, Prokopack aspirators, human-baited double-net traps, and resting buckets. A subsample of mosquitoes was analysed using PCR and ELISA for mosquito species identification and blood meal detection. Livestock's impact on mosquito density was assessed using negative binomial GLMMs. Additionally, in-depth interviews explored community knowledge and perceptions of the relationship between livestock keeping and malaria transmission risks. RESULTS A total of 48,677 female Anopheles mosquitoes were collected. Out of these, 89% were Anopheles gambiae sensu lato (s.l.) while other species were Anopheles funestus s.l., Anopheles pharoensis, Anopheles coustani, and Anopheles squamosus. The findings revealed a statistically significant increase in the overall number of An. gambiae s.l. outdoors (RR = 1.181, 95%CI 1.050-1.862, p = 0.043). Also, there was an increase of the mean number of An. funestus s.l. mosquitoes collected in households with livestock indoors (RR = 2.866, 95%CI: 1.471-5.582, p = 0.002) and outdoors (RR = 1.579,95%CI 1.080-2.865, p = 0.023). The human blood index of Anopheles arabiensis mosquitoes from houses with livestock was less than those without livestock (OR = 0.149, 95%CI 0.110-0.178, p < 0.001). The majority of participants in the in-depth interviews reported a perceived high density of mosquitoes in houses with livestock compared to houses without livestock. CONCLUSION Despite the potential for zooprophylaxis, this study indicates a higher malaria transmission risk in livestock-keeping communities. It is crucial to prioritize and implement targeted interventions to control vector populations within these communities. Furthermore, it is important to enhance community education and awareness regarding covariates such as livestock that influence malaria transmission.
Collapse
Affiliation(s)
- Yohana A Mwalugelo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya.
| | - Winifrida P Mponzi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Letus L Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Herieth H Mahenge
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and BioEngineering, Tengeru, Arusha, United Republic of Tanzania
| | - Godfrey C Katusi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Faith Muhonja
- School of Public Health, Amref International University, P.O. Box 27691-00506, Nairobi, Kenya
| | - Dickens Omondi
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya
| | - Alfred O Ochieng
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210, Bondo, 40601, Kenya
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- The Nelson Mandela, African Institution of Science and Technology, School of Life Sciences and BioEngineering, Tengeru, Arusha, United Republic of Tanzania
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Fred A Amimo
- Department of Biomedical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210, Bondo, 40601, Kenya
| |
Collapse
|
2
|
Govella NJ, Assenga A, Mlwale AT, Mirzai N, Heffernan E, Moriarty J, Wenger J, Corbel V, McBeath J, Ogoma SB, Killeen GF. Entomological assessment of hessian fabric transfluthrin vapour emanators for protecting against outdoor-biting Aedes aegypti in coastal Tanzania. PLoS One 2024; 19:e0299722. [PMID: 38809841 PMCID: PMC11135681 DOI: 10.1371/journal.pone.0299722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 μg/m3 transfluthrin vapour. CONCLUSIONS It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.
Collapse
Affiliation(s)
- Nicodem J. Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- African Institution of Science and Technology, School of Life Science and Bio-Engineering, The Nelson Mandela, Tengeru, Arusha, United Republic of Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Alphonce Assenga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Amos T. Mlwale
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Nosrat Mirzai
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Eimear Heffernan
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Jennie Moriarty
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - John Wenger
- Centre for Research into Atmospheric Chemistry, School of Chemistry, University College Cork, Cork, Republic of Ireland
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| | - Vincent Corbel
- Institut de Recherche pour le Developpement, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro-RJ, Brazil
| | - Justin McBeath
- Envu UK Ltd, Cambridge, Milton, Cambridge, United Kingdom
| | | | - Gerry F. Killeen
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
- Environmental Research Institute, University College Cork, Cork, Republic of Ireland
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Biological Earth & Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Republic of Ireland
| |
Collapse
|
3
|
Takken W, Charlwood D, Lindsay SW. The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. Malar J 2024; 23:161. [PMID: 38783348 PMCID: PMC11112813 DOI: 10.1186/s12936-024-04982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are one of the major vectors of malaria in sub-Saharan Africa. Their ability to transmit this disease of major public health importance is dependent on their abundance, biting behaviour, susceptibility and their ability to survive long enough to transmit malaria parasites. A deeper understanding of this behaviour can be exploited for improving vector surveillance and malaria control. FINDINGS Adult mosquitoes emerge from aquatic habitats at dusk. After a 24 h teneral period, in which the cuticle hardens and the adult matures, they may disperse at random and search upwind for a mate or to feed. Mating generally takes place at dusk in swarms that form over species-specific 'markers'. Well-nourished females may mate before blood-feeding, but the reverse is true for poorly-nourished insects. Females are monogamous and only mate once whilst males, that only feed on nectar, swarm nightly and can potentially mate up to four times. Females are able to locate hosts by following their carbon dioxide and odour gradients. When in close proximity to the host, visual cues, temperature and relative humidity are also used. Most blood-feeding occurs at night, indoors, with mosquitoes entering houses mainly through gaps between the roof and the walls. With the exception of the first feed, females are gonotrophically concordant and a blood meal gives rise to a complete egg batch. Egg development takes two or three days depending on temperature. Gravid females leave their resting sites at dusk. They are attracted by water gradients and volatile chemicals that provide a suitable aquatic habitat in which to lay their eggs. CONCLUSION Whilst traditional interventions, using insecticides, target mosquitoes indoors, additional protection can be achieved using spatial repellents outdoors, attractant traps or house modifications to prevent mosquito entry. Future research on the variability of species-specific behaviour, movement of mosquitoes across the landscape, the importance of light and vision, reproductive barriers to gene flow, male mosquito behaviour and evolutionary changes in mosquito behaviour could lead to an improvement in malaria surveillance and better methods of control reducing the current over-reliance on the indoor application of insecticides.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Derek Charlwood
- Global Health and Tropical Medicine, Instituto de Hygiene e Medicina Tropical, Lisbon, Portugal
| | | |
Collapse
|
4
|
Bickersmith SA, Saavedra MP, Prussing C, Lange RE, Morales JA, Alava F, Vinetz JM, Gamboa D, Moreno M, Conn JE. Effect of spatiotemporal variables on abundance, biting activity and parity of Nyssorhynchus darlingi (Diptera: Culicidae) in peri-Iquitos, Peru. Malar J 2024; 23:112. [PMID: 38641572 PMCID: PMC11031940 DOI: 10.1186/s12936-024-04940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.
