1
|
Guo B, Takala-Harrison S, O’Connor TD. Benchmarking and Optimization of Methods for the Detection of Identity-By-Descent in High-Recombining Plasmodium falciparum Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592538. [PMID: 38746392 PMCID: PMC11092787 DOI: 10.1101/2024.05.04.592538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Genomic surveillance is crucial for identifying at-risk populations for targeted malaria control and elimination. Identity-by-descent (IBD) is increasingly being used in Plasmodium population genomics to estimate genetic relatedness, effective population size (N e ), population structure, and signals of positive selection. Despite its potential, a thorough evaluation of IBD segment detection tools for species with high recombination rates, such as P. falciparum, remains absent. Here, we perform comprehensive benchmarking of IBD callers - probabilistic (hmmIBD, isoRelate), identity-by-state-based (hap-IBD, phased IBD) and others (Refined IBD) - using population genetic simulations tailored for high recombination, and IBD quality metrics at both the IBD segment level and the IBD-based downstream inference level. Our results demonstrate that low marker density per genetic unit, related to high recombination relative to mutation, significantly compromises the accuracy of detected IBD segments. In genomes with high recombination rates resembling P. falciparum, most IBD callers exhibit high false negative rates for shorter IBD segments, which can be partially mitigated through optimization of IBD caller parameters, especially those related to marker density. Notably, IBD detected with optimized parameters allows for more accurate capture of selection signals and population structure; IBD-based N e inference is very sensitive to IBD detection errors, with IBD called from hmmIBD uniquely providing less biased estimates of N e in this context. Validation with empirical data from the MalariaGEN Pf 7 database, representing different transmission settings, corroborates these findings. We conclude that context-specific evaluation and parameter optimization are essential for accurate IBD detection in high-recombining species and recommend hmmIBD for quality-sensitive analysis, such as estimation of N e in these species. Our optimization and high-level benchmarking methods not only improve IBD segment detection in high-recombining genomes but also enhance overall genomic analysis, paving the way for more accurate genomic surveillance and targeted intervention strategies for malaria.
Collapse
Affiliation(s)
- Bing Guo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy D. O’Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Connelly SV, Brazeau NF, Msellem M, Ngasala BE, Aydemir O, Goel V, Niaré K, Giesbrecht DJ, Popkin-Hall ZR, Hennelly C, Park Z, Moormann AM, Ong'echa JM, Verity R, Mohammed S, Shija SJ, Mhamilawa LE, Morris U, Mårtensson A, Lin JT, Björkman A, Juliano JJ, Bailey JA. Strong isolation by distance and evidence of population microstructure reflect ongoing Plasmodium falciparum transmission in Zanzibar. eLife 2024; 12:RP90173. [PMID: 38935423 PMCID: PMC11210957 DOI: 10.7554/elife.90173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.
Collapse
Affiliation(s)
- Sean V Connelly
- MD-PhD Program, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas F Brazeau
- MD-PhD Program, University of North Carolina at Chapel HillChapel HillUnited States
| | - Mwinyi Msellem
- Research Division, Ministry of HealthZanzibarUnited Republic of Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied SciencesDar es SalaamUnited Republic of Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Ozkan Aydemir
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Varun Goel
- Carolina Population Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chris Hennelly
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Zackary Park
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Ann M Moormann
- Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College LondonLondonUnited Kingdom
| | - Safia Mohammed
- Zanzibar Malaria Elimination Program (ZAMEP)ZanzibarUnited Republic of Tanzania
| | - Shija J Shija
- Zanzibar Malaria Elimination Program (ZAMEP)ZanzibarUnited Republic of Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied SciencesDar es SalaamUnited Republic of Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
| | - Andreas Mårtensson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala UniversityUppsalaSweden
| | - Jessica T Lin
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetStockholmSweden
- Department of Global Public Health, Karolinska InstituteStockholmSweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel HillChapel HillUnited States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| |
Collapse
|
3
|
Guo B, Borda V, Laboulaye R, Spring MD, Wojnarski M, Vesely BA, Silva JC, Waters NC, O'Connor TD, Takala-Harrison S. Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum. Nat Commun 2024; 15:2499. [PMID: 38509066 PMCID: PMC10954658 DOI: 10.1038/s41467-024-46659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
Collapse
Affiliation(s)
- Bing Guo
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roland Laboulaye
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (NOVA), Lisbon, Portugal
| | - Norman C Waters
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ishengoma DS, Mandara CI, Madebe RA, Warsame M, Ngasala B, Kabanywanyi AM, Mahende MK, Kamugisha E, Kavishe RA, Muro F, Mandike R, Mkude S, Chacky F, Njau R, Martin T, Mohamed A, Bailey JA, Fola AA. Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania. Malar J 2024; 23:79. [PMID: 38491359 PMCID: PMC10943981 DOI: 10.1186/s12936-024-04901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | | | | | - Erasmus Kamugisha
- Bugando Medical Centre, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Florida Muro
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Ritha Njau
