1
|
Kaburi BB, Harries M, Hauri AM, Kenu E, Wyss K, Silenou BC, Klett-Tammen CJ, Ressing C, Awolin J, Lange B, Krause G. Availability of published evidence on coverage, cost components, and funding support for digitalisation of infectious disease surveillance in Africa, 2003-2022: a systematic review. BMC Public Health 2024; 24:1731. [PMID: 38943132 PMCID: PMC11214246 DOI: 10.1186/s12889-024-19205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The implementation of digital disease surveillance systems at national levels in Africa have been challenged by many factors. These include user applicability, utility of IT features but also stable financial support. Funding closely intertwines with implementations in terms of geographical reach, disease focus, and sustainability. However, the practice of evidence sharing on geographical and disease coverage, costs, and funding sources for improving the implementation of these systems on the continent is unclear. OBJECTIVES To analyse the key characteristics and availability of evidence for implementing digital infectious disease surveillance systems in Africa namely their disease focus, geographical reach, cost reporting, and external funding support. METHODS We conducted a systematic review of peer-reviewed and grey literature for the period 2003 to 2022 (PROSPERO registration number: CRD42022300849). We searched five databases (PubMed, MEDLINE over Ovid, EMBASE, Web of Science, and Google Scholar) and websites of WHO, Africa CDC, and public health institutes of African countries. We mapped the distribution of projects by country; identified reported implementation cost components; categorised the availability of data on cost components; and identified supporting funding institutions outside Africa. RESULTS A total of 29 reports from 2,033 search results were eligible for analysis. We identified 27 projects implemented in 13 countries, across 32 sites. Of these, 24 (75%) were pilot projects with a median duration of 16 months, (IQR: 5-40). Of the 27 projects, 5 (19%) were implemented for HIV/AIDs and tuberculosis, 4 (15%) for malaria, 4 (15%) for all notifiable diseases, and 4 (15%) for One Health. We identified 17 cost components across the 29 reports. Of these, 11 (38%) reported quantified costs for start-up capital, 10 (34%) for health personnel compensation, 9 (31%) for training and capacity building, 8 (28%) for software maintenance, and 7(24%) for surveillance data transmission. Of 65 counts of external funding sources, 35 (54%) were governmental agencies, 15 (23%) foundations, and 7 (11%) UN agencies. CONCLUSIONS The evidence on costing data for the digitalisation of surveillance and outbreak response in the published literature is sparse in quantity, limited in detail, and without a standardised reporting format. Most initial direct project costs are substantially donor dependent, short lived, and thus unsustainable.
Collapse
Affiliation(s)
- Basil Benduri Kaburi
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- PhD Programme "Epidemiology" Braunschweig-Hannover, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Hannover Medical School, Hannover, Germany.
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Anja M Hauri
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ernest Kenu
- Ghana Field Epidemiology and Laboratory Training Programme, University of Ghana, Accra, Ghana
| | - Kaspar Wyss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bernard Chawo Silenou
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Cordula Ressing
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Jannis Awolin
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research partner site, Hannover-Braunschweig, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
- German Center for Infection Research partner site, Hannover-Braunschweig, Germany
| |
Collapse
|
2
|
Skjefte M, Cooper S, Poyer S, Lourenço C, Smedinghoff S, Keller B, Wambua T, Oduor C, Frade S, Waweru W. Use of a health worker-targeted smartphone app to support quality malaria RDT implementation in Busia County, Kenya: A feasibility and acceptability study. PLoS One 2024; 19:e0295049. [PMID: 38530827 DOI: 10.1371/journal.pone.0295049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/14/2023] [Indexed: 03/28/2024] Open
Abstract
Malaria rapid diagnostic tests (mRDTs) are an essential diagnostic tool in low-resource settings; however, administration and interpretation errors reduce their effectiveness. HealthPulse, a smartphone mRDT reader application, was developed by Audere to aid health workers in mRDT administration and interpretation, with an aim to improve the mRDT testing process and facilitate timely decision making through access to digitized results. Audere partnered with PSI and PS Kenya to conduct a pilot study in Busia County, Kenya between March and September 2021 to assess the feasibility and acceptability of HealthPulse to support malaria parasitological diagnosis by community health volunteers (CHVs) and private clinic health workers (private clinic HWs). Metadata was interpreted to assess adherence to correct use protocols and health worker perceptions of the app. Changes to mRDT implementation knowledge were measured through baseline and endline surveys. The baseline survey identified clear mRDT implementation gaps, such as few health workers correctly knowing the number of diluent drops and minimum and maximum wait times for mRDT interpretation, although health worker knowledge improved after using the app. Endline survey results showed that 99.6% of health workers found the app useful and 90.1% found the app easy to use. Process control data showed that most mRDTs (89.2%) were photographed within the recommended 30-minute time frame and that 91.4% of uploaded photos passed the app filter quality check on the first submission. During 154 encounters (3.5% of all encounters) a health worker dispensed an artemisinin-based combination therapy (ACT) to their patient even with a negative mRDT readout. Overall, study results indicated that HealthPulse holds potential as a mobile tool for use in low-resource settings, with future supportive supervision, diagnostic, and surveillance benefits. Follow-up studies will aim to more deeply understand the utility and acceptance of the HealthPulse app.