Collapse
Affiliation(s)
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Rachel E Lange
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Juliana A Morales
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Iquitos, Peru
| | - Joseph M Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA.
| |
Collapse
|
5
|
Bayer BE, Aldridge RL, Moreno BJ, Golden FV, Gibson S, Wahl JL, Linthicum KJ. Transfluthrin diffusers do not protect two-person US military tents from mosquitoes in open field and canopy warm-temperate habitats. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 5:100156. [PMID: 38187816 PMCID: PMC10770594 DOI: 10.1016/j.crpvbd.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Spatial repellents are volatile or volatilized chemicals that may repel arthropod vectors in free space, preventing bites and reducing the potential for pathogen transmission. In a 21-week field study, we investigated the efficacy of passive transfluthrin-impregnated diffusers placed in two-person United States (US) military tents located in canopy and open field habitats in north Florida to prevent mosquitoes from entering. Mosquito collections with US Centers for Disease Control and Prevention traps baited with light and carbon dioxide were conducted weekly for weeks 0-4, every two weeks for weeks 5-10, and monthly for weeks 11-21. Our results demonstrated that these transfluthrin-impregnated devices did not function as spatial repellents as expected and did not create a mosquito-free zone of protection. Instead, we observed consistently higher collections of mosquitoes from tents with transfluthrin-impregnated diffusers, and higher rates of mosquito mortality in collections from tents with transfluthrin diffusers, compared to untreated control tents. Based on these findings we do not recommend the use of passive transfluthrin-impregnated diffusers for mosquito protection in two-person US military tents in warm-temperate environments similar to north Florida.
Collapse
Affiliation(s)
- Barbara E. Bayer
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Robert L. Aldridge
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Bianca J. Moreno
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Frances V. Golden
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Seth Gibson
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Jeffrey L. Wahl
- Camp Blanding Joint Training Center, Environmental Safety and Health, Starke, FL, 32091, USA
| | - Kenneth J. Linthicum
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| |
Collapse
|
6
|
Yan C, Hii J, Ngoen-Klan R, Ahebwa A, Saeung M, Chareonviriyaphap T. The effect of transfluthrin-treated jute and cotton emanator vests on human landing and fecundity of Anopheles minimus in Thailand. Acta Trop 2023; 242:106904. [PMID: 36967063 DOI: 10.1016/j.actatropica.2023.106904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Complementary approaches to tackle outdoor and early evening biting mosquitoes are urgently required. Transfluthrin (TFT) is a volatile pyrethroid capable of altering mosquito feeding behavior. This study investigated the efficacy of TFT-treated jute (TFT-J) and cotton (TFT-C) fabrics on human landing activity, feeding and fecundity of Anopheles minimus in Thailand. Jute and cotton fabrics each measuring 1024 cm2 were impregnated with 7.34 × 10-4 g/cm2 TFT (20%, w/v), and evaluated in a semi-field screen house system. Two collectors, wearing an untreated control or TFT-treated vests, conducted human-landing collections of released 100 laboratory-reared adult females of An. minimus from 18:00-00:00 h for 16 consecutive nights. Recaptured mosquitoes were given a blood meal for 30 min. with a membrane feeding system for assessment of blood feeding and fecundity. TFT-J, relative to control, significantly reduced human landings (Odds Ratio (OR) =0.27 (95% Confidence Interval (CI) [0.10-0.74], p = 0.011)), however no significant reduction was observed for TFT-C (OR=0.67 [95% CI 0.24-1.82], p = 0.43). Blood feeding was significantly lower among mosquitoes exposed to TFT-J (12.45% [95% CI, 2.04-22.85], p = 0.029) and TFT-C (13% [95% CI, 0.99-26.84], p = 0.016) relative to control. Impregnated fabrics had no effect on the mean number of egg oviposition. However, egg hatchability was reduced in TFT-J (49.5% [95% CI, 21.74-77.26], p = 0.029) and TFT-C (40.2% [95% CI, 17.21-63.19], p = 0.008) relative to control. TFT-J significantly reduced the landing, blood feeding, and fertility of An. minimus. Further studies are needed to evaluate different treatment methods on fabrics and their incorporation in integrated mosquito management.
