1
|
Saleh BH, Lugaajju A, Tijani MK, Danielsson L, Morris U, Persson KEM. An immuno-inflammatory profiling of asymptomatic individuals in a malaria endemic area in Uganda. Acta Trop 2024:107446. [PMID: 39488329 DOI: 10.1016/j.actatropica.2024.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Malaria caused by Plasmodium falciparum leads to the destruction of red blood cells (RBCs). A better understanding of how naturally immune individuals control infections should be valuable for future vaccine studies. Antibodies against RBCs and RBC surface antigens were measured together with different inflammatory markers in healthy adults living in a malaria endemic area of Uganda and compared to Swedish healthy adults. Antibodies binding to RBCs were clearly elevated in Ugandans compared to Swedish samples, and for RBC surface antigens the Ugandans had higher levels of antibodies against JMH, but not against Cromer or Kell. Twenty-eight percent of the Ugandans were PCR-positive for P. falciparum, and these had higher levels of IgG against parasite extract and more inhibition in functional growth/invasion assays, but levels of antibodies against RBC, RBC surface antigens, results from Direct Antiglobulin Tests (DAT) and indirect antiglobulin tests were similar when compared with PCR-negative individuals. When inflammatory markers (α-1-antitrypsin, haptoglobin, orosomucoid/α-1-acid glycoprotein, CRP, IgG, IgA and IgM) were measured there were in general almost no signs of inflammation except for clearly elevated levels of IgG. Some had low levels of haptoglobin and for orosomucoid more than half of the individuals had clearly reduced levels. There was no correlation between the inflammatory markers and PCR-positivity, antibodies against RBCs or parasites. In conclusion, for healthy adults living in a malaria endemic area, there was a clear presence of antibodies against RBCs in parallel with high levels of IgG and almost no signs of inflammation, even though many individuals were carrying parasites.
Collapse
Affiliation(s)
- Bandar Hasan Saleh
- Department of Laboratory medicine, Lund University, Lund, Sweden; Department of Clinical Microbiology and Immunology, King Abdulaziz University, Saudi Arabia
| | - Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Lena Danielsson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina E M Persson
- Department of Laboratory medicine, Lund University, Lund, Sweden; Clinical Chemistry and Pharmacology, Office for Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
2
|
Reynders M, Tweneboah A, Abbas DA, Opoku Afriyie S, Nketsiah SN, Badu K, Koepfli C. Challenges in diagnosis of clinical and subclinical Plasmodium falciparum infections in Ghana and feasibility of reactive interventions to shrink the subclinical reservoir. Malar J 2024; 23:272. [PMID: 39256754 PMCID: PMC11389207 DOI: 10.1186/s12936-024-05096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Reactive case detection (RCD) aims to reduce malaria transmission stemming from asymptomatic carriers. Symptomatic individuals diagnosed with malaria at a health centre are followed to their households, where members of the index case and neighbouring households are tested and treated for malaria. An RCD programme was tested in the Ashanti region of Ghana in order to study diagnostic accuracy in the hospital and household settings, assess the prevalence of subclinical infections and possible clustering in index case households, and identify operational challenges for future RCD programmes. Currently, transmission in this region is high, but reactive interventions might become an option once transmission is reduced. METHODS 264 febrile individuals were enrolled at the Mankranso Government Hospital and tested for malaria using rapid diagnostic tests (RDT). From the pool of RDT-positive febrile index cases, 14 successful RCD follow-ups were conducted, and 233 individuals were enrolled from the index case, neighbour, and control households. The sensitivity of diagnostic tools for clinical and subclinical cases was compared, including RDT, expert microscopy by World Health Organization-certified microscopists, field microscopy, and qPCR. RESULTS Poor diagnosis and low receptivity to RCD-style follow-ups were major limitations to a successful and effective RCD programme. Field microscopy detected only 49% of clinical infections compared to RDT. 54% of individuals did not agree to a follow-up, and 66% of attempted follow-ups failed. The system effectiveness of RCD, calculated as the product of correctly diagnosed index cases, successful follow-ups, and proportion of asymptomatic infections detected by RDT, was very low at 4.0%. CONCLUSIONS Due to low system effectiveness and the endemic nature of the disease setting in which asymptomatic prevalence is high and infections are not clustered around index case households, RCD is currently not a feasible option for malaria control in this region. The operational challenges identified through this study may help inform future reactive intervention programme designs once transmission is reduced.
Collapse
Affiliation(s)
- Madeline Reynders
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Austine Tweneboah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Dawood Ackom Abbas
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Opoku Afriyie
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Nelly Nketsiah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Kingsley Badu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Cristian Koepfli
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Ouédraogo A, Pouplin JNN, Mukaka M, Kaendiao T, Ruecker A, Millet P, Vallet T, Ruiz F, Sirima SB, Taylor WR. Anti-infectivity efficacy and pharmacokinetics of WHO recommended single low-dose primaquine in children with acute Plasmodium falciparum in Burkina Faso: study protocol. Trials 2024; 25:583. [PMID: 39227956 PMCID: PMC11373093 DOI: 10.1186/s13063-024-08428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Primaquine (PQ) has activity against mature P. falciparum gametocytes and proven transmission blocking efficacy (TBE) between humans and mosquitoes. WHO formerly recommended a single transmission blocking dose of 0.75 mg/kg but this was little used. Then in 2012, faced with the emergence of artemisinin-resistant P. falciparum (ARPf) in SE Asia, the WHO recommended a lower dose of 0.25 mg/kg to be added to artemisinin-based combination therapy in falciparum-infected patients in low transmission areas. This dose was considered safe in glucose-6-phosphate dehydrogenase deficiency (G6PDd) and not requiring G6PD testing. Subsequent single low-dose primaquine (SLDPQ) studies have demonstrated safety in different G6PD variants. Dosing remains challenging in children under the age of 5 because of the paucity of PQ pharmacokinetic (PK) data. We plan to assess the anti-infectivity efficacy of SLDPQ using an allometrically scaled, weight-based regimen, with a target dose of 0.25 mg/kg, in children with acute uncomplicated falciparum malaria. METHODS This study is an open label, randomised 1:1, phase IIb study to assess TBE, tolerability, pharmacokinetics and acceptability of artesunate pyronaridine (ASPYR) administered alone or combined with SLDPQ in 56 Burkinabe children aged ≥ 6 months- < 5 years, with uncomplicated P. falciparum and a haemoglobin (Hb) concentration of ≥ 5 g/dL. We will assess TBE, using direct membrane feeding assays (DMFA), and further investigate PQ pharmacokinetics, adverse events, Hb dynamics, G6PD, sickle cells, thalassaemia and cytochrome 2D6 (CYP2D6) status, acceptability of flavoured PQ [CAST-ClinSearch Acceptability Score Test®], and the population's knowledge, attitude and practices on malaria. EXPECTED RESULTS AND DISCUSSION We expect children to accept tablets, confirm the TBE and gametocytocidal effects of SLDPQ and then construct a PK infectivity model (including age, sex, baseline Hb, G6PD and CYP2D6 status) to define the dose response TBE relationship that may lead to fine tuning our SLDPQ regimen. Our study will complement others that have examined factors associated with Hb dynamics and PQ PK. It will provide much needed, high-quality evidence of SLDPQ in sick African children and provide reassurance that SLDPQ should be used as a strategy against emerging ARPf in Africa. TRIAL REGISTRATION ISRCTN16297951. Registered on September 26, 2021.
Collapse
Affiliation(s)
- Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso.