Collapse
Affiliation(s)
- Malia Skjefte
- Malaria Department, Population Services International (PSI), Washington, DC, United States of America
| | | | - Stephen Poyer
- Malaria Department, Population Services International (PSI), Washington, DC, United States of America
| | - Christopher Lourenço
- Malaria Department, Population Services International (PSI), Washington, DC, United States of America
| | | | - Brett Keller
- Malaria Department, Population Services International (PSI), Washington, DC, United States of America
| | - Tonny Wambua
- Digital Health & Monitoring Department, Population Services International (PSI), Nairobi, Kenya
| | - Christine Oduor
- Digital Health & Monitoring Department, Population Services International (PSI), Nairobi, Kenya
| | - Sasha Frade
- Audere, Seattle, WA, United States of America
| | - Wycliffe Waweru
- Digital Health & Monitoring Department, Population Services International (PSI), Nairobi, Kenya
| |
Collapse
|
3
|
González-Sanz M, Berzosa P, Norman FF. Updates on Malaria Epidemiology and Prevention Strategies. Curr Infect Dis Rep 2023; 25:1-9. [PMID: 37361492 PMCID: PMC10248987 DOI: 10.1007/s11908-023-00805-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review The objective of this review was to provide an update on recent malaria epidemiology, both globally and in non-endemic areas, to identify the current distribution and repercussions of genetically diverse Plasmodium species and summarize recently implemented intervention and prevention tools. Recent Findings Notable changes in malaria epidemiology have occurred in recent years, with an increase in the number of total cases and deaths globally during 2020-2021, in part attributed to the COVID-19 pandemic. The emergence of artemisinin-resistant species in new areas and the expanding distribution of parasites harbouring deletions of the pfhrp2/3 genes have been concerning. New strategies to curb the burden of this infection, such as vaccination, have been implemented in certain endemic areas and their performance is currently being evaluated. Summary Inadequate control of malaria in endemic regions may have an effect on imported malaria and measures to prevent re-establishment of transmission in malaria-free areas are essential. Enhanced surveillance and investigation of Plasmodium spp. genetic variations will contribute to the successful diagnosis and treatment of malaria in future. Novel strategies for an integrated One Health approach to malaria control should also be strengthened.