Collapse
Affiliation(s)
- Chanly Yan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Jeffrey Hii
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; College of Public Health, Medical & Veterinary Sciences, James Cook University, North Queensland, QLD 4810, Australia
| | - Ratchadawan Ngoen-Klan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Alex Ahebwa
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Manop Saeung
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Theeraphap Chareonviriyaphap
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Royal Society of Thailand, Thailand.
| |
Collapse
|
7
|
Tambwe MM, Kibondo UA, Odufuwa OG, Moore J, Mpelepele A, Mashauri R, Saddler A, Moore SJ. Human landing catches provide a useful measure of protective efficacy for the evaluation of volatile pyrethroid spatial repellents. Parasit Vectors 2023; 16:90. [PMID: 36882842 PMCID: PMC9993701 DOI: 10.1186/s13071-023-05685-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The human landing catch (HLC) method, in which human volunteers collect mosquitoes that land on them before they can bite, is used to quantify human exposure to mosquito vectors of disease. Comparing HLCs in the presence and absence of interventions such as repellents is often used to measure protective efficacy (PE). Some repellents have multiple actions, including feeding inhibition, whereby mosquitoes may be unable to bite even if they land on a host. A comparison was made between the PE of the volatile pyrethroid spatial repellent (VPSR) transfluthrin determined using a landing method (HLC) and a biting method (allowing the mosquitoes that landed to blood-feed) to evaluate whether HLC is a suitable method for the estimation of the personal PE of a VPSR. METHODS A fully balanced, two-arm crossover design study was conducted using a 6 × 6 × 2-m netted cage within a semi-field system. Hessian strips (4 m × 0.1 m) treated with a 5-, 10-, 15-, or 20-g dose of transfluthrin were evaluated against a paired negative control for three strains of laboratory-reared Anopheles and Aedes aegypti mosquitoes. Six replicates were performed per dose using either the landing or the biting method. The number of recaptured mosquitoes was analysed by negative binomial regression, and the PEs calculated using the two methods were compared by Bland-Altman plots. RESULTS For Anopheles, fewer mosquitoes blood-fed in the biting arm than landed in the landing arm (incidence rate ratio = 0.87, 95% confidence interval 0.81-0.93, P < 0.001). For Ae. aegypti, biting was overestimated by around 37% with the landing method (incidence rate ratio = 0.63, 95% confidence interval 0.57-0.70, P = 0.001). However, the PEs calculated for each method were in close agreement when tested by the Bland Altman plot. CONCLUSIONS The HLC method led to underestimation of mosquito feeding inhibition as a mode of action of transfluthrin, and there were species- and dose-dependent differences in the relationship between landing and biting. However, the estimated PEs were similar between the two methods. The results of this study indicate that HLC can be used as a proxy for personal PE for the evaluation of a VPSR, especially when the difficulties associated with enumerating blood-fed mosquitoes in a field setting are taken into consideration.
Collapse
Affiliation(s)
- Mgeni Mohamed Tambwe
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania. .,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwill, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Olukayode Ganiu Odufuwa
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwill, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jason Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwill, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Ahmed Mpelepele
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu Mashauri
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | | | - Sarah Jane Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwill, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
8
|
Mmbando AS, Mponzi WP, Ngowo HS, Kifungo K, Kasubiri R, Njalambaha RM, Gavana T, Eiras AE, Batista EPA, Finda MF, Sangoro OP, Okumu FO. Small-scale field evaluation of transfluthrin-treated eave ribbons and sandals for the control of malaria vectors in rural Tanzania. Malar J 2023; 22:43. [PMID: 36739391 PMCID: PMC9898903 DOI: 10.1186/s12936-023-04476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. METHODS This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. RESULTS TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56-78% for An. arabiensis and 47-74% for An. funestus. CONCLUSION Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control.