- Malariologist and Public Health Specialist, Dar es Salaam, Tanzania
| | - Troy Martin
- HIV Vaccine Trials Network, Fred Hutch Cancer Research Centre, Seattle, WA, USA
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Florescu SA, Larsen CS, Helleberg M, Marin A, Popescu CP, Schlagenhauf P. Upsurge in cases of travellers' malaria ex Zanzibar indicates that malaria is on the rebound in the archipelago. New Microbes New Infect 2024; 57:101226. [PMID: 38348216 PMCID: PMC10859266 DOI: 10.1016/j.nmni.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Affiliation(s)
- Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | | | - Marie Helleberg
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
- Center of Excellence for Health, Immunity and Infections, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Alexandru Marin
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Corneliu Petru Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Patricia Schlagenhauf
- WHO Collaborating Centre for Travellers' Health, Institute for Epidemiology, Biostatistics and Prevention, University of Zürich Centre for Travel Medicine, MilMedBiol Competence Centre, University of Zürich, Switzerland
| |
Collapse
|
6
|
Connelly SV, Brazeau NF, Msellem M, Ngasala BE, Aydemir Ö, Goel V, Niaré K, Giesbrecht DJ, Popkin-Hall ZR, Hennelly CM, Park Z, Moormann AM, Ong'echa JM, Verity R, Mohammed S, Shija SJ, Mhamilawa LE, Morris U, Mårtensson A, Lin JT, Björkman A, Juliano JJ, Bailey JA. Strong isolation by distance and evidence of population microstructure reflect ongoing Plasmodium falciparum transmission in Zanzibar. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.15.23285960. [PMID: 36865135 PMCID: PMC9980253 DOI: 10.1101/2023.02.15.23285960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania, and continued local transmission. To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo District on the coastal mainland from 2016-2018. Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Our data support importation as a main source of genetic diversity and contribution to the parasite population on Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive for malaria reemergence due to susceptible hosts and competent vectors.
Collapse
Affiliation(s)
- Sean V Connelly
- MD-PhD Program, University of North Carolina, Chapel Hill, NC 27599
| | | | - Mwinyi Msellem
- Research Division, Ministry of Health, Zanzibar, Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Özkan Aydemir
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Varun Goel
- Carolina Population Center, University of North Carolina, Chapel Hill, NC 27599
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Zackary Park
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Ann M Moormann
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London
| | - Safia Mohammed
- Zanzibar Malaria Elimination Program (ZAMEP), Zanzibar, Tanzania
| | - Shija J Shija
- Zanzibar Malaria Elimination Program (ZAMEP), Zanzibar, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Andreas Mårtensson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jessica T Lin
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Anders Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, 27599 USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912 USA
| |
Collapse
|
7
|
Holzschuh A, Lerch A, Fakih BS, Aliy SM, Ali MH, Ali MA, Bruzzese DJ, Yukich J, Hetzel MW, Koepfli C. Using a mobile nanopore sequencing lab for end-to-end genomic surveillance of Plasmodium falciparum: A feasibility study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002743. [PMID: 38300956 PMCID: PMC10833559 DOI: 10.1371/journal.pgph.0002743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Genomic epidemiology holds promise for malaria control and elimination efforts, for example by informing on Plasmodium falciparum genetic diversity and prevalence of mutations conferring anti-malarial drug resistance. Limited sequencing infrastructure in many malaria-endemic areas prevents the rapid generation of genomic data. To address these issues, we developed and validated assays for P. falciparum nanopore sequencing in endemic sites using a mobile laboratory, targeting key antimalarial drug resistance markers and microhaplotypes. Using two multiplexed PCR reactions, we amplified six highly polymorphic microhaplotypes and ten drug resistance markers. We developed a bioinformatics workflow that allows genotyping of polyclonal malaria infections, including minority clones. We validated the panels on mock dried blood spot (DBS) and rapid diagnostic test (RDT) samples and archived DBS, demonstrating even, high read coverage across amplicons (range: 580x to 3,212x median coverage), high haplotype calling accuracy, and the ability to explore within-sample diversity of polyclonal infections. We field-tested the feasibility of rapid genotyping in Zanzibar in close collaboration with the local malaria elimination program using DBS and routinely collected RDTs as sample inputs. Our assay identified haplotypes known to confer resistance to known antimalarials in the dhfr, dhps and mdr1 genes, but no evidence of artemisinin partial resistance. Most infections (60%) were polyclonal, with high microhaplotype diversity (median HE = 0.94). In conclusion, our assays generated actionable data within a few days, and we identified current challenges for implementing nanopore sequencing in endemic countries to accelerate malaria control and elimination.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Bakar S. Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | - Safia Mohammed Aliy
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Daniel J. Bruzzese
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, United States of America
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
8
|