Collapse
Affiliation(s)
- Marta González-Sanz
- Infectious Diseases Department, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, IRYCIS, Universidad de Alcalá, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Pedro Berzosa
- Malaria and Neglected Tropical Diseases Laboratory, National Centre for Tropical Medicine, Carlos III Health Institute, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Francesca F. Norman
- Infectious Diseases Department, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, IRYCIS, Universidad de Alcalá, CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
4
|
Barbosa GL, Gomes AHA, de Camargo-Neves VLF. The SisaMob Information System: Implementation of Digital Data Collection as a Tool for Surveillance and Vector Control in the State of São Paulo. INSECTS 2023; 14:380. [PMID: 37103195 PMCID: PMC10145243 DOI: 10.3390/insects14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Information systems are essential instruments in managing resources, in the evaluation of the epidemiological situation, and for decision-making at all hierarchical levels. Technological advances have allowed the development of systems that meet these premises. Therefore, it is recommended to consider the optimization of data entry and its immediate georeferencing in order to obtain information in real time. To meet this objective, we describe the application introduction process for the implementation of the digital collection of primary data and its integration with the database through synchronization with the SisaWeb platform (Information System for surveillance and control of Aedes aegypti), developed to meet the needs of the Arbovirus Surveillance and Control Program in the state of São Paulo, Brazil. For this purpose, the application-SisaMob-was conceived in the Android Studio development environment, Google®, following the same guidelines as the traditional collection method. Tablets equipped with the Android® operating system were used. To evaluate the implementation of the application, a semi-structured test was applied. The results highlighted that 774.9% (27) of the interviewees evaluated its use positively and, replacing the standard bulletin, 61.1% (22) of the users considered it regular to excellent. The automatic collection of geographic coordinates represented the greatest innovation in the use of the portable device, with reductions in errors and in the time taken to complete the report in the field. The integration to SisaWeb allowed obtaining information in real-time, being easily presented in tabular and graphic modes and spatially arranged through maps, making it possible to monitor the work at a distance, and allowing preliminary analyses during the data collection process. For the future, we must improve the mechanisms for assessing the effectiveness of information, increase the potential of the tool to produce more accurate analyses, which can direct actions more efficiently.
Collapse
|
5
|
Aqeel S, Haider Z, Khan W. Towards digital diagnosis of malaria: How far have we reached? J Microbiol Methods 2023; 204:106630. [PMID: 36503827 DOI: 10.1016/j.mimet.2022.106630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The need for precise and early diagnosis of malaria and its distinction from other febrile illnesses is no doubt a prerequisite, primarily when standard rapid diagnostic tests (RDTs) cannot be totally relied upon. At the time of disease outbreaks, the pressure on hospital staff remains high and the chances of human error increase. Therefore, in the era of digitalisation of medicine as well as diagnostic approaches, various technologies such as artificial intelligence (AI) and machine learning (ML) should be deployed to further aid the diagnosis, especially in endemic and epidemic situations. Computational techniques are now more at the forefront than ever, and the interest in developing such efficient technologies is continuously increasing. A comprehensive understanding of these digital technologies is needed to maintain the scientific rigour in these attempts. This would enhance the implementation of these novel technologies for malaria diagnosis. This review highlights the progression, strengths, and limitations of various computing techniques so far employed to diagnose malaria.
Collapse
Affiliation(s)
- Sana Aqeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Zafaryab Haider
- Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Wajihullah Khan
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Kerr G, Robinson LJ, Russell TL, Macdonald J. Lessons for improved COVID-19 surveillance from the scale-up of malaria testing strategies. Malar J 2022; 21:223. [PMID: 35858916 PMCID: PMC9296766 DOI: 10.1186/s12936-022-04240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Effective control of infectious diseases is facilitated by informed decisions that require accurate and timely diagnosis of disease. For malaria, improved access to malaria diagnostics has revolutionized malaria control and elimination programmes. However, for COVID-19, diagnosis currently remains largely centralized and puts many low- and middle-income countries (LMICs) at a disadvantage. Malaria and COVID-19 are infectious diseases that share overlapping symptoms. While the strategic responses to disease control for malaria and COVID-19 are dependent on the disease ecologies of each disease, the fundamental need for accurate and timely testing remains paramount to inform accurate responses. This review highlights how the roll-out of rapid diagnostic tests has been fundamental in the fight against malaria, primarily within the Asia Pacific and along the Greater Mekong Subregion. By learning from the successful elements of malaria control programmes, it is clear that improving access to point-of-care testing strategies for COVID-19 will provide a suitable framework for COVID-19 diagnosis in not only the Asia Pacific, but all malarious countries. In malaria-endemic countries, an integrated approach to point-of-care testing for COVID-19 and malaria would provide bi-directional benefits for COVID-19 and malaria control, particularly due to their paralleled likeness of symptoms, infection control strategies and at-risk individuals. This is especially important, as previous disease pandemics have disrupted malaria control infrastructure, resulting in malaria re-emergence and halting elimination progress. Understanding and combining strategies may help to both limit disruptions to malaria control and support COVID-19 control.
Collapse
Affiliation(s)
- Genevieve Kerr
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | | | - Tanya L Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, ACT, Australia.
| |
Collapse
|