Collapse
Affiliation(s)
- Arnold S Mmbando
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
| | - Winifrida P Mponzi
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Khamis Kifungo
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Robert Kasubiri
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Tegemeo Gavana
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Alvaro E Eiras
- Laboratory of Technological Innovation of Vector Control, Department of Parasitology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elis P A Batista
- Laboratory of Technological Innovation of Vector Control, Department of Parasitology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marceline F Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa
| | - Onyango P Sangoro
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- Human Health Theme, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi City, Kenya
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
9
|
Burton TA, Kabinga LH, Simubali L, Hayre Q, Moore SJ, Stevenson JC, Lobo NF. Semi-field evaluation of a volatile transfluthrin-based intervention reveals efficacy as a spatial repellent and evidence of other modes of action. PLoS One 2023; 18:e0285501. [PMID: 37167335 PMCID: PMC10174509 DOI: 10.1371/journal.pone.0285501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Presently, the most common malaria control tools-i.e., long lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS)-are limited to targeting indoor biting and resting behaviors of Anopheles mosquito species. Few interventions are targeted towards malaria control in areas where transmission is driven or persists due to outdoor biting behaviors. This study investigated a volatile pyrethroid-based spatial repellent (VPSR) designed to bridge this gap and provide protection from mosquito bites in outdoor spaces. Southern Province, Zambia, is one such environment where outdoor biting is suspected to contribute to malaria transmission, where people are active in the evening in open-walled outdoor kitchens. This study assessed the VPSR in replica kitchens within a controlled semi-field environment. Endpoints included effects on mosquito host seeking, immediate and delayed mortality, deterrence, blood feeding inhibition, and fertility. Host-seeking was reduced by approximately 40% over the course of nightly releases in chambers containing VPSR devices. Mosquito behavior was not uniform throughout the night, and the modeled effect of the intervention was considerably higher when hourly catch rates were considered. These two observations highlight a limitation of this overnight semi-field design and consideration of mosquito circadian rhythms is recommended for future semi-field studies. Additionally, deterrence and immediate mortality were both observed in treatment chambers, with evidence of delayed mortality and a dose related response. These results demonstrate a primarily personal protective mode of action with possible positive and negative community effects. Further investigation into this primary mode of action will be conducted through a field trial of the same product in nearby communities.
Collapse
Affiliation(s)
- Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | | | | | - Quinton Hayre
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Ifakara Health Institute, Environmental Health, and Ecological Sciences, Bagamoyo, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, Arusha, Tanzania
| | - Jennifer C Stevenson
- Macha Research Trust, Choma, Choma District, Zambia
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States of America
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
10
|
Nolden M, Brockmann A, Ebbinghaus-Kintscher U, Brueggen KU, Horstmann S, Paine MJI, Nauen R. Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100041. [PMID: 35284893 PMCID: PMC8906121 DOI: 10.1016/j.crpvbd.2021.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Malaria vector control interventions rely heavily on the application of insecticides against anopheline mosquitoes, in particular the fast-acting pyrethroids that target insect voltage-gated sodium channels (VGSC). Frequent applications of pyrethroids have resulted in resistance development in the major malaria vectors including Anopheles funestus, where resistance is primarily metabolic and driven by the overexpression of microsomal cytochrome P450 monooxygenases (P450s). Here we examined the pattern of cross-resistance of the pyrethroid-resistant An. funestus strain FUMOZ-R towards transfluthrin and multi-halogenated benzyl derivatives, permethrin, cypermethrin and deltamethrin in comparison to the susceptible reference strain FANG. Transfluthrin and two multi-fluorinated derivatives exhibited micromolar potency - comparable to permethrin - to functionally expressed dipteran VGSC in a cell-based cation influx assay. The activity of transfluthrin and its derivatives on VGSC was strongly correlated with their contact efficacy against strain FUMOZ-R, although no such correlation was obtained for the other pyrethroids due to their rapid detoxification by the resistant strain. The low resistance levels for transfluthrin and derivatives in strain FUMOZ-R were only weakly synergized by known P450 inhibitors such as piperonyl butoxide (PBO), triflumizole and 1-aminobenzotriazole (1-ABT). In contrast, deltamethrin toxicity in FUMOZ-R was synergized > 100-fold by all three P450 inhibitors. The biochemical profiling of a range of fluorescent resorufin and coumarin compounds against FANG and FUMOZ-R microsomes identified 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) as a highly sensitive probe substrate for P450 activity. BOMFC was used to develop a fluorescence-based high-throughput screening assay to measure the P450 inhibitory action of potential synergists. Azole fungicides prochloraz and triflumizole were identified as extremely potent nanomolar inhibitors of microsomal P450s, strongly synergizing deltamethrin toxicity in An. funestus. Overall, the present study contributed to the understanding of transfluthrin efficacy at the molecular and organismal level and identified azole compounds with potential to synergize pyrethroid efficacy in malaria vectors. Transfluthrin and derivatives lack cross-resistance in resistant Anopheles funestus. Pyrethroid resistance in An. funestus is strongly synergized by azole fungicides. BOMFC is a highly active fluorescent probe substrate for microsomal cytochrome P450 monooxygenases in An. funestus. Azole fungicides are nanomolar inhibitors of microsomal cytochrome P450 monooxygenases in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Andreas Brockmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113, Bonn, Germany
| | | | - Kai-Uwe Brueggen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Sebastian Horstmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| |
Collapse
|
11
|
Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low- and middle-income countries: a scoping review. Malar J 2022; 21:31. [PMID: 35109848 PMCID: PMC8812253 DOI: 10.1186/s12936-022-04052-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Significant progress in malaria prevention during the past two decades has prompted increasing global dialogue on malaria elimination. Recent reviews on malaria strategies have focused mainly on long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), with little emphasis on other prevention methods. This article is a scoping review of literature on malaria prevention methods beyond LLINs and IRS in low- and middle-income countries (LMICs). Methods This scoping review found articles published between from 1994 to 2020. Studies were obtained from a search of the PubMed, the Cochrane Library and Social Science abstracts. Grey literature and manual search of secondary references was also done. The search strategy included all study designs but limited only to English. Three independent reviewers performed the selection and characterization of articles, and the data collected were synthesized qualitatively. Results A total of 10,112 studies were identified among which 31 met the inclusion criteria. The results were grouped by the 3 emerging themes of: housing design; mosquito repellents; and integrated vector control. Housing design strategies included closing eves, screening of houses including windows, doors and ceilings, while mosquito repellents were mainly spatial repellents, use of repellent plants, and use of plant-based oils. Integrated vector control included larvae source management. Evidence consistently shows that improving housing design reduced mosquito entry and malaria prevalence. Spatial repellents also showed promising results in field experiments, while evidence on repellent plants is limited and still emerging. Recent literature shows that IVM has been largely ignored in recent years in many LMICs. Some malaria prevention methods such as spatial repellents and IVM are shown to have the potential to target both indoor and outdoor transmission of malaria, which are both important aspects to consider to achieve malaria elimination in LMICs. Conclusion The scoping review shows that other malaria prevention strategies beyond LLINs and IRS have increasingly become important in LMICs. These methods have a significant role in contributing to malaria elimination in endemic countries if they are adequately promoted alongside other conventional approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04052-6.