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thoopmanee Kaendiao
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Andrea Ruecker
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pascal Millet
- ReMeD, 21bis Avenue du Commandant de L'Herminier, Saint-Nazaire, 44 600, France
| | - Thibaut Vallet
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Fabrice Ruiz
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Sanogo D, Toure M, Keita M, Kane F, Keita S, Sanogo I, Diawara SI, Coulibaly H, Thiam SM, Diakite M, Sogoba N, Doumbia S. Plasmodium falciparum infection status in children less than 10 years old under seasonal malaria chemoprevention and risk of clinical malaria in the Koulikoro health district, Mali. RESEARCH SQUARE 2024:rs.3.rs-4613312. [PMID: 39070642 PMCID: PMC11275994 DOI: 10.21203/rs.3.rs-4613312/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Introduction Seasonal malaria chemoprevention (SMC) with Sulfadoxine pyrimethamine plus amodiaquine (SP + AQ) consist of a monthly administration of therapeutic dose to children under five years of age during the high risk of malaria in area where malaria is highly seasonal. According to SMC recommendation, both non-infected and asymptomatic Plasmodium falciparum infected children will receive similar treatment. The gap in our knowledge is how the effect of asymptomatic infection on the efficacy of SMC in preventing clinical malaria over a four-week period. Thus, this study aimed to assess the risk of clinical malaria and its association with children's infection status when SMC treatment is given. Methodology The study was carried out in the Koulikoro health district in Mali and concerned children under 10 years of age. A total of 726 and 1452 children were randomly selected and followed over the SMC campaign in the years 2019 and 2020 respectively. Prevalence of asymptomatic P. falciparum infection was determined each round by microscopy before SMC drugs intake. Children were passively followed over a four-week period to determine incidence of clinical malaria. R-Studio software was used for analysis. The risk of clinical malaria by infection status was estimated using a logistic regression. A Kaplan-Meier curve was used to determine the survival time between infected and uninfected children. The Pearson Chi-square test was used to compare proportions with the significant level at p< 0.05. Results The average prevalence of asymptomatic infection was 11.0% both years, and it was higher among children aged 5 to 9 years old in 2019 (p<0.001) and 2020 (p=0.016). The risk of clinical malaria was significantly higher among asymptomatic infected children 2019: (RR=3.05, CI [2.04-4.72]) and 2020 (RR=1.43, CI [1.04-1.97]) transmission seasons. Likewise, the time of the first malaria occurrence was statistically lower among infected children regardless the year (p<0.001 in 2019 and p=0.01 in 2020). Conclusion Results show a high risk of clinical malaria in asymptomatic infected children during SMC delivery. Screening for P. falciparum infection before the SMC treatment could significantly enhance the impact of the strategy on malaria morbidity in endemic areas.
Collapse
Affiliation(s)
- Daouda Sanogo
- University of Sciences, Techniques and Technologies of Bamako
| | | | - Moussa Keita
- University of Sciences, Techniques and Technologies of Bamako
| | - Fousseyni Kane
- University of Sciences, Techniques and Technologies of Bamako
| | - Soumba Keita
- University of Sciences, Techniques and Technologies of Bamako
| | - Ibrahim Sanogo
- University of Sciences, Techniques and Technologies of Bamako
| | | | | | | | | | - Nafomon Sogoba
- University of Sciences, Techniques and Technologies of Bamako
| | - Seydou Doumbia
- University of Sciences, Techniques and Technologies of Bamako
| |
Collapse
|
5
|
Amoah LE, Cheng NI, Acquah FK, Adu-Amankwah S, Bredu DG, Mensah BA, Anang SF, Abban BC, Busayomi A, Kwarpong SS, Tey PK, Cudjoe E, Asamoah A, Holden TM, Gerardin J, Nonvignon J, Ahorlu C. Diagnostic performance of an ultra-sensitive RDT and a conventional RDT in malaria mass testing, treatment and tracking interventions in southern Ghana. Parasit Vectors 2024; 17:280. [PMID: 38951912 PMCID: PMC11218287 DOI: 10.1186/s13071-024-06354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Application of numerous malaria control interventions has led to reduction in clinical malaria cases and deaths but also the realisation that asymptomatic parasite carriers play a key role in sustaining transmission. This study assessed the effectiveness of using the Ultra-sensitive NxTek eliminate RDT (uRDT) and conventional SD Bioline HRP2 RDT (cRDT) in diagnosing asymptomatic parasitaemia while measuring the impact of mass testing, treatment and tracking (MTTT) on the prevalence of asymptomatic malaria over a 1-year period in Ghana. METHODS A total of 4000 targeted participants from two towns, Obom and Kofi Kwei, with their surrounding villages, were tested for asymptomatic malaria four times over the study period using uRDT (intervention) and the cRDT (control) respectively. Participants carrying malaria parasites were followed by home visit and phone calls for compliance to treatment, and filter paper blood blots collected from participants were used to determine true parasite carriage by PET-PCR. A mathematical model of the study site was developed and used to test the impact of test sensitivity and mass migration on the effect of MTTT. RESULTS The start and end point sensitivities of the cRDT were 48.8% and 41.7% and those for the uRDT were 52.9% and 59.9% respectively. After a year of MTTTs, asymptomatic parasite prevalence, as determined by PCR, did not differ statistically in the control site (40.6% to 40.1%, P = 0.730) but decreased at the intervention site (55.9% to 46.4%, P < 0.0001). Parasite prevalence by RDT, however, indicated statistical reduction in the control site (25.3% to 22.3%, P = 0.017) and no change in the intervention site (35.1% to 36.0%, P = 0.614). The model predicted a mild effect of both diagnostic sensitivity and human movement in diminishing the impact of MTTT in the study sites. CONCLUSIONS Asymptomatic parasite prevalence at the molecular level reduced significantly in the site where the uRDT was used but not where the cRDT was used. Overall, the uRDT exhibited higher sensitivity relative to the cRDT. Highly sensitive molecular techniques such as PET-PCR should be included in parasite prevalence estimation during MTTT exercises.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ndong Ignatius Cheng
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Festus Kojo Acquah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Susan Adu-Amankwah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Gyama Bredu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benedicta A Mensah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sherik-Fa Anang
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bernice Cubson Abban
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abena Busayomi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sebastian Shine Kwarpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prosper Kofi Tey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Elizabeth Cudjoe
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Tobias McKenzie Holden
- Department of Preventive Medicine and Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Justice Nonvignon
- Department of Health Policy, Planning and Management, School of Public Health, College of Health Sciences, University of Ghana, P. O. Box LG13, Legon, Ghana
| | - Collins Ahorlu
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Kayiba NK, Nitahara Y, Tshibangu-Kabamba E, Mbuyi DK, Kabongo-Tshibaka A, Kalala NT, Tshiebue BM, Candray-Medina KS, Kaku N, Nakagama Y, Speybroeck N, Mumba DN, Disashi GT, Kaneko A, Kido Y. Malaria infection among adults residing in a highly endemic region from the Democratic Republic of the Congo. Malar J 2024; 23:82. [PMID: 38500094 PMCID: PMC10946143 DOI: 10.1186/s12936-024-04881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Adults infected with Plasmodium spp. in endemic areas need to be re-evaluated in light of global malaria elimination goals. They potentially undermine malaria interventions but remain an overlooked aspect of public health strategies. METHODS This study aimed to estimate the prevalence of Plasmodium spp. infections, to identify underlying parasite species, and to assess predicting factors among adults residing in an endemic area from the Democratic Republic of Congo (DRC). A community-based cross-sectional survey in subjects aged 18 years and above was therefore carried out. Study participants were interviewed using a standard questionnaire and tested for Plasmodium spp. using a rapid diagnostic test and a nested polymerase chain reaction assay. Logistic regression models were fitted to assess the effect of potential predictive factors for infections with different Plasmodium spp. RESULTS Overall, 420 adults with an estimated prevalence of Plasmodium spp. infections of 60.2% [95% CI 55.5; 64.8] were included. Non-falciparum species infected 26.2% [95% CI 22.2; 30.5] of the study population. Among infected participants, three parasite species were identified, including Plasmodium falciparum (88.5%), Plasmodium malariae (39.9%), and Plasmodium ovale (7.5%) but no Plasmodium vivax. Mixed species accounted for 42.3% of infections while single-species infections predominated with P. falciparum (56.5%) among infected participants. All infected participants were asymptomatic at the time of the survey. Adults belonging to the "most economically disadvantaged" households had increased risks of infections with any Plasmodium spp. (adjusted odds ratio, aOR = 2.87 [95% CI 1.66, 20.07]; p < 0.001), compared to those from the "less economically disadvantaged" households. Conversely, each 1 year increase in age reduced the risk of infections with any Plasmodium spp. (aOR = 0.99 [95% CI 0.97, 0.99]; p = 0.048). Specifically for non-falciparum spp., males had increased risks of infection than females (aOR = 1.83 [95% CI 1.13, 2.96]; p = 0.014). CONCLUSION Adults infected with malaria constitute a potentially important latent reservoir for the transmission of the disease in the study setting. They should specifically be taken into account in public health measures and translational research.