Mkali HR, Lalji SM, Al-Mafazy AW, Joseph JJ, Mwaipape OS, Ali AS, Abbas FB, Ali MH, Hassan WS, Reaves EJ, Kitojo C, Serbantez N, Kabula BI, Nyinondi SS, McKay M, Cressman G, Ngondi JM, Reithinger R. How Real-Time Case-Based Malaria Surveillance Helps Zanzibar Get a Step Closer to Malaria Elimination: Description of Operational Platform and Resources. GLOBAL HEALTH, SCIENCE AND PRACTICE 2023; 11:e2200522. [PMID: 37903584 PMCID: PMC10615242 DOI: 10.9745/ghsp-d-22-00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/26/2023] [Indexed: 11/01/2023]
Abstract
Testing and treating asymptomatic populations have the potential to reduce the population's parasite reservoir and reduce malaria transmission. Zanzibar's malaria case notification (MCN) platform collects detailed sociodemographic and epidemiological data from all confirmed malaria cases to inform programmatic decision-making. We describe the design and operationalization process of the platform and other malaria surveillance resources that are enabling Zanzibar's progress toward malaria elimination.The MCN platform consists of an interactive short message service (SMS) system for case notification, a software application for Android mobile devices, a visual question set and workflow manager, a back-end database server, and a web browser-based application for data analytics, configuration, and management. Malaria case data were collected from August 2012 to December 2021 and reported via SMS from all public and private health facilities to a central database and then to district malaria surveillance officers' mobile devices. Data included patient names, shehia (administrative area), and date of diagnosis, enabling officers to track patients, ideally within 24 hours of reporting. Patients' household members were tested for malaria using conventional rapid diagnostic tests (RDTs). Treatment using artemisinin-based combination therapy was provided for persons testing positive.Between 2012 and 2021, a total of 48,899 index malaria cases were confirmed at health facilities, 22,152 (45.3%) within 24 hours of reporting; 41,886 (85.7%) cases were fully investigated and followed up to the household level. A total of 111,811 additional household members were tested with RDTs, of whom 10,602 (9.5%) were malaria positive.The MCN platform reports malaria case data in near real time, enabling prompt follow-up of index cases and prompt testing and treatment of members in index case households. Along with routine testing and treatment and other preventive interventions, the MCN platform is foundational to the programmatic efforts in further reducing malaria and ultimately eliminating autochthonous malaria transmission in Zanzibar.
Collapse
Affiliation(s)
| | - Shabbir M Lalji
- RTI International, Dar es Salaam, United Republic of Tanzania
| | | | - Joseph J Joseph
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Osia S Mwaipape
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Abdullah S Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Mohamed H Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Wahida S Hassan
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Erik J Reaves
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Dar es Salaam, United Republic of Tanzania
| | - Chonge Kitojo
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Bilali I Kabula
- RTI International, Dar es Salaam, United Republic of Tanzania
| | | | - Mike McKay
- RTI International, Research Triangle Park, USA
| | | | | | | |
Collapse
|
9
|
Holzschuh A, Lerch A, Gerlovina I, Fakih BS, Al-Mafazy AWH, Reaves EJ, Ali A, Abbas F, Ali MH, Ali MA, Hetzel MW, Yukich J, Koepfli C. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat Commun 2023; 14:3699. [PMID: 37349311 PMCID: PMC10287761 DOI: 10.1038/s41467-023-39417-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Erik J Reaves
- U.S. Centers for Disease Control and Prevention, President's Malaria Initiative, Dar es Salaam, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
| |
Collapse
|
10
|
Ali MH, Kitau J, Ali AS, Al-Mafazy AW, Tegegne SG, Ussi O, Musanhu C, Shija SJ, Khatib BO, Mkali H, Mkude S, Makenga G, Kasagama E, Molteni F, Kisoka N, Kitojo C, Serbantez N, Reaves E, Yoti Z. Malaria elimination in Zanzibar: where next? Pan Afr Med J 2023; 45:7. [PMID: 37538363 PMCID: PMC10395111 DOI: 10.11604/pamj.supp.2023.45.1.39804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023] Open
Abstract
In 2018, Zanzibar developed a national malaria strategic plan IV (2018-2023) to guide elimination of malaria by 2023. We assessed progress in the implementation of malaria activities as part of the end-term review of the strategic plan. The review was done between August and October 2022 following the WHO guideline to assess progress made towards malaria elimination, effectiveness of the health systems in delivering malaria case management; and malaria financing. A desk review examined available malaria data, annual work plans and implementation reports for evidence of implemented malaria activities. This was complemented by field visits to selected health facilities and communities by external experts, and interviews with health management teams and inhabitants to authenticate desk review findings. A steady increase in the annual parasite incidence (API) was observed in Zanzibar, from 2.7 (2017) to 3.6 (2021) cases per 1,000 population with marked heterogeneity between areas. However, about 68% of the detected malaria cases were imported into Zanzibar. Malaria case follow-up and investigation increased from <70% in 2017 to 94% and 96% respectively, in 2021. The review noted a 3.7-fold increase of the health allocation in the country's budget, from 31.7 million USD (2017/18) to 117.3 million USD (2022/23) but malaria allocation remained low (<1%). The varying transmission levels in the islands suggest a need for strategic re-orientation of the elimination attempts from a national-wide to a sub-national agenda. We recommend increasing malaria allocation from the health budget to ensure sustainability of malaria elimination interventions.