Collapse
|
12
|
Murgia MV, Kaur J, Widder L, Hill CA. Efficacy of the transfluthrin-based personal insect repellent kit (PIRK) against the ixodid ticks Ixode s scapularis, Amblyomma americanum and Dermacentor variabilis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 2:100070. [PMID: 36589864 PMCID: PMC9795340 DOI: 10.1016/j.crpvbd.2021.100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023]
Abstract
An assay series was performed to assess the contact and spatial efficacy of the Personal Insect Repellent Kit (PIRK) against three species of ixodid ticks. The PIRK, a portable, passive device comprised of an inert physical substrate incorporated with the active ingredient (AI) transfluthrin (TF), has demonstrated spatial efficacy against flying insects, including three species of mosquitoes, sand flies and stable flies. The device is the only TF end-use product registered with the EPA. Here we report the first studies to explore potential of the PIRK to control Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis. Dose-response assays confirmed toxicity of TF to larvae of all species in the μg/ml range following a 30-min exposure period. Nymphs and adults exhibited irritancy and avoidance behaviors on contact with the PIRK. Greater than 90% knockdown (KD) of I. scapularis nymphs and adults was observed after a 10-s exposure, and of A. americanum nymphs and adults after 10-s and 120-s exposure, respectively. Additionally, greater than 90% mortality was observed in I. scapularis nymphs and adults after 10-s and 40-s exposure, respectively. In spatial assays, the PIRK caused KD and post-exposure mortality of adult female I. scapularis exposed at a range of 5-28 cm. These results suggest both contact and spatial capacity of the PIRK, with greatest potency to nymphs versus adults and the prostriate tick I. scapularis versus the metastriate species A. americanum and D. variabilis. Future studies will explore spatial activity at a range of distances and exposure times, in the presence and absence of host cues and under semi-field conditions.
Collapse
Affiliation(s)
- Maria V. Murgia
- Purdue University, Department of Entomology, West Lafayette, IN 47907-2089, USA
| | - Jasleen Kaur
- Purdue University, Department of Entomology, West Lafayette, IN 47907-2089, USA
| | | | - Catherine A. Hill
- Purdue University, Department of Entomology, West Lafayette, IN 47907-2089, USA,Purdue Institute for Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907-2089, USA,Corresponding author. Purdue University, Department of Entomology, West Lafayette, IN 47907-2089, USA.
| |
Collapse
|
13
|
McMillan BE, Britch SC, Golden FV, Aldridge RL, Moreno BJ, Bayer BE, Linthicum KJ. Assessing transfluthrin mortality against Aedes aegypti and Culex quinquefasciatus inside and outside US military tents in a northern Florida environment. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 2:100067. [PMID: 36589865 PMCID: PMC9795342 DOI: 10.1016/j.crpvbd.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023]
Abstract
Mortality caused by passive resin transfluthrin diffusers (∼5 mg AI per 24 h release rate) suspended in small 2-person tents was measured for colony-reared sentinel pyrethroid susceptible Aedes aegypti and Culex quinquefasciatus female mosquitoes, as well as a pyrethroid-resistant strain of Aedes aegypti, in a USA military field camp scenario. Mortality effects were investigated for impact by factors such as sentinel cage location (inside tent, tent doorway and outside tent), exposure time (15, 30, 45 and 60 min), and environmental temperature (°C), all of which were examined over an 8-week period. Analyses determined there was a significant interaction between mosquito strain and transfluthrin susceptibility, with the two susceptible strains experiencing significantly greater mean mortality than the resistant Ae. aegypti strain. Significant differences were likewise observed between the mosquito strains over the 8-week study period, where study week and temperature were both positively correlated with an increase in observed mean mosquito mortality. Mosquito proximity to the transfluthrin diffusers was also influenced by week and showed that sentinel cage placement in the environment demonstrates different mortality measurements, depending on the environmental conditions. The length of exposure to transfluthrin, however, was determined to not significantly impact transfluthrin efficacy on the examined mosquito strains, although increased exposure did result in increased susceptible strain mortality. These results suggest that transfluthrin is highly effective in causing mortality against susceptible Ae. aegypti and Cx. quinquefasciatus mosquitoes under field conditions but is minimally effective against pyrethroid-resistant Ae. aegypti mosquitoes. Transfluthrin-infused devices are influenced by environmental factors that can combine to impact mosquito mortality in the field.