Collapse
Affiliation(s)
- Nadine Kalenda Kayiba
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Public Health, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| | - Yuko Nitahara
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Internal Medicine, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
| | - Denis Kalambayi Mbuyi
- Department of Internal Medicine, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
| | - Augustin Kabongo-Tshibaka
- Department of Internal Medicine, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Nestor Tshituka Kalala
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Public Health, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
| | - Barthélemy Mukenga Tshiebue
- Department of Internal Medicine, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
| | - Katherine-Sofia Candray-Medina
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natsuko Kaku
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yu Nakagama
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Niko Speybroeck
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium
| | - Dieudonné Ngoyi Mumba
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Ghislain Tumba Disashi
- Department of Internal Medicine, Faculty of Medicine - Pharmacy and Public Health, University of Mbujimayi, Mbuji Mayi, Democratic Republic of Congo
| | - Akira Kaneko
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yasutoshi Kido
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
- Departments of Virology and Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| |
Collapse
|
7
|
Kwansa‐Bentum H, Aninagyei E, Adedia D, Kortei NK, Agyemang AB, Tettey CO. Elevation of free triiodothyronine (fT3) levels by Plasmodium falciparum independent of thyroid stimulating hormone (TSH) in children with uncomplicated malaria. J Clin Lab Anal 2024; 38:e25013. [PMID: 38270243 PMCID: PMC10873688 DOI: 10.1002/jcla.25013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Malaria parasites have a devastating effect on the infected host. However, there is a paucity of data on the effect of Plasmodium falciparum on thyroid hormones. METHODS This case-control study (1:1) involved children <16 years of age with uncomplicated malaria. Hematological parameters were determined using the URIT-5380 hematology analyzer (China). Later, levels of thyroid hormones, namely free triiodothyronine (fT3), free tetraiodothyronine (fT4), and thyroid-stimulating hormone (TSH), were determined using human ELISA kits (DiaSino ELISA kit, Zhengzhou, China). RESULTS Ninety children with malaria and ninety matched control group were studied. Overall, compared to the control group, lower TSH (3.43 ± 1.25 vs. 3.84 ± 1.34, p = 0.035) and elevated levels of fT3 levels (5.85 ± 1.79 vs. 3.89 ± 1.19, p < 0.001) were observed in patients with malaria. However, fT4 levels were comparable between cases and control group (16.37 ± 2.81 vs 17.06 ± 3.5, p = 0.150). Free T3 levels were significantly higher in children <10 years (p < 0.001) and higher among male children with malaria (p < 0.001). Overall, there was a significant positive relationship between parasite counts and fT3 (R = 0.95, p < 0.001). Furthermore, body temperature was positively correlated with fT3 (R = 0.97, p < 0.001). CONCLUSIONS Isolated fT3 thyrotoxicosis was observed in falciparum malaria, especially in children <10 years and male malaria patients, independent of TSH. This observation could explain the severity of malaria in children.
Collapse
Affiliation(s)
- Henrietta Kwansa‐Bentum
- Department of Biomedical Sciences, School of basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| | - David Adedia
- Department of Basic Sciences, School of basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| | - Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Adjoa Boakye Agyemang
- Department of Biomedical Sciences, School of basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| | - Clement Okraku Tettey
- Department of Biomedical Sciences, School of basic and Biomedical SciencesUniversity of Health and Allied SciencesHoGhana
| |
Collapse
|
8
|
Aninagyei E, Puopelle DM, Tukwarlba I, Ghartey-Kwansah G, Attoh J, Adzakpah G, Acheampong DO. Molecular speciation of Plasmodium and multiplicity of P. falciparum infection in the Central region of Ghana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002718. [PMID: 38236793 PMCID: PMC10796036 DOI: 10.1371/journal.pgph.0002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Malaria is endemic in the Central region of Ghana, however, the ecological and the seasonal variations of Plasmodium population structure and the intensity of malaria transmission in multiple sites in the region have not been explored. In this cross-sectional study, five districts in the region were involved. The districts were Agona Swedru, Assin Central and Gomoa East (representing the forest zone) and Abura-Asebu-Kwamankese and Cape Coast representing the coastal zone. Systematically, blood samples were collected from patients with malaria. The malaria status was screened with a rapid diagnostic test (RDT) kit (CareStart manufactured by Access Bio in Somerset, USA) and the positive ones confirmed microscopically. Approximately, 200 μL of blood was used to prepare four dried blood spots of 50μL from each microscopy positive sample. The Plasmodium genome was sequenced at the Malaria Genome Laboratory (MGL) of Wellcome Sanger Institute (WSI), Hinxton, UK. The single nucleotide polymorphisms (SNPs) in the parasite mitochondria (PfMIT:270) core genome aided the species identification of Plasmodium. Subsequently, the complexity of infection (COI) was determined using the complexity of infection likelihood (COIL) computational analysis. In all, 566 microscopy positive samples were sequenced. Of this number, Plasmodium genome was detected in 522 (92.2%). However, whole genome sequencing was successful in 409/522 (72.3%) samples. In total, 516/522 (98.8%) of the samples contained P. falciparum mono-infection while the rest (1.2%) were either P. falciparum/P. ovale (Pf/Po) (n = 4, 0.8%) or P. falciparum/P. malariae/P. vivax (Pf/Pm/Pv) mixed-infection (n = 2, 0.4%). All the four Pf/Po infections were identified in samples from the Assin Central municipality whilst the two Pf/Pm/Pv triple infections were identified in Abura-Asebu-Kwamankese district and Cape Coast metropolis. Analysis of the 409 successfully sequenced genome yielded between 1-6 P. falciparum clones per individual infection. The overall mean COI was 1.78±0.92 (95% CI: 1.55-2.00). Among the study districts, the differences in the mean COI between ecological zones (p = 0.0681) and seasons (p = 0.8034) were not significant. However, regression analysis indicated that the transmission of malaria was more than twice among study participants aged 15-19 years (OR = 2.16, p = 0.017) and almost twice among participants aged over 60 years (OR = 1.91, p = 0.021) compared to participants between 20-59 years. Between genders, mean COI was similar except in Gomoa East where females recorded higher values. In conclusion, the study reported, for the first time, P. vivax in Ghana. Additionally, intense malaria transmission was found to be higher in the 15-19 and > 60 years, compared to other age groups. Therefore, active surveillance for P. vivax in Ghana and enhanced malaria control measures in the 15-19 year group years and those over 60 years are recommended.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Dakorah Mavis Puopelle
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Tukwarlba
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Juliana Attoh
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Godwin Adzakpah
- Department of Health Information Management, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Paintsil EK, Boadi E, Dwamena A, Addo BH, Kumi A, Obiri-Danso K, Ofori LA. Demographic and socio-economic factors affecting bed net ownership, usage, and malaria transmission among adult patients seeking healthcare in two Ghanaian urban cities. BMC Public Health 2024; 24:106. [PMID: 38184552 PMCID: PMC10770894 DOI: 10.1186/s12889-023-17590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The most cost-effective malaria prevention and control strategy is the use of a bed net. However, several factors affect the ownership and usage of bed nets among the adult population. Hence, this study aimed to examine socio-demographic factors affecting bed net ownership, usage and malaria transmission among adult patients seeking healthcare in two Ghanaian urban cities. METHODS This hospital-based cross-sectional study was conducted, between January and September 2021, at Bremang Seventh-Day Adventist Hospital, Suame Municipal, Ashanti Region and Sunyani Municipal Hospital, Sunyani, Bono Region, Ghana. Structured questionnaires were administered to a total of 550 participants to ascertain their ownership and usage of the bed nets. Afterwards, finger prick blood samples were collected for malaria microscopy. Crude and adjusted prevalence ratios (PR) and their respective 95% CIs were calculated, using Poisson regression with robust standard errors, to show associated variables in bivariate and multivariate analyses respectively. R software (version 4.1.1) was used to perform all statistical analyses. RESULTS About 53.3% (n = 293) of participants owned at least one-bed net but only 21.5% (n = 118) slept under it the previous night. Those married were 2.0 (95% CI: 1.6 - 2.5) and 2.4 (95% CI: 1.6 - 3.5) times more likely to own and use a bed net respectively than those who never married. Also, pregnant women were 1.3 (95% CI: 1.1 - 1.6) and 1.8 (95% CI: 1.3 - 2.5) times more likely to own and use a bed net respectively than non-pregnant. Even though income levels were not associated with bed net ownership and usage, students were 0.4 (95% CI: 0.2 - 0.6) and 0.2 (95% CI: 0.1 - 0.5) times less likely to own and use bed net respectively compared to formally employed persons. The overall malaria prevalence rate was 7.8%. Malaria-negative patients were 1.6 (95% CI: 1.2 - 2.0) and 2.4 (95% CI: 1.4 - 4.1) times more likely to own and use bed nets respectively than malaria positive. Patients with tertiary education recorded the lowest malaria prevalence (3.5%, n = 4). None of those with a monthly income > $300 recorded a case of malaria. On the contrary, majority 83%, n/N = 25/30) of the malaria-positive patients earned ≤ $150. CONCLUSION The National Malaria Control Program should conduct comprehensive mapping of all urban population segments before launching mass bed net distribution campaigns, taking into account demographic and socioeconomic factors to enhance bed net utilization and reduce malaria prevalence.