Collapse
Affiliation(s)
- Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Jovin Kitau
- World Health Organization, Country office, Dar-es-Salaam, Tanzania
| | | | - Abdul-wahid Al-Mafazy
- Second Vice President Office-Zanzibar Country Coordinating Mechanism, Zanzibar, Tanzania
| | | | - Omar Ussi
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | | | - Shija Joseph Shija
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Bakari Omar Khatib
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Humphrey Mkali
- Population Services International, Dar-es-Salaam, Tanzania
| | - Sigsbert Mkude
- Population Services International, Dar-es-Salaam, Tanzania
| | | | | | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Noela Kisoka
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Chonge Kitojo
- US President´s Malaria Initiative, United States Agency for International Development, Dar-es-Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- US President´s Malaria Initiative, United States Agency for International Development, Dar-es-Salaam, United Republic of Tanzania
| | - Erik Reaves
- United States Centers for Disease Control, Dar-es-Salaam, Tanzania
| | - Zabulon Yoti
- World Health Organization, Country office, Dar-es-Salaam, Tanzania
| |
Collapse
|
11
|
Dwivedi-Yu JA, Oppler ZJ, Mitchell MW, Song YS, Brisson D. A fast machine-learning-guided primer design pipeline for selective whole genome amplification. PLoS Comput Biol 2023; 19:e1010137. [PMID: 37068103 PMCID: PMC10138271 DOI: 10.1371/journal.pcbi.1010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Addressing many of the major outstanding questions in the fields of microbial evolution and pathogenesis will require analyses of populations of microbial genomes. Although population genomic studies provide the analytical resolution to investigate evolutionary and mechanistic processes at fine spatial and temporal scales-precisely the scales at which these processes occur-microbial population genomic research is currently hindered by the practicalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA necessary for next-generation sequencing. Here we present swga2.0, an optimized and parallelized pipeline to design selective whole genome amplification (SWGA) primer sets. Unlike previous methods, swga2.0 incorporates active and machine learning methods to evaluate the amplification efficacy of individual primers and primer sets. Additionally, swga2.0 optimizes primer set search and evaluation strategies, including parallelization at each stage of the pipeline, to dramatically decrease program runtime. Here we describe the swga2.0 pipeline, including the empirical data used to identify primer and primer set characteristics, that improve amplification performance. Additionally, we evaluate the novel swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melaninogenica, an important component of the lung microbiome in cystic fibrosis patients, from samples dominated by human DNA.
Collapse
Affiliation(s)
- Jane A. Dwivedi-Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Facebook AI Research, 1 Rathbone Square, London, England
| | - Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Coriell Institute for Medical Research, Camden, New Jersey, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Pilling OA, Reis-Cunha JL, Grace CA, Berry ASF, Mitchell MW, Yu JA, Malekshahi CR, Krespan E, Go CK, Lombana C, Song YS, Amorim CF, Lago AS, Carvalho LP, Carvalho EM, Brisson D, Scott P, Jeffares DC, Beiting DP. Selective whole-genome amplification reveals population genetics of Leishmania braziliensis directly from patient skin biopsies. PLoS Pathog 2023; 19:e1011230. [PMID: 36940219 PMCID: PMC10063166 DOI: 10.1371/journal.ppat.1011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/30/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - João L. Reis-Cunha
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Cooper A. Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alexander S. F. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jane A. Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
| | - Clara R. Malekshahi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christina K. Go
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cláudia Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Camila F. Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel C. Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Bisanzio D, Lalji S, Abbas FB, Ali MH, Hassan W, Mkali HR, Al-Mafazy AW, Joseph JJ, Nyinondi S, Kitojo C, Serbantez N, Reaves E, Eckert E, Ngondi JM, Reithinger R. Spatiotemporal dynamics of malaria in Zanzibar, 2015-2020. BMJ Glob Health 2023; 8:bmjgh-2022-009566. [PMID: 36639160 PMCID: PMC9843203 DOI: 10.1136/bmjgh-2022-009566] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Despite high coverage of malaria interventions, malaria elimination in Zanzibar remains elusive, with the annual number of cases increasing gradually over the last 3 years. OBJECTIVE The aims of the study were to (1) assess the spatiotemporal dynamics of malaria in Zanzibar between 2015 and 2020 and (2) identify malaria hotspots that would allow Zanzibar to develop an epidemiological stratification for more effective and granular intervention targeting. METHODS In this study, we analysed data routinely collected by Zanzibar's Malaria Case Notification (MCN) system. The system collects sociodemographic and epidemiological data from all malaria cases. Cases are passively detected at health facilities (ie, primary index cases) and through case follow-up and reactive case detection (ie, secondary cases). Analyses were performed to identify the spatial heterogeneity of case reporting at shehia (ward) level during transmission seasons. RESULTS From 1 January 2015 to 30 April 2020, the MCN system reported 22 686 index cases. Number of cases reported showed a declining trends from 2015 to 2016, followed by an increase from 2017 to 2020. More than 40% of cases had a travel history outside Zanzibar in the month prior to testing positive for malaria. The proportion of followed up index cases was approximately 70% for all years. Out of 387 shehias, 79 (20.4%) were identified as malaria hotspots in any given year; these hotspots reported 52% of all index cases during the study period. Of the 79 hotspot shehias, 12 were hotspots in more than 4 years, that is, considered temporally stable, reporting 14.5% of all index cases. CONCLUSIONS Our findings confirm that the scale-up of malaria interventions has greatly reduced malaria transmission in Zanzibar since 2006. Analyses identified hotspots, some of which were stable across multiple years. Malaria efforts should progress from a universal intervention coverage approach to an approach that is more tailored to a select number of hotspot shehias.