Collapse
|
14
|
Kaindoa EW, Mmbando AS, Shirima R, Hape EE, Okumu FO. Insecticide-treated eave ribbons for malaria vector control in low-income communities. Malar J 2021; 20:415. [PMID: 34688285 PMCID: PMC8542300 DOI: 10.1186/s12936-021-03945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Supplementary tools are required to address the limitations of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), which are currently the core vector control methods against malaria in Africa. The eave ribbons technology exploits the natural house-entry behaviours of major malaria vectors to deliver mosquitocidal or repellent actives around eave spaces through which the Anopheles mosquitoes usually enter human dwellings. They confer protection by preventing biting indoors and in the peri-domestic outdoor spaces, and also killing a significant proportion of the mosquitoes. Current versions of eave ribbons are made of low-cost hessian fabric infused with candidate insecticides and can be easily fitted onto multiple house types without any additional modifications. This article reviews the evidence for efficacy of the technology, and discusses its potential as affordable and versatile supplementary approach for targeted and efficient control of mosquito-borne diseases, particularly malaria. Given their simplicity and demonstrated potential in previous studies, future research should investigate ways to optimize scalability and effectiveness of the ribbons. It is also important to assess whether the ribbons may constitute a less-cumbersome, but more affordable substitute for other interventions, such as IRS, by judiciously using lower quantities of selected insecticides targeted around eave spaces to deliver equivalent or greater suppression of malaria transmission.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Department of Biosciences, Durham University, DH13LE, Durham, UK
| | - Ruth Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
15
|
To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens 2021; 10:pathogens10091171. [PMID: 34578203 PMCID: PMC8471886 DOI: 10.3390/pathogens10091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although control efforts are improving, vector-borne diseases remain a global public health challenge. There is a need to shift vector control paradigms while developing new products and programmes. The importance of modifying vector behaviour has been recognised for decades but has received limited attention from the public health community. This study aims to: (1) explore how the use of spatial repellents at sublethal doses could promote public health worldwide; (2) propose new methods for evaluating insecticides for use by the general public; and (3) identify key issues to address before spatial repellents can be adopted as complementary vector control tools. Two field experiments were performed to assess the effects of an insecticidal compound, the pyrethroid transfluthrin, on Aedes albopictus mosquitoes. The first examined levels of human protection, and the second looked at mosquito knockdown and mortality. For the same transfluthrin dose and application method, the percent protection remained high (>80%) at 5 h even though mosquito mortality had declined to zero at 1 h. This result underscores that it matters which evaluation parameters are chosen. If the overarching goal is to decrease health risks, sublethal doses could be useful as they protect human hosts even when mosquito mortality is null.
Collapse
|
16
|
Zemene E, Belay DB, Tiruneh A, Lee MC, Yewhalaw D, Yan G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infect Dis 2021; 21:882. [PMID: 34454443 PMCID: PMC8403392 DOI: 10.1186/s12879-021-06592-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the behaviour of local malaria vectors is essential as effectiveness of the commonly used vector-targeted malaria control tools heavily relies on behaviour of the major malaria vectors. This study was conducted to determine species composition, biting behaviour, host preference and infectivity of anopheline mosquitoes, and assess utilization of insecticide-treated nets (ITNs) in a low transmission setting in Southwest Ethiopia. METHODS Adult anopheline mosquitoes were collected using human landing catches (HLCs), Centers for Disease Control and Prevention (CDC) light traps (LTs) and Pyrethrum Spray Catches (PSCs) from June 2016 to May 2018 in Kishe, Jimma Zone, Southwest Ethiopia. The anopheline mosquitoes were morphologically identified. Moreover, sub-sample of An. gambiae s.l. was identified to species using polymerase chain reaction (PCR). Circum-sporozoite proteins (CSPs) and blood meal sources of the anopheline mosquitoes were tested using enzyme-linked immunosorbent assay (ELISA). In addition, a cross-sectional survey was conducted to assess ITN utilization by the inhabitants. RESULTS A total of 3659 anopheline mosquitoes comprising An. coustani complex (84.4%), An. gambiae s.l. (11.3%), and An. pharoensis and An. squamosus comprising less than 5% were collected. The anopheline mosquitoes showed marked outdoor (67%) and early evening (63%) biting behaviour. An. coustani complex and An. gambiae s.l. were predominantly zoophilic and anthropophilic, respectively. None of the sampled anopheline were CSP-positive. Most of the households (97.8%) owned at least one ITN, with modest usage by the inhabitants (73.4%). ITN usage was significantly higher among under-five children (AOR = 7.9, 95% CI: 4.41-14.03), household heads and spouses (AOR = 4.8, 95% CI: 3.0-7.59), those with sufficient access to ITNs (AOR = 1.8, 95% CI: 1.39-2.35), and who were not utilizing alternative mosquito repellents (AOR = 2.2, 95% CI: 1.58-2.99). CONCLUSION The anopheline mosquito species exhibited predominantly outdoor and early evening biting activity. Household ITN coverage was high with slight gap in usage. Vector control interventions should target outdoor and early biting vectors to further suppress the local mosquito population. Moreover, sensitization of the community on consistent use of ITNs is required.