Collapse
Affiliation(s)
- Ellis Kobina Paintsil
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Enoch Boadi
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Bremang Seventh-Day Adventist Hospital, Suame Municipal, Ghana
| | - Anthony Dwamena
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Sunyani Municipal Hospital, Sunyani Municipal, Ghana
| | | | - Agyei Kumi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
10
|
Lakew YY, Fikrie A, Godana SB, Wariyo F, Seyoum W. Magnitude of malaria and associated factors among febrile adults in Siraro District Public Health facilities, West Arsi Zone, Oromia, Ethiopia 2022: a facility-based cross-sectional study. Malar J 2023; 22:259. [PMID: 37674201 PMCID: PMC10483761 DOI: 10.1186/s12936-023-04697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Despite significant efforts made to control malaria in Ethiopia, the disease remains one of the top public health problems in the country. Baseline malaria prevalence and associated factor at high malaria area is important to guide malaria control interventions, there was paucity of information regarding the study area. Therefore, the aim of this study was to determine prevalence of malaria and associated factors among febrile adults in Siraro district health facilities, West Arsi Zone, Oromia, Ethiopia. METHODS Institution-based cross-sectional study was conducted among 317 febrile adult patients at Siraro district health facilities. Structured pre-tested questionnaires were used to collect data. Epi-data version 3.1 and SPSS version 23 were used for data entry and analysis respectively. In order to identify factors associated with malaria infection bivariable and multivariable binary logistic regression analysis was employed, The Adjusted Odds Ratio (AOR) with a 95% confidence interval (CI) and p-value of < 0.05 was computed to show the strength of the association. RESULTS The overall prevalence of malaria at the study area was 130 (41.0%) [(95% CI 35.3-46.7)]. Occupation (being farmer) [(AOR = 6.05; 95% CI 1.38, 26.49)], having poor knowledge on malaria transmission [(AOR = 2.95 95%; CI 1.48-5.88)], house with wood wall [(AOR = 2.71; 95% CI 1.34-5.49)], and number of windows (≥ 3) in the house [(AOR = 6.82; 95% CI 1.05, 44.40)] were identified to be significantly associated with magnitude of malaria in the study area. CONCLUSION The prevalence of malaria at the study area was high as compared with the national wide figures. Being farmer, having poor knowledge on malaria transmission, and housing condition (house with wood wall and houses with three and above windows) were found to be significantly associated with malaria infection in the study area. Therefore, there has to be an emphasis on addressing the factors by providing sustainable health education for the communities to improve their housing condition and knowledge of community on the way of malaria prevention.
Collapse
Affiliation(s)
- Yosef Yohanes Lakew
- Department of Nursing, Pharma College Hawassa Campus, P.O. Box 67, Hawassa, Ethiopia.
| | - Anteneh Fikrie
- Departement of Public Health, Pharma College Hawassa Campus, P.O. Box 67, Hawassa, Ethiopia
| | - Sisay Bedane Godana
- Department of Nursing, Pharma College Hawassa Campus, P.O. Box 67, Hawassa, Ethiopia
| | - Fatuma Wariyo
- Departement of Public Health, Pharma College Hawassa Campus, P.O. Box 67, Hawassa, Ethiopia
| | - Wongelawit Seyoum
- Departement of Public Health, Pharma College Hawassa Campus, P.O. Box 67, Hawassa, Ethiopia
| |
Collapse
|
11
|
Malpartida-Cardenas K, Moser N, Ansah F, Pennisi I, Ahu Prah D, Amoah LE, Awandare G, Hafalla JCR, Cunnington A, Baum J, Rodriguez-Manzano J, Georgiou P. Sensitive Detection of Asymptomatic and Symptomatic Malaria with Seven Novel Parasite-Specific LAMP Assays and Translation for Use at Point-of-Care. Microbiol Spectr 2023; 11:e0522222. [PMID: 37158750 PMCID: PMC10269850 DOI: 10.1128/spectrum.05222-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per μL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications. IMPORTANCE The spread of Plasmodium falciparum parasites with Pfhrp2/3 gene deletions presents a major threat to reliable point-of-care diagnosis with current rapid diagnostic tests (RDTs). Novel molecular diagnostics based on nucleic acid amplification are needed to address this liability. In this work, we overcome this challenge by developing sensitive tools for the detection of Plasmodium falciparum and non-P. falciparum species. Furthermore, we evaluate these tools with a cohort of symptomatic and asymptomatic malaria patients and test a subcohort locally in Ghana. The findings of this work could lead to the implementation of DNA-based diagnostics to fight against the spread of malaria and provide reliable, sensitive, and specific diagnostics at the point of care.
Collapse
Affiliation(s)
- Kenny Malpartida-Cardenas
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Moser
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Linda Eva Amoah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Julius Clemence R. Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- School of Biomedical Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Chenge S, Ngure H, Kanoi BN, Sferruzzi-Perri AN, Kobia FM. Infectious and environmental placental insults: from underlying biological pathways to diagnostics and treatments. Pathog Dis 2023; 81:ftad024. [PMID: 37727973 DOI: 10.1093/femspd/ftad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Because the placenta is bathed in maternal blood, it is exposed to infectious agents and chemicals that may be present in the mother's circulation. Such exposures, which do not necessarily equate with transmission to the fetus, may primarily cause placental injury, thereby impairing placental function. Recent research has improved our understanding of the mechanisms by which some infectious agents are transmitted to the fetus, as well as the mechanisms underlying their impact on fetal outcomes. However, less is known about the impact of placental infection on placental structure and function, or the mechanisms underlying infection-driven placental pathogenesis. Moreover, recent studies indicate that noninfectious environmental agents accumulate in the placenta, but their impacts on placental function and fetal outcomes are unknown. Critically, diagnosing placental insults during pregnancy is very difficult and currently, this is possible only through postpartum placental examination. Here, with emphasis on humans, we discuss what is known about the impact of infectious and chemical agents on placental physiology and function, particularly in the absence of maternal-fetal transmission, and highlight knowledge gaps with potential implications for diagnosis and intervention against placental pathologies.