Collapse
Affiliation(s)
- Donal Bisanzio
- RTI International, Washington, District of Columbia, USA
| | - Shabbir Lalji
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Faiza B Abbas
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Mohamed H Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | - Wahida Hassan
- Zanzibar Malaria Elimination Programme, Ministry of Health, Stone Town, Zanzibar, United Republic of Tanzania
| | | | | | - Joseph J Joseph
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Ssanyu Nyinondi
- RTI International, Dar es Salaam, United Republic of Tanzania
| | - Chonge Kitojo
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Naomi Serbantez
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, United Republic of Tanzania
| | - Erik Reaves
- U.S. President’s Malaria Initiative, U.S. Centers for Disease Control, Dar es Salaam, United Republic of Tanzania
| | - Erin Eckert
- RTI International, Washington, District of Columbia, USA
| | | | | |
Collapse
|
14
|
Das AM, Hetzel MW, Yukich JO, Stuck L, Fakih BS, Al-Mafazy AWH, Ali A, Chitnis N. The impact of reactive case detection on malaria transmission in Zanzibar in the presence of human mobility. Epidemics 2022; 41:100639. [PMID: 36343496 PMCID: PMC9758615 DOI: 10.1016/j.epidem.2022.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria persists at low levels on Zanzibar despite the use of vector control and case management. We use a metapopulation model to investigate the role of human mobility in malaria persistence on Zanzibar, and the impact of reactive case detection. The model was parameterized using survey data on malaria prevalence, reactive case detection, and travel history. We find that in the absence of imported cases from mainland Tanzania, malaria would likely cease to persist on Zanzibar. We also investigate potential intervention scenarios that may lead to elimination, especially through changes to reactive case detection. While we find that some additional cases are removed by reactive case detection, a large proportion of cases are missed due to many infections having a low parasite density that go undetected by rapid diagnostic tests, a low rate of those infected with malaria seeking treatment, and a low rate of follow up at the household level of malaria cases detected at health facilities. While improvements in reactive case detection would lead to a reduction in malaria prevalence, none of the intervention scenarios tested here were sufficient to reach elimination. Imported cases need to be treated to have a substantial impact on prevalence.
Collapse
Affiliation(s)
- Aatreyee M Das
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Joshua O Yukich
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Logan Stuck
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, MacInnis B, Mbwambo D, Garimo I, Chacky F, Aaron S, Lusasi A, Molteni F, Njau R, Cunningham JA, Lazaro S, Mohamed A, Juliano JJ, Bailey J, Ishengoma DS. Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa. Front Cell Infect Microbiol 2022; 12:757844. [PMID: 35909968 PMCID: PMC9326448 DOI: 10.3389/fcimb.2022.757844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.
Collapse
Affiliation(s)
- Beatus M. Lyimo
- National Institute for Medical Research, Dar es Salaam, Tanzania
- School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | | | - David J. Giesbrecht
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | | | - Rashid A. Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Ruth B. Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Bronwyn MacInnis
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute, Boston, MA, United States
| | | | - Issa Garimo
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania
| | | | | | | | - Ritha Njau
- World Health Organization, Country Office, Dar es Salaam, Tanzania
| | - Jane A. Cunningham
- Global Malaria Programme, World Health Organization, Headquarters, Geneva, Switzerland
| | - Samwel Lazaro
- National Malaria Control Programme, Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jonathan J. Juliano
- School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey A. Bailey
- Pathology and Laboratory Medicine, Center for International Health Research, Brown University, Providence, RI, United States
| | - Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Chillo P, Mashili F, Kwesigabo G, Ruggajo P, Kamuhabwa A. Developing a Sustainable Cardiovascular Disease Research Strategy in Tanzania Through Training: Leveraging From the East African Centre of Excellence in Cardiovascular Sciences Project. Front Cardiovasc Med 2022; 9:849007. [PMID: 35402575 PMCID: PMC8990919 DOI: 10.3389/fcvm.2022.849007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Cardiovascular disease (CVD) contribute the largest mortality burden globally, with most of the deaths (80% of all deaths) occurring in low and middle-income countries (LMICs), including Tanzania. Despite the increasing burden, to date, CVD research output is still limited in Tanzania, as it is for many sub-Saharan Africa (SSA) countries. This trend hinders the establishment of locally informed CVD management and policy changes. Here, we aim to review the existing gaps while highlighting the available opportunities for a sustainable CVD research strategy in Tanzania. Methods A rapid review of available literature on CVD research in SSA was conducted, with emphasis on the contribution of Tanzania in the world literature of CVD. Through available literature, we identify strategic CVD research priorities in Tanzania and highlight challenges and opportunities for sustainable CVD research output. Findings Shortage of skilled researchers, inadequate research infrastructure, limited funding, and lack of organized research strategies at different levels (regional, country, and institutional) are among the existing key bottlenecks contributing to the low output of CVD research in Tanzania. There is generally strong global, regional and local political will to address the CVD epidemic. The establishment of the East African Centre of Excellence in Cardiovascular Sciences (EACoECVS) offers a unique opportunity for setting strategies and coordinating CVD research and training for Tanzania and the East African region. Conclusion There is a light of hope for long-term sustainable CVD research output from Tanzania, taking advantage of the ongoing activities and plans for the evolving EACoECVS. The Tanzanian experience can be taken as a lesson for other SSA countries.