Collapse
Affiliation(s)
- Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Denekew Bitew Belay
- Department of Statistics, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abebaw Tiruneh
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
17
|
Andreazza F, Valbon WR, Wang Q, Liu F, Xu P, Bandason E, Chen M, Wu S, Smith LB, Scott JG, Jiang Y, Jiang D, Zhang A, Oliveira EE, Dong K. Sodium channel activation underlies transfluthrin repellency in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009546. [PMID: 34237076 PMCID: PMC8266078 DOI: 10.1371/journal.pntd.0009546] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Volatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial. Methodology/Principal findings Here, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency. Conclusions/Significance These results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors. Vector-transmitted human diseases, such as dengue fever, represent serious global health burdens. Pyrethroids, including transfluthrin, are widely used as insecticides and repellents due to their low mammalian toxicity and relatively benign environmental impact. Pyrethroids target voltage-gated sodium channels for their insecticidal action. However, the mechanism of pyrethroid repellency remains unclear and controversial. Insect repellency is traditionally thought to be mediated by olfactory receptors. We made two important discoveries in this study, showing that transfluthrin repellency is via activation of sodium channels and transfluthrin enhances DEET repellency. Discovery of sodium channel activation as a major mechanism of pyrethroid repellency has broad significance in insect olfaction study, repellents development, and control of human disease vectors.
Collapse
Affiliation(s)
- Felipe Andreazza
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Wilson R. Valbon
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiang Wang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Feng Liu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Peng Xu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Elizabeth Bandason
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Leticia B. Smith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Youfa Jiang
- Jiangsu Yangnong Chemical Co., Ltd., Jiangsu, China
| | - Dingxin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, USDA-ARS, Beltsville, Maryland, United States of America
| | - Eugenio E. Oliveira
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Hii J, Hustedt J, Bangs MJ. Residual Malaria Transmission in Select Countries of Asia-Pacific Region: Old Wine in a New Barrel. J Infect Dis 2021; 223:S111-S142. [PMID: 33906222 PMCID: PMC8079134 DOI: 10.1093/infdis/jiab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Despite substantial reductions in malaria burden and improvement in case management, malaria remains a major public health challenge in the Asia-Pacific region. Residual malaria transmission (RMT) is the fraction of total transmission that persists after achievement of full operational coverage with effective insecticide-treated bed nets (ITNs)/long-lasting insecticidal nets (LLINs) and/or indoor residual spray interventions. There is a critical need to standardize and share best practices for entomological, anthropological, and product development investigative protocols to meet the challenges of RMT and elimination goals. Methods A systematic review was conducted to describe when and where RMT is occurring, while specifically targeting ownership and usage of ITN/LLINs, indoor residual spray application, insecticide susceptibility of vectors, and human and vector biting behavior, with a focus on nighttime activities. Results Sixty-six publications from 1995 to present met the inclusion criteria for closer review. Associations between local vector control coverage and use with behaviors of human and mosquito vectors varied by locality and circumstance. Consequently, the magnitude of RMT is insufficiently studied and analyzed with sparse estimates of individual exposure in communities, insufficient or incomplete observations of ITN/LLIN use, and the local human population movement into and from high-risk areas. Conclusions This review identified significant gaps or deficiencies that require urgent attention, namely, developing standardized procedures and methods to estimate risk exposure beyond the peridomestic setting, analytical approaches to measure key human-vector interactions, and seasonal location-specific agricultural or forest use calendars, and establishing the collection of longitudinal human and vector data close in time and location.
Collapse
Affiliation(s)
- Jeffrey Hii
- Malaria Consortium Asia, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Michael J Bangs
- Public Health and Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasertart University, Bangkok, Thailand
| |
Collapse
|
19
|
Okumu F, Finda M. Key Characteristics of Residual Malaria Transmission in Two Districts in South-Eastern Tanzania-Implications for Improved Control. J Infect Dis 2021; 223:S143-S154. [PMID: 33906218 PMCID: PMC8079133 DOI: 10.1093/infdis/jiaa653] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
After 2 decades of using insecticide-treated nets (ITNs) and improved case management, malaria burden in the historically-holoendemic Kilombero valley in Tanzania has significantly declined. We review key characteristics of the residual transmission and recommend options for improvement. Transmission has declined by >10-fold since 2000 but remains heterogeneous over small distances. Following the crash of Anopheles gambiae, which coincided with ITN scale-up around 2005-2012, Anopheles funestus now dominates malaria transmission. While most infections still occur indoors, substantial biting happens outdoors and before bed-time. There is widespread resistance to pyrethroids and carbamates; An. funestus being particularly strongly-resistant. In short and medium-term, these challenges could be addressed using high-quality indoor residual spraying with nonpyrethroids, or ITNs incorporating synergists. Supplementary tools, eg, spatial-repellents may expand protection outdoors. However, sustainable control requires resilience-building approaches, particularly improved housing and larval-source management to suppress mosquitoes, stronger health systems guaranteeing case-detection and treatment, greater community-engagement and expanded health education.