Collapse
Affiliation(s)
- Samuel Chenge
- Department of Medical Microbiology and Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, off Thika road, P. O. Box 62000-00200 Nairobi, Kenya
| | - Harrison Ngure
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Francis M Kobia
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
13
|
Agaba BB, Rugera SP, Mpirirwe R, Atekat M, Okubal S, Masereka K, Erionu M, Adranya B, Nabirwa G, Odong PB, Mukiibi Y, Ssewanyana I, Nabadda S, Muwanguzi E. Asymptomatic malaria infection, associated factors and accuracy of diagnostic tests in a historically high transmission setting in Northern Uganda. Malar J 2022; 21:392. [PMID: 36550492 PMCID: PMC9783970 DOI: 10.1186/s12936-022-04421-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Asymptomatic malaria infections are important parasite reservoirs and could sustain transmission in the population, but they are often unreported. A community-based survey was conducted to investigate the prevalence and factors associated with asymptomatic malaria infections in a historically high transmission setting in northern Uganda. METHODS Using a cross-sectional design, 288 children aged 2-15 years were enrolled and tested for the presence of malaria parasites using rapid diagnostic tests (RDTs) and blood smear microscopy between January to May 2022. Statistical analysis was performed using the exact binomial and Fisher's exact test with p ≤ 0.05 indicating significance. The logistic regression was used to explore factors associated with asymptomatic malaria infections. RESULTS Overall, the prevalence of asymptomatic infection was 34.7% (95% CI 29.2-40.5) with the highest observed in children 5-10 years 45.9% (95% CI 35.0-57.0). Gweri village accounted for 39.1% (95% CI 27.6-51.6) of malaria infections. Median parasite density was 1500 parasites/µl of blood. Plasmodium falciparum was the dominant species (86%) followed by Plasmodium malariae (5%). Factors associated with asymptomatic malaria infection were sleeping under mosquito net (Adjusted Odds Ratio (aOR) 0.27; 95% CI 0.13-0.56), p = 0.001 and presence of village health teams (VHTs) (aOR 0.02; 95% CI 0.01-0.45), p = 0.001. Sensitivity and specificity were higher for the P. falciparum/pLDH RDTs compared to HRP2-only RDTs, 90% (95% CI 86.5-93.5) and 95.2% (95% CI 92.8-97.7), p = 0.001, respectively. CONCLUSION Asymptomatic malaria infections were present in the study population and this varied with place and person in the different age groups. Plasmodium falciparum was the dominant parasite species however the presence of P. malariae and Plasmodium ovale was observed, which may have implication for the choice and deployment of diagnostic tools. Individuals who slept under mosquito net or had presence of functional VHTs were less likely to have asymptomatic malaria infection. P.f/pLDH RDTs performed better than the routinely used HRP2 RDTs. In view of these findings, investigation and reporting of asymptomatic malaria reservoirs through community surveys is recommended for accurate disease burden estimate and better targeting of control.
Collapse
Affiliation(s)
- Bosco B. Agaba
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda ,grid.415705.2National Malaria Control Division, Ministry of Health, Kampala, Uganda ,National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda ,grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P. Rugera
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ruth Mpirirwe
- grid.11194.3c0000 0004 0620 0548Department of Statistics, Makerere University, Kampala, Uganda
| | - Martha Atekat
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Samuel Okubal
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Khalid Masereka
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Miseal Erionu
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bosco Adranya
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Gertrude Nabirwa
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick B. Odong
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Yasin Mukiibi
- Uganda Institute of Allied and Management Sciences, Kampala, Uganda
| | - Isaac Ssewanyana
- National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda ,grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Susan Nabadda
- National Malaria Reference Laboratory, Central Public Health Laboratory Services, Kampala, Uganda
| | - Enoch Muwanguzi
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda ,Uganda Institute of Allied and Management Sciences, Kampala, Uganda
| |
Collapse
|
14
|
Abebaw A, Aschale Y, Kebede T, Hailu A. The prevalence of symptomatic and asymptomatic malaria and its associated factors in Debre Elias district communities, Northwest Ethiopia. Malar J 2022; 21:167. [PMID: 35659661 PMCID: PMC9166605 DOI: 10.1186/s12936-022-04194-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major cause of morbidity and mortality worldwide. According to the World Health Organization 2021 malaria report, it is considered to be endemic in 85 countries and territories. Malaria elimination programmes have also faced many challenges, such as widespread asymptomatic carriers in endemic regions, and they should be considered in malaria-control programmes in endemic areas for successful transmission interruption. This study aimed to assess the prevalence of symptomatic and asymptomatic malaria infections, and associated factors in Debre Elias district communities, Northwest Ethiopia from May to Jun 2018. METHODS A community-based cross-sectional study was conducted among selected kebeles in Debre Elias district, Amhara region, North-western Ethiopia. Multi-stage sampling technique was carried out to select representative households. A total of 440 randomly selected households were included, of which one individual per household was sampled for laboratory examination. Malaria prevalence was determined by light microscopy of stained blood films and using CareStart™ Malaria HRP2/pLDH (Pf/Pv) Combo rapid diagnostic test (RDT). A structured questionnaire was employed to collect socio-demographic data and associated risk factors. Data entry and analysis were carried out using Epi data 3.1 and SPSS version 23 software, respectively. The association between dependent and independent variables was explored by using bivariate and multivariate logistic regression analyses. Statistically significant association was declared at P-value of < 0.05. RESULTS A total of 440 (333 asymptomatic and 107 symptomatic) individuals were included in this study. The overall prevalence of malaria was 5% with the majority (59.1%) of infections caused by Plasmodium falciparum. Among asymptomatic participants, 4.8% (n = 16, 95% CI = 2.6-7.3) and 4.2% (n = 14, 95% CI = 2.1-6.5) were diagnosed and confirmed by RDT and light microscopy respectively. Similarly, the prevalence of malaria among 107 symptomatic individuals was 7.5% (n = 8, 95% CI = 2.8-12.6) by either RDT or light microscopy. Utilization of insecticide-treated net (ITN), availability of ITN, house with eave, previous history of malaria infection, and family history of malaria infection were significantly associated with malaria infection (P < 0.05). CONCLUSION In this study, the prevalence of asymptomatic and symptomatic malaria was moderate. Screening of both symptomatic and asymptomatic malaria in the community is very important to scale up intervention programmes.
Collapse
Affiliation(s)
- Abtie Abebaw
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, P.O. Box: 269, Debre Markos, Ethiopia.
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, P.O. Box: 269, Debre Markos, Ethiopia
| | - Tadesse Kebede
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Fuehrer HP, Campino S, Sutherland CJ. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar J 2022; 21:138. [PMID: 35505317 PMCID: PMC9066925 DOI: 10.1186/s12936-022-04151-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
During the twentieth century, there was an explosion in understanding of the malaria parasites infecting humans and wild primates. This was built on three main data sources: from detailed descriptive morphology, from observational histories of induced infections in captive primates, syphilis patients, prison inmates and volunteers, and from clinical and epidemiological studies in the field. All three were wholly dependent on parasitological information from blood-film microscopy, and The Primate Malarias” by Coatney and colleagues (1971) provides an overview of this knowledge available at that time. Here, 50 years on, a perspective from the third decade of the twenty-first century is presented on two pairs of primate malaria parasite species. Included is a near-exhaustive summary of the recent and current geographical distribution for each of these four species, and of the underlying molecular and genomic evidence for each. The important role of host transitions in the radiation of Plasmodium spp. is discussed, as are any implications for the desired elimination of all malaria species in human populations. Two important questions are posed, requiring further work on these often ignored taxa. Is Plasmodium brasilianum, circulating among wild simian hosts in the Americas, a distinct species from Plasmodium malariae? Can new insights into the genomic differences between Plasmodium ovale curtisi and Plasmodium ovale wallikeri be linked to any important differences in parasite morphology, cell biology or clinical and epidemiological features?