Collapse
Affiliation(s)
- Pilly Chillo
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- East African Centre of Excellence in Cardiovascular Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- *Correspondence: Pilly Chillo, ;
| | - Fredirick Mashili
- East African Centre of Excellence in Cardiovascular Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Physiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Gideon Kwesigabo
- East African Centre of Excellence in Cardiovascular Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paschal Ruggajo
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Appolinary Kamuhabwa
- East African Centre of Excellence in Cardiovascular Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Onken A, Haanshuus CG, Miraji MK, Marijani M, Kibwana KO, Abeid KA, Mørch K, Reimers M, Langeland N, Müller F, Jenum PA, Blomberg B. Malaria prevalence and performance of diagnostic tests among patients hospitalized with acute undifferentiated fever in Zanzibar. Malar J 2022; 21:54. [PMID: 35183188 PMCID: PMC8858509 DOI: 10.1186/s12936-022-04067-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Background Control efforts in Zanzibar reduced the burden of malaria substantially from 2000 to 2015, but re-emergence of falciparum malaria has been observed lately. This study evaluated the prevalence of malaria and performance of routine diagnostic tests among hospitalized fever patients in a 1.5 years period in 2015 and 2016. Methods From March 2015 to October 2016, paediatric and adult patients hospitalized with acute undifferentiated fever at Mnazi Mmoja Hospital, Zanzibar were included. The malaria prevalence, and performance of rapid diagnostic test (RDT) and microscopy, were assessed using polymerase chain reaction (PCR) as gold standard. Results The malaria prevalence was 9% (63/731). Children under 5 years old had lower malaria prevalence (5%, 14/260) than older children (15%, 20/131, p = 0.001) and persons aged 16 to 30 years (13%, 15/119, p = 0.02), but not different from persons over 30 years old (6%, 14/217, p = 0.7). All cases had Plasmodium falciparum infection, except for one case of Plasmodium ovale. Ten malaria patients had no history of visiting mainland Tanzania. The RDT had a sensitivity of 64% (36/56) and a specificity of 98% (561/575), and microscopy had a sensitivity of 50% (18/36) and a specificity of 99% (251/254), compared to PCR. The malaria parasitaemia was lower in patients with false negative results on RDT (median 7 × 103 copies/µL, interquartile range [IQR] 2 × 103 – 8 × 104, p = 0.002) and microscopy (median 9 × 103 copies/µL, IQR 8 × 102 – 7 × 104, p = 0.006) compared to those with true positive RDT (median 2 × 105 copies/µL, IQR 3 × 104 – 5 × 105) and microscopy (median 2 × 105 copies/µL, IQR 6 × 104 – 5 × 105). Conclusions The study emphasizes that malaria was a frequent cause of febrile illness in hospitalized patients in Zanzibar in the years 2015-2016, particularly among school age children and young adults. We found evidence of autochthonous malaria transmission in Zanzibar. Compared to PCR, both RDT and microscopy had low sensitivity, and false negative results were associated with low parasitaemia. While low parasitaemia identified only by PCR in a semi-immune individual could be coincidental and without clinical relevance, clinicians should be aware of the risk of false negative results on routine tests.
Collapse
|
18
|
Niang M, Sandfort M, Mbodj AF, Diouf B, Talla C, Faye J, Sane R, Thiam LG, Thiam A, Badiane A, Vigan-Womas I, Diagne N, Diene Sarr F, Mueller I, Sokhna C, White M, Toure-Balde A. Fine-scale Spatiotemporal Mapping of Asymptomatic and Clinical Plasmodium falciparum Infections: Epidemiological Evidence for Targeted Malaria Elimination Interventions. Clin Infect Dis 2021; 73:2175-2183. [PMID: 33677477 DOI: 10.1093/cid/ciab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A detailed understanding of the contribution of the asymptomatic Plasmodium reservoir to the occurrence of clinical malaria at individual and community levels is needed to guide effective elimination interventions. This study investigated the relationship between asymptomatic Plasmodium falciparum carriage and subsequent clinical malaria episodes in the Dielmo and Ndiop villages in Senegal. METHODS The study used a total of 2792 venous and capillary blood samples obtained from asymptomatic individuals and clinical malaria datasets collected from 2013 to 2016. Mapping, spatial clustering of infections, and risk analysis were performed using georeferenced households. RESULTS High incidences of clinical malaria episodes were observed to occur predominantly in households of asymptomatic P falciparum carriers. A statistically significant association was found between asymptomatic carriage in a household and subsequent episode of clinical malaria occurring in that household for each individual year (P values were 0.0017, 6 × 10-5, 0.005, and 0.008 for the years 2013, 2014, 2015, and 2016 respectively) and the combined years (P = 8.5 × 10-8), which was not found at the individual level. In both villages, no significant patterns of spatial clustering of P falciparum clinical cases were found, but there was a higher risk of clinical episodes <25 m from asymptomatic individuals in Ndiop attributable to clustering within households. CONCLUSION The findings provide strong epidemiological evidence linking the asymptomatic P falciparum reservoir to clinical malaria episodes at household scale in Dielmo and Ndiop villagers. This argues for a likely success of a mass testing and treatment intervention to move towards the elimination of malaria in the villages of Dielmo and Ndiop.