Collapse
Affiliation(s)
- Fredros Okumu
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
20
|
Sukkanon C, Tisgratog R, Muenworn V, Bangs MJ, Hii J, Chareonviriyaphap T. Field Evaluation of a Spatial Repellent Emanation Vest for Personal Protection Against Outdoor Biting Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:756-766. [PMID: 33078838 DOI: 10.1093/jme/tjaa213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Exophilic vectors are an important contributor to residual malaria transmission. Wearable spatial repellents (SR) can potentially provide personal protection in early evening hours before people retire indoors. An SR prototype for passive delivery of transfluthrin (TFT) for protecting humans against nocturnal mosquitoes in Kanchanaburi, western Thailand, is evaluated. A plastic polyethylene terephthalate (PET) sheet (676 cm2) treated with 55-mg TFT (TFT-PET), attached to the back of short-sleeve vest worn by human collector, was evaluated under semifield and outdoor conditions. Field-caught, nonblood-fed female Anopheles minimus s.l. were released in a 40 m length, semifield screened enclosure. Two collectors positioned at opposite ends conducted 12-h human-landing collections (HLC). The outdoor experiment was conducted between treatments among four collectors at four equidistant positions who performed HLC. Both trials were conducted for 30 consecutive nights. TFT-PET provided 67% greater protection (P < 0.001) for 12 h compared with unprotected control, a threefold reduction in the attack. In outdoor trials, TFT-PET provided only 16% protection against An. harrisoni Harbach & Manguin (Diptera: Culicidae) compared with unprotected collector (P = 0.0213). The TFT-PET vest reduced nonanophelines landing by 1.4-fold compared with the PET control with a 29% protective efficacy. These findings suggest that TFT-PET had diminished protective efficacy in an open field environment. Nonetheless, the concept of a wearable TFT emanatory device has the potential for protecting against outdoor biting mosquitoes. Further development of portable SR tools is required, active ingredient selection and dose optimization, and more suitable device design and materials for advancing product feasibility.
Collapse
Affiliation(s)
- Chutipong Sukkanon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Rungarun Tisgratog
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Vithee Muenworn
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | - Jeffrey Hii
- Malaria Consortium Asia Regional Office, Faculty of Tropical Medicine, Mahidol University Bangkok, Bangkok, Thailand
- College of Public Health, Medical & Veterinary Sciences, James Cook University, North Queensland, QLD, Australia
| | | |
Collapse
|
21
|
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, Lindsay SW, Smith D, Dorsey G, Donnelly MJ, Staedke SG. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J 2021; 20:138. [PMID: 33678166 PMCID: PMC7938603 DOI: 10.1186/s12936-021-03675-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. METHODS From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). RESULTS In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p < 0.001). CONCLUSIONS LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P Kigozi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - David Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place Liverpool, UK
| | | |
Collapse
|
22
|
Verhulst NO, Cavegn JC, Mathis A. Spatial repellency and vapour toxicity of transfluthrin against the biting midges Culicoides nubeculosus and C. sonorensis (Ceratopogonidae). CURRENT RESEARCH IN INSECT SCIENCE 2020; 1:100002. [PMID: 36003605 PMCID: PMC9387480 DOI: 10.1016/j.cris.2020.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 06/15/2023]
Abstract
Biting midges (Diptera; Ceratopogonidae; Culicoides spp.) are biological vectors of disease agents, and they cause nuisance and insect bite hypersensitivity. Currently there are no effective means to control biting midges as screening is impractical and the application of insecticides or repellents is of limited efficacy. Spatial repellents have the advantage over contact repellents that they can create a vector-free environment. Studies have shown the efficacy of spatial repellents to protect humans against mosquitoes, also outdoors, but no data are available for biting midges. We tested the spatial repellency and toxicity (knockdown effect) of the volatile pyrethroid transfluthrin against the laboratory-reared biting midges Culicoides nubeculosus (Meigen) and Culicoides sonorensis (Wirth and Jones) and the mosquito Aedes aegypti (Linnaeus) in a high-throughput tube setup. Observations were made 15, 30 and 60 min. after application of the repellent. In addition to transfluthrin, the non-volatile pyrethroid permethrin and DEET, the gold standard of repellents, were included. Spatial repellency by transfluthrin was observed against both biting midge species and Ae. aegypti, already at the first observation after 15 min. and at much lower concentrations than DEET. Permethrin was spatially repellent only to C. sonorensis at the highest concentration tested (10 μg/cm2). Knockdown of biting midges and mosquitoes by transfluthrin, both by vapour or contact toxicity, was observed even at low concentrations. DEET had little to no effect on the knockdown of the insects, neither by direct contact nor vapour toxicity, while permethrin caused a high proportion of knockdown when direct contact was possible. In case these results can be confirmed in field experiments, spatial repellents could become a novel tool in integrated control programmes to reduce biting by Culicoides spp.
Collapse
|
23
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|