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
16
|
Kobia FM, Maiti K, Obimbo MM, Smith R, Gitaka J. Potential pharmacologic interventions targeting TLR signaling in placental malaria. Trends Parasitol 2022; 38:513-524. [DOI: 10.1016/j.pt.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
17
|
Emechebe C, Okpe AE, Eyong EM, Njoku CO. The Rate of Asymptomatic Plasmodium Parasitemia and Placental Parasitization in Urban and Rural Areas of Cross River State, Nigeria. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Malaria in pregnancy contributes to feto-maternal morbidity and mortality even in asymptomatic forms of the disease especially in malaria endemic regions such as Nigeria. Objective: To determine the rate of asymptomatic malaria parasitemia and placental parasitization among the rural and urban pregnant women and its feto-maternal effects in Cross River State, Nigeria. Methodology: This was a prospective study of 440 pregnant women in rural and urban settings. Participants completed structured questionnaire and also have their blood samples and placentas examined for presence of malaria parasites by microscopy and histology respectively. Maternal hemoglobin concentration, birth weight, neonatal length, Apgar score and other anthropometric measurements were obtained to assess feto-maternal effect of asymptomatic malaria parasitemia and placental parasitisation in pregnancy. Data were analyzed using SPSS version 21.0 and level of significance was set as 0.05. ResultsThe prevalence of asymptomatic malaria parasitemia was 40.2% while malaria placental parasitization was 70.2%. Based on residential status, 49.5% of rural residents had malaria parasitemia which is significantly higher than their urban resident counterparts 30.9% (p=0.000). The prevalence of placental parasitization was significantly higher among rural residents 80.9% than their urban resident counterparts 59.5% (p=0.000). Concerning obstetric outcome of patients with positive malaria placental parasitisation, preterm delivery, low 5th minutes Apgar score (<7), low birth weight (<2.5kg) and low neonatal length were significantly higher in pregnancy with positive placental parasitisation than in women with negative placental malaria parasitisation. Also, preterm delivery, anemia, low 5th minutes Apgar score (<7) and low birth weight (<2.5kg) were significantly higher in pregnancy with positive malaria parasitemia than women with negative malaria parasitemia. ConclusionAsymptomatic malaria parasitemia (40.2%) and malaria placental parasitization (70.2%) in this study is high and contributes to poor obstetric outcomes mostly in the rural areas. Rural pregnant women have the highest burden than the urban women. Promotion of the use of ITNs, IPT during pregnancy and other malaria preventive measures are necessary especially in rural areas where malaria burden is highest.
Collapse
|
18
|
Amoah LE, Asare KK, Dickson D, Anang SF, Busayo A, Bredu D, Asumah G, Peprah N, Asamoah A, Abuaku B, Malm KL. Nationwide molecular surveillance of three Plasmodium species harboured by symptomatic malaria patients living in Ghana. Parasit Vectors 2022; 15:40. [PMID: 35090545 PMCID: PMC8796507 DOI: 10.1186/s13071-022-05153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical presentations of malaria in Ghana are primarily caused by infections containing microscopic densities of Plasmodium falciparum, with a minor contribution from Plasmodium malariae and Plasmodium ovale. However, infections containing submicroscopic parasite densities can result in clinical disease. In this study, we used PCR to determine the prevalence of three human malaria parasite species harboured by suspected malaria patients attending healthcare facilities across the country. METHODS Archived dried blood spots on filter paper that had been prepared from whole blood collected from 5260 patients with suspected malaria attending healthcare facilities across the country in 2018 were used as experimental material. Plasmodium species-specific PCR was performed on DNA extracted from the dried blood spots. Demographic data and microscopy data for the subset of samples tested were available from the original study on these specimens. RESULTS The overall frequency of P. falciparum, P. malariae and P. ovale detected by PCR was 74.9, 1.4 and 0.9%, respectively. Of the suspected symptomatic P. falciparum malaria cases, 33.5% contained submicroscopic densities of parasites. For all regions, molecular diagnosis of P. falciparum, P. malariae and P. ovale was significantly higher than diagnosis using microscopy: up to 98.7% (75/76) of P. malariae and 97.8% (45/46) of P. ovale infections detected by PCR were missed by microscopy. CONCLUSION Plasmodium malariae and P. ovale contributed to clinical malaria infections, with children aged between 5 and 15 years harbouring a higher frequency of P. falciparum and P. ovale, whilst P. malariae was more predominant in individuals aged between 10 and 20 years. More sensitive point-of-care tools are needed to detect the presence of low-density (submicroscopic) Plasmodium infections, which may be responsible for symptomatic infections.
Collapse
Affiliation(s)
- Linda E Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Kwame K Asare
- Department of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Donu Dickson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sherik-Fa Anang
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abena Busayo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Bredu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Nana Peprah
- National Malaria Control Program, Accra, Ghana
| | | | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Nutrition, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | |
Collapse
|
19
|
Osarfo J, Ampofo GD, Tagbor H. Trends of malaria infection in pregnancy in Ghana over the past two decades: a review. Malar J 2022; 21:3. [PMID: 34983534 PMCID: PMC8725495 DOI: 10.1186/s12936-021-04031-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background There has been a global decline in malaria transmission over the past decade. However, not much is known of the impact of this observation on the burden of malaria infection in pregnancy in endemic regions including Ghana. A narrative review was undertaken to help describe trends in malaria infection in pregnancy in Ghana. Among others, such information is important in showing any progress made in malaria in pregnancy control. Methods To describe trends in pregnancy-associated malaria infection in Ghana, a search and review of literature reporting data on the prevalence of asymptomatic Plasmodium falciparum infection in pregnancy was conducted. Results Thirty-six (36) studies, conducted over 1994–2019, were included in the review. In the northern savannah zone with largely seasonal malaria transmission, prevalence appeared to reduce from about 50–60% in 1994–2010 to 13–26% by 2019. In the middle transitional/forest zone, where transmission is perennial with peaks in the rainy season, prevalence apparently reduced from 60% in the late 1990 s to about 5–20% by 2018. In the coastal savannah area, there was apparent reduction from 28 to 35% in 2003–2010 to 5–11% by 2018–2019. The burden of malaria infection in pregnancy continues to be highest among teenagers and younger-aged pregnant women and paucigravidae. Conclusions There appears to be a decline in asymptomatic parasite prevalence in pregnancy in Ghana though this has not been uniform across the different transmission zones. The greatest declines were noticeably in urban settings. Submicroscopic parasitaemia remains a challenge for control efforts. Further studies are needed to evaluate the impact of the reduced parasite prevalence on maternal anaemia and low birthweight and to assess the local burden of submicroscopic parasitaemia in relation to pregnancy outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04031-3.
Collapse
Affiliation(s)
- Joseph Osarfo
- Department of Community Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - Gifty Dufie Ampofo
- Department of Community Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Harry Tagbor
- Department of Community Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| |
Collapse
|
20
|
Akindeh NM, Ngum LN, Niba PTN, Ali IM, Ayem OLO, Chedjou JPK, Fomboh CT, Ekollo AHM, Mbu’u CM, Mbacham WF. Assessing Asymptomatic Malaria Carriage of Plasmodium falciparum and Non- falciparum Species in Children Resident in Nkolbisson, Yaoundé, Cameroon. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8110960. [PMID: 34828673 PMCID: PMC8623063 DOI: 10.3390/children8110960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
Malaria is still a threat to public health as it remains the first endemic disease in the world. It is a pervasive parasitic disease in tropical and subtropical regions where asymptomatic malaria infection among humans serves as a significant reservoir for transmission. A rapid and correct diagnosis is considered to be an important strategy in the control of the disease especially in children, who are the most vulnerable group. This study assessed the prevalence of asymptomatic malaria in children at the Nkolbisson health area in Yaoundé, Cameroon. A cross-sectional study design and a convenience sampling plan were used. A total of 127 participants were recruited after informed and signed consent from parents and/or guardians. Blood samples were collected by finger-pricking and venipuncture from children aged 6 months to 10 years and then screened for asymptomatic parasitemia by a rapid diagnostic test (RDT), light microscopy (LM) staining with Giemsa and 18S rRNA polymerase chain reaction (PCR) for speciation. The data were analyzed using SPSS version 20 software. The study identified 85 children who were positive from the PCR, 95 positive from the RDT and 71 from the LM, revealing a malaria prevalence of 66.9%, 74.8% and 55.9%, respectively. The prevalence was not observed to be dependent on the sex and age group of the participants. Plasmodium falciparum was the predominant species followed by Plasmodium malariae and then Plasmodium ovale. The RDT and LM had the same sensitivity (90.6%) with a slight difference in their specificity (RDT: 57.1%; LM: 54.8%). The RDT also demonstrated higher positive and negative predictive values compared with those of the LM.