Collapse
Affiliation(s)
- Makhtar Niang
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Mirco Sandfort
- Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France.,Sorbonne Université, Collège doctoral, Paris, France
| | - Adja Fatou Mbodj
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Babacar Diouf
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Cheikh Talla
- Institut Pasteur Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Sénégal
| | - Joseph Faye
- Institut Pasteur Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Sénégal
| | - Rokhaya Sane
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Laty Gaye Thiam
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Alassane Thiam
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | - Abdoulaye Badiane
- Institut Pasteur Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Sénégal
| | - Ines Vigan-Womas
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| | | | - Fatoumata Diene Sarr
- Institut Pasteur Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Sénégal
| | - Ivo Mueller
- Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Cheikh Sokhna
- VITROME, Campus international IRD-UCAD, Dakar, Sénégal
| | - Michael White
- Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | - Aissatou Toure-Balde
- Institut Pasteur Dakar, Pôle Immunophysiopathologie & Maladies Infectieuses, Dakar, Sénégal
| |
Collapse
|
19
|
Ndiaye YD, Hartl DL, McGregor D, Badiane A, Fall FB, Daniels RF, Wirth DF, Ndiaye D, Volkman SK. Genetic surveillance for monitoring the impact of drug use on Plasmodium falciparum populations. Int J Parasitol Drugs Drug Resist 2021; 17:12-22. [PMID: 34333350 PMCID: PMC8342550 DOI: 10.1016/j.ijpddr.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
The use of antimalarial drugs is an effective strategy in the fight against malaria. However, selection of drug resistant parasites is a constant threat to the continued use of this approach. Antimalarial drugs are used not only to treat infections but also as part of population-level strategies to reduce malaria transmission toward elimination. While there is strong evidence that the ongoing use of antimalarial drugs increases the risk of the emergence and spread of drug-resistant parasites, it is less clear how population-level use of drug-based interventions like seasonal malaria chemoprevention (SMC) or mass drug administration (MDA) may contribute to drug resistance or loss of drug efficacy. Critical to sustained use of drug-based strategies for reducing the burden of malaria is the surveillance of population-level signals related to transmission reduction and resistance selection. Here we focus on Plasmodium falciparum and discuss the genetic signatures of a parasite population that are correlated with changes in transmission and related to drug pressure and resistance as a result of drug use. We review the evidence for MDA and SMC contributing to malaria burden reduction and drug resistance selection and examine the use and impact of these interventions in Senegal. Throughout we consider best strategies for ongoing surveillance of both population and resistance signals in the context of different parasite population parameters. Finally, we propose a roadmap for ongoing surveillance during population-level drug-based interventions to reduce the global malaria burden.
Collapse
Affiliation(s)
| | | | - David McGregor
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Fatou Ba Fall
- Programme National de Lutte Contre le Paludisme, Senegal.
| | - Rachel F Daniels
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA.
| | | | - Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Simmons University, Boston, MA, USA.
| |
Collapse
|
20
|
Msellem M, Morris U, Soe A, Abbas FB, Ali AW, Barnes R, Frumento P, Ali AS, Mårtensson A, Björkman A. Increased Sensitivity of Plasmodium falciparum to Artesunate/Amodiaquine Despite 14 Years as First-Line Malaria Treatment, Zanzibar. Emerg Infect Dis 2021; 26:1767-1777. [PMID: 32687050 PMCID: PMC7392451 DOI: 10.3201/eid2608.191547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) are first-line treatments for uncomplicated Plasmodium falciparum malaria. ACT resistance is spreading in Asia but not yet in Africa. Reduced effects of ACT partner drugs have been reported but with little information regarding widely used artesunate/amodiaquine (ASAQ). We studied its efficacy in Zanzibar after 14 years as first-line treatment directly by an in vivo, single-armed trial and indirectly by prevalences of different genotypes in the P. falciparum chloroquine-resistance transporter, multidrug-resistance 1, and Kelch 13 propeller domain genes. In vivo efficacy was higher during 2017 (100%; 95% CI 97.4%-100%) than during 2002-2005 (94.7%; 95% CI 91.9%-96.7%) (p = 0.003). Molecular findings showed no artemisinin resistance-associated genotypes and major increases in genotypes associated with high sensitivity/efficacy for amodiaquine than before ASAQ was introduced. Thus, the efficacy of ASAQ is maintained and appears to be increased after long-term use in contrast to what is observed for other ACTs used in Africa.
Collapse
|
21
|
Parr JB, Kieto E, Phanzu F, Mansiangi P, Mwandagalirwa K, Mvuama N, Landela A, Atibu J, Efundu SU, Olenga JW, Thwai KL, Morgan CE, Denton M, Poffley A, Juliano JJ, Mungala P, Likwela JL, Sompwe EM, Rogier E, Tshefu AK, N'Siala A, Kalonji A. Analysis of false-negative rapid diagnostic tests for symptomatic malaria in the Democratic Republic of the Congo. Sci Rep 2021; 11:6495. [PMID: 33753817 PMCID: PMC7985209 DOI: 10.1038/s41598-021-85913-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen's kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC.