Collapse
Affiliation(s)
- Nji Mbuh Akindeh
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
- Correspondence: (N.M.A.); (W.F.M.); Tel.: +237-675354405 (N.M.A.); +237-677579180 (W.F.M.)
| | - Lesley Ngum Ngum
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
- Institute of Medicine and Medicinal Plants Studies, Dschang 00237, Cameroon
| | - Peter Thelma Ngwa Niba
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
| | - Innocent Mbulli Ali
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang 00237, Cameroon
| | - Ornella Laetitia Oben Ayem
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
| | - Jean Paul Kengne Chedjou
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon
| | - Calvino Tah Fomboh
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
| | - Aristid Herve Mbange Ekollo
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Institut Universitaire de Technologie, University of Ngoundere, Ngoundere BP 61207, Cameroon
| | - Cyrille Mbanwi Mbu’u
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Microbiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 3851, Cameroon
| | - Wilfred Fon Mbacham
- Biotechnology Center, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon; (L.N.N.); (P.T.N.N.); (I.M.A.); (O.L.O.A.); (J.P.K.C.); (C.T.F.); (A.H.M.E.); (C.M.M.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
- Department of Biochemistry, Faculty of Medicine and Biomedical Science, University of Yaoundé I, Messa, Yaoundé P.O. Box 3851, Cameroon
- Correspondence: (N.M.A.); (W.F.M.); Tel.: +237-675354405 (N.M.A.); +237-677579180 (W.F.M.)
| |
Collapse
|
21
|
Epidemiological, Physiological and Diagnostic Comparison of Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Diagnostics (Basel) 2021; 11:diagnostics11101900. [PMID: 34679597 PMCID: PMC8534334 DOI: 10.3390/diagnostics11101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays, Plasmodium ovale is divided into two non-recombinant sympatric species: Plasmodium ovale wallikeri and Plasmodium ovale curtisi. In this mini review, we summarize the available knowledge on the clinical/biological aspects of P. ovale spp. malaria and current techniques for the diagnosis/characterisation of P. ovale curtisi and P. ovale wallikeri. P. ovale wallikeri infections are characterized by a deeper thrombocytopenia and shorter latency compared to P. ovale curtisi infections, indicating that P. ovale wallikeri is more pathogenic than P. ovale curtisi. Rapid diagnosis for effective management is difficult for P. ovale spp., since specific rapid diagnostic tests are not available and microscopic diagnosis, which is recognized as the gold standard, requires expert microscopists to differentiate P. ovale spp. from other Plasmodium species. Neglect in addressing these issues in the prevalence of P. ovale spp. represents the existing gap in the fight against malaria.
Collapse
|
22
|
Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, Goldberg DE, Istvan ES, Lee M, Lukens AK, McNamara CW, Niles JC, Okombo J, Pasaje CFA, Siegel MG, Wirth D, Wyllie S, Fidock DA, Baragaña B, Winzeler EA, Gilbert IH. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infect Dis 2021; 7:2764-2776. [PMID: 34523908 PMCID: PMC8608365 DOI: 10.1021/acsinfecdis.1c00322] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
There is a shift
in antimalarial drug discovery from phenotypic
screening toward target-based approaches, as more potential drug targets
are being validated in Plasmodium species. Given
the high attrition rate and high cost of drug discovery, it is important
to select the targets most likely to deliver progressible drug candidates.
In this paper, we describe the criteria that we consider important
for selecting targets for antimalarial drug discovery. We describe
the analysis of a number of drug targets in the Malaria Drug Accelerator
(MalDA) pipeline, which has allowed us to prioritize targets that
are ready to enter the drug discovery process. This selection process
has also highlighted where additional data are required to inform
target progression or deprioritization of other targets. Finally,
we comment on how additional drug targets may be identified.
Collapse
Affiliation(s)
- Barbara Forte
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrew Plater
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | | | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Eva S. Istvan
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marcus Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Amanda K. Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Charisse Flerida A. Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge Massachusetts 02139-4307, United States
| | | | - Dyann Wirth
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts 02142, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
23
|
A Comprehensive Survey of Asymptomatic Malaria Cases in an Endemic Focus in Iran: A Successful Experience on the Road to Eliminate Malaria. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Malaria is one of the important infectious blood diseases caused by the protozoan parasite of the genus Plasmodium and transmitted by female Anopheles mosquito bites. A malaria elimination plan is currently being followed in Hormozgan Province. The robust malaria surveillance system with appropriate active case findings, especially asymptomatic cases, plays an important role in the malaria elimination program. Objectives: The main objectives of this research were to determine the presence and prevalence of asymptomatic malaria cases and monitor asymptomatic parasitic reservoirs in Jask District, Hormozgan Province. Methods: This cross-sectional study aimed to evaluate and monitor asymptomatic cases in the Jask District. The purpose and stages of the study were explained to all participants/parents, and written informed consent was obtained. A total of 230 asymptomatic residents (124 females and 86 males) were randomly selected, and their blood samples (3 mL) were taken to assess Plasmodium infection using microscopic, RDT, and molecular (18ssrRNA) methods. Results: Of the 230 studied cases, 54.8% were females, and 454.2% were males. The age range was four to 65 years old, and the mean age was 24.5. None of the diagnostic methods, including the microscopic, serological, and molecular techniques, could find asymptomatic malaria cases in the study area. Conclusions: It can be concluded that Malaria Elimination Program is feasible in the Jask Region irrespective of asymptomatic parasitic reservoirs. The results also emphasize a robust and efficient malaria surveillance system to diagnose and treat positive cases and monitor treated cases successfully. Ongoing and continuous studies are recommended in the high-risk malarious area of Hormozgan Province to monitor asymptomatic cases of malaria.
Collapse
|
24
|
Hawadak J, Dongang Nana RR, Singh V. Global trend of Plasmodium malariae and Plasmodium ovale spp. malaria infections in the last two decades (2000-2020): a systematic review and meta-analysis. Parasit Vectors 2021; 14:297. [PMID: 34082791 PMCID: PMC8173816 DOI: 10.1186/s13071-021-04797-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/20/2021] [Indexed: 11/11/2022] Open
Abstract
Background Recent studies indicate that the prevalence of non-falciparum malaria, including Plasmodium malariae and Plasmodium ovale spp., is increasing, with some complications in infected individuals. The aim of this review is to provide a better understanding of the malaria prevalence and disease burden due to P. malariae and P. ovale spp. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Joanna Briggs Institute prevalence study assessment tool were used to select and evaluate the studies, respectively. Six databases: PubMed, WHOLIS, Wiley Library, ScienceDirect, Web of Science and Google Scholar were used to screen articles published during the period January 2000–December 2020. The pooled prevalence estimates for P. malariae and P. ovale spp. were analysed using a random-effects model and the possible sources of heterogeneity were evaluated through subgroup analysis and meta-regression. Results Out of the 3297 studies screened, only 113 studies were included; among which 51.33% were from the African Region. The P. malariae and P. ovale spp. pooled prevalence were 2.01% (95% CI 1.31–2.85%) and 0.77% (95% CI 0.50–1.10%) respectively, with the highest prevalence in the African Region. P. malariae was equally distributed among adults (2.13%), children (2.90%) and pregnant women (2.77%) (p = 0.862), whereas P. ovale spp. was more prevalent in pregnant women (2.90%) than in children ≤ 15 years (0.97%) and in patients > 15 years old (0.39%) (p = 0.021). In this review, data analysis revealed that P. malariae and P. ovale spp. have decreased in the last 20 years, but not significantly, and these species were more commonly present with other Plasmodium species as co-infections. No difference in prevalence between symptomatic and asymptomatic patients was observed for either P. malariae or P. ovale spp. Conclusion Our analysis suggests that knowledge of the worldwide burden of P. malariae and P. ovale spp. is very important for malaria elimination programmes and a particular focus towards improved tools for monitoring transmission for these non-falciparum species should be stressed upon to deal with increased infections in the future. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04797-0.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India
| | - Rodrigue Roman Dongang Nana
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India.,Institute of Medical Research and Medicinal Plants Studies, PO Box 13033, Yaoundé, Cameroon
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New-Delhi, 110077, India.