Collapse
Affiliation(s)
- Jonathan B Parr
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| | - Eddy Kieto
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Fernandine Phanzu
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Paul Mansiangi
- University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | | | - Nono Mvuama
- University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Ange Landela
- Institut National Pour La Recherche Biomedicale, Kinshasa, Democratic Republic of the Congo
| | - Joseph Atibu
- University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | | | - Jean W Olenga
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Kyaw Lay Thwai
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Camille E Morgan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Madeline Denton
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Alison Poffley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Pomie Mungala
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Joris L Likwela
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Eric M Sompwe
- Programme National de La Lutte Contre Le Paludisme, Kinshasa, Democratic Republic of Congo
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30033, USA
| | - Antoinette K Tshefu
- University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Adrien N'Siala
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| | - Albert Kalonji
- SANRU Asbl (Sante Rurale/Global Fund), Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
22
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
23
|
Digitized smart surveillance and micromanagement using information technology for malaria elimination in Mangaluru, India: an analysis of five-year post-digitization data. Malar J 2021; 20:139. [PMID: 33685454 PMCID: PMC7938374 DOI: 10.1186/s12936-021-03656-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background Malaria control system (MCS), an Information technology (IT)-driven surveillance and monitoring intervention is being adopted for elimination of malaria in Mangaluru city, Karnataka, India since October 2015. This has facilitated ‘smart surveillance’ followed by required field response within a timeline. The system facilitated data collection of individual case, data driven mapping and strategies for malaria elimination programme. This paper aims to present the analysis of post-digitization data of 5 years, discuss the current operational functionalities of MCS and its impact on the malaria incidence. Methods IT system developed for robust malaria surveillance and field response is being continued in the sixth year. Protocol for surveillance control was followed as per the national programme guidelines mentioned in an earlier publication. Secondary data from the malaria control system was collated and analysed. Incidence of malaria, active surveillance, malariogenic conditions and its management, malariometric indices, shrinking malaria maps were also analysed. Results Smart surveillance and subsequent response for control was sustained and performance improved in five years with participation of all stakeholders. Overall malaria incidence significantly reduced by 83% at the end of 5 years when compared with year of digitization (DY) (p < 0.001). Early reporting of new cases (within 48 h) was near total followed by complete treatment and vector control. Slide positivity rate (SPR) decreased from 10.36 (DY) to 6.5 (PDY 5). Annual parasite incidence (API) decreased from 16.17 (DY) to 2.64 (PDY 5). There was a negative correlation between contact smears and incidence of malaria. Five-year data analyses indicated declining trends in overall malaria incidence and correlation between closures by 14 days. The best impact on reduction in incidence of malaria was recorded in the pre-monsoon months (~ 85%) compared to lower impact in July–August months (~ 40%). Conclusion MCS helped to micromanage control activities, such as robust reporting, incidence-centric active surveillance, early and complete treatment, documentation of full treatment of each malaria patient, targeted mosquito control measures in houses surrounding reported cases. The learnings and analytical output from the data helped to modify strategies for control of both disease and the vector, heralding the city into the elimination stage.
Collapse
|
24
|
Plasmodium falciparum is evolving to escape malaria rapid diagnostic tests in Ethiopia. Nat Microbiol 2021; 6:1289-1299. [PMID: 34580442 PMCID: PMC8478644 DOI: 10.1038/s41564-021-00962-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
In Africa, most rapid diagnostic tests (RDTs) for falciparum malaria recognize histidine-rich protein 2 antigen. Plasmodium falciparum parasites lacking histidine-rich protein 2 (pfhrp2) and 3 (pfhrp3) genes escape detection by these RDTs, but it is not known whether these deletions confer sufficient selective advantage to drive rapid population expansion. By studying blood samples from a cohort of 12,572 participants enroled in a prospective, cross-sectional survey along Ethiopia's borders with Eritrea, Sudan and South Sudan using RDTs, PCR, an ultrasensitive bead-based immunoassay for antigen detection and next-generation sequencing, we estimate that histidine-rich protein 2-based RDTs would miss 9.7% (95% confidence interval 8.5-11.1) of P. falciparum malaria cases owing to pfhrp2 deletion. We applied a molecular inversion probe-targeted deep sequencing approach to identify distinct subtelomeric deletion patterns and well-established pfhrp3 deletions and to uncover recent expansion of a singular pfhrp2 deletion in all regions sampled. We propose a model in which pfhrp3 deletions have arisen independently multiple times, followed by strong positive selection for pfhrp2 deletion owing to RDT-based test-and-treatment. Existing diagnostic strategies need to be urgently reconsidered in Ethiopia, and improved surveillance for pfhrp2 deletion is needed throughout the Horn of Africa.
Collapse
|
25
|
Björkman A, Morris U. Why Asymptomatic Plasmodium falciparum Infections Are Common in Low-Transmission Settings. Trends Parasitol 2020; 36:898-905. [PMID: 32855077 DOI: 10.1016/j.pt.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum infections in low-transmission settings are often asymptomatic with low parasite densities despite low herd immunity. Based on studies in Zanzibar, this may be due to parasitic (nonvirulence) rather than host (immunity) factors. In high-transmission settings, high replication rate and virulence represents a competitive advantage, whereas in low-transmission settings nonvirulent parasites escape both competition and treatment. Such parasites also survive longer in low-transmission settings due to lower host immunity response and less frequent indirect drug exposure. This has major implications for optimal malaria control and elimination strategies.
Collapse
|