| |
Collapse
|
25
|
Tilaye T, Tessema B, Alemu K. Malaria Infection is High at Transit and Destination Phases Among Seasonal Migrant Workers in Development Corridors of Northwest Ethiopia: A Repeated Cross-Sectional Study. Res Rep Trop Med 2021; 12:107-121. [PMID: 34079425 PMCID: PMC8165298 DOI: 10.2147/rrtm.s306001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/24/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Malaria is a leading public health problem in Ethiopia. Every year, thousands of seasonal farm workers travel to farm corridors in Northwest Ethiopia and fall at risk of malaria infection. However, the magnitude of malaria infection and risk factors during harvest time were not well identified. This study aimed at estimating the prevalence and risk factors of malaria infection among seasonal migrant workers in Northwest Ethiopia. Methods A repeated cross-sectional study was conducted at transit and destination phases in Metema district from September 15, 2018 to October 30, 2019. Data were collected using a structured questionnaire. A capillary blood sample was collected to examine infection with malaria parasite using a microscope. A multivariate logistic regression technique was used to determine risk factors. Results The malaria prevalence at transit and destination phases among migrant workers was 13.5% (95% CI: 12.07–14.93%) and 18.7% (95% CI: 16.40–21.02%), respectively. The combined prevalence was 16.1% (95% CI: 14.67–17.63%). The odds of malaria infection among migrant workers at the destination phase was 1.5 (OR=1.5, 95% CI 1.167–1.846) times higher compared to the transit phase. Education (AOR=8.198; 95% CI: 4.318–15.564), knowledge of antimalarial drugs (AOR=2.4; 95% CI: 1.43–3.95), and use of long-lasting insecticidal nets (AOR=5.0; 95% CI: 3.34–4.43) were significantly associated with malaria infection at migration phases. Conclusion This study showed that the burden of malaria among seasonal migrant workers was high at transit and destination phases. Malaria prevalence was higher at the destination phase compared to the transit phase. A tailored malaria prevention intervention is needed including awareness creation, screening, treatment, repellent, and prophylaxis at both phases to reduce malaria infections.
Collapse
Affiliation(s)
- Tesfaye Tilaye
- Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Medical Laboratory, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kassahun Alemu
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
26
|
Kamaliddin C, Sutherland CJ, Houze S, Cottrell G, Briand V, Mogollon DC, Pillai DR. The role of ultra-sensitive molecular methods for detecting malaria - the broader perspective. Clin Infect Dis 2021; 73:e1387-e1390. [PMID: 33693719 DOI: 10.1093/cid/ciab221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ultra-sensitive molecular diagnostics are lowering the limit of detection for malaria parasites in the blood and providing insights not captured by conventional tool such as microscopy and rapid antigen tests. Low-level malaria infections identified by molecular tools may influence clinical outcomes, transmission events, and elimination efforts. While many ultra-sensitive molecular methods require well-equipped laboratories, technologies such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) provide more portable and analytically sensitive solutions. These tools may benefit asymptomatic patient screening, antenatal care, and elimination campaigns. We review the recent evidence, offer our perspective on the impact of these new tests and identify future research priorities.
Collapse
Affiliation(s)
- Claire Kamaliddin
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, UK
| | - Sandrine Houze
- UMR261 - MERIT, IRD, Faculté de Pharmacie, Université de Paris, Paris, Île-de-France.,Centre National de Référence pour le Paludisme, Bichat-Claude Bernard Hospital, Paris, France
| | - Gilles Cottrell
- UMR261 - MERIT, IRD, Faculté de Pharmacie, Université de Paris, Paris, Île-de-France
| | - Valerie Briand
- Institut de Recherche pour le Développement (IRD), Inserm, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Daniel Castaneda Mogollon
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Dylan R Pillai
- Department of Microbiology, Immunology, and Infectious Disease, Cumming School of Medicine, University of Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|
27
|
Brown CA, Pappoe-Ashong PJ, Duah N, Ghansah A, Asmah H, Afari E, Koram KA. High frequency of the Duffy-negative genotype and absence of Plasmodium vivax infections in Ghana. Malar J 2021; 20:99. [PMID: 33596926 PMCID: PMC7888148 DOI: 10.1186/s12936-021-03618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies from different malaria-endemic regions including western Africa have now shown that Plasmodium vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people, though the Duffy-negative phenotype was thought to confer complete refractoriness against blood invasion with P. vivax. The actual prevalence of P. vivax in local populations in Ghana is unknown and little information is available about the distribution of Duffy genotypes. The aim of this study was to assess the prevalence of P. vivax in both asymptomatic and symptomatic outpatients and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit (SSU) rRNA genes. For P. vivax detection, a second PCR of the central region of the Pvcsp gene was carried out. Duffy blood group genotyping was performed by allele-specific PCR to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) due to Plasmodium malariae, and 2 infections (0.0034%) due to Plasmodium ovale. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a−b−). Conclusions No cases of P. vivax were detected by both PCRs and majority of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that had not been investigated in Ghana before.
Collapse
Affiliation(s)
- Charles A Brown
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Prince J Pappoe-Ashong
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nancy Duah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Harry Asmah
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Edwin Afari
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
28
|
Anabire NG, Aryee PA, Ziblim Z, Suurbaar J, Ansah F, Helegbe GK. Asymptomatic malaria and hepatitis B do not influence cytokine responses of persons involved in chronic sedentary activities. BMC Infect Dis 2020; 20:957. [PMID: 33317454 PMCID: PMC7737354 DOI: 10.1186/s12879-020-05692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Background Chronic Sedentary lifestyles have been linked to increased odds of stress, elevated anxiety and diminished wellbeing, inducing cytokine production and predispose to hypertension and other cardiovascular diseases. In endemic areas, Plasmodium falciparum and hepatitis B virus (HBV) infections can trigger pro-inflammatory cytokine responses. However, the impact of these infections on cytokine response profiles in individuals engaged in chronic sedentary activities is unknown. This study was aimed at addressing these concerns using a predominantly sedentary population of traders in the Tamale metropolis of Ghana. Method Four hundred respondents were categorized, based on their number of working years (< or ≥ 5 years) and number of working hours per day (< or ≥ 10 h), into sedentary (≥5 years + ≥ 10 h) and non-sedentary (≥ 5 years + < 10 h, < 5 years + ≥ 10 h and < 5 years + < 10 h) groups. The participants were tested for P. falciparum and HBV infections using polymerase chain reaction. Blood pressure and cytokines responses were measured. Associations and comparison analysis between variables were determined, and test statistics with p < 0.05 were considered statistically significant. Results Infection status included: un-infected (93.5%), P. falciparum mono-infected (1.0%), HBV mono-infected (3.0%) or P. falciparum /HBV co-infected (2.5%). Majority of the participants, 57.0% (n = 228) were involved in chronic sedentary life style. That notwithstanding, sedentary lifestyle was independent of the infection groups (χ2 = 7.08, p = 0.629). Hypertension was diagnosed in 53.8% of respondents and was independent of infection status (X2 = 6.33, p = 0.097). Pro-inflammatory (TNF-α, IL-1β, IL-6, IL-8 and IL-12) and anti-inflammatory (IL-10, IL-7 and IL-13) cytokine responses were similar among individuals with different sedentary working time and between hypertensive and non-hypertensive individuals (p > 0.05 for all comparisons). Among individuals with different infection status, pro-inflammatory (TNF-α; p = 0.290, IL-1β; p = 0.442, IL-6; p = 0.686, IFN-γ; p = 0.801, IL-8; p = 0.546, IL-12; p = 0.154) and anti-inflammatory (IL-10; p = 0.201, IL-7; p = 0.190, IL-13; p = 0.763) cytokine responses were similar. Conclusion Our data suggest that asymptomatic infections of P. falciparum and HBV together with a high prevalence of hypertension did not have any significant impact on cytokine response profiles among predominantly sedentary traders in the Tamale metropolis of Ghana.
Collapse
Affiliation(s)
- Nsoh Godwin Anabire
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana.,Department of Biochemistry & Molecular Medicine, School of Medicine, University for Development Studies, P. O. Box TL, 1883, Tamale, Ghana
| | - Paul Armah Aryee
- Department of Nutritional Sciences, School of Allied Health Sciences, University for Development Studies, P. O. Box TL, 1883, Tamale, Ghana
| | - Zulka Ziblim
- Department of Biochemistry & Molecular Medicine, School of Medicine, University for Development Studies, P. O. Box TL, 1883, Tamale, Ghana
| | - Jonathan Suurbaar
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana
| | - Gideon Kofi Helegbe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P. O. Box LG 54, Legon, Accra, Ghana. .,Department of Biochemistry & Molecular Medicine, School of Medicine, University for Development Studies, P. O. Box TL, 1883, Tamale, Ghana.
| |
Collapse
|