1
|
Adamchic I, Kantelhardt SR, Wagner HJ, Burbelko M. Artificial intelligence can help detecting incidental intracranial aneurysm on routine brain MRI using TOF MRA data sets and improve the time required for analysis of these images. Neuroradiology 2024:10.1007/s00234-024-03460-6. [PMID: 39230716 DOI: 10.1007/s00234-024-03460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE The aim of our study was to assess the diagnostic performance of commercially available AI software for intracranial aneurysm detection and to determine if the AI system enhances the radiologist's accuracy in identifying aneurysms and reduces image analysis time. METHODS TOF-MRA clinical brain examinations were analyzed using commercially available software and by an consultant neuroradiologist for the presence of intracranial aneurysms. The results were compared with the reference standard, to measure the sensitivity and specificity of the software and the consultant neuroradiologist. Furthermore, we examined the time required for the neuroradiologist to analyze the TOF-MRA image set, both with and without use of the AI software. RESULTS In 500 TOF-MRI brain studies, 106 aneurysms were detected in 85 examinations by combining AI software with neuroradiologist readings. The neuroradiologist identified 98 aneurysms (92.5% sensitivity), while AI detected 77 aneurysms (72.6% sensitivity). Specificity and sensitivity were calculated from the combined effort as reference. Combining AI and neuroradiologist readings significantly improves detection reliability. Additionally, AI integration reduced TOF-MRA analysis time by 19 s (23% reduction). CONCLUSIONS Our findings indicate that the AI-based software can support neuroradiologists in interpreting brain TOF-MRA. A combined reading of the AI-based software and the neuroradiologist demonstrated higher reliability in identifying intracranial aneurysms as compared to reading by either neuroradiologist or software, thus improving diagnostic accuracy of the neuroradiologist. Simultaneously, reading time for the neuroradiologist was reduced by approximately one quarter.
Collapse
Affiliation(s)
- Ilya Adamchic
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany.
| | - Sven R Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Hans-Joachim Wagner
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Michael Burbelko
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
- Department of Radiology, Philipps University of Marburg, 35043, Baldingerstraße, Marburg, Germany
| |
Collapse
|
2
|
Vach M, Wolf L, Weiss D, Ivan VL, Hofmann BB, Himmelspach L, Caspers J, Rubbert C. Reproducibility and across-site transferability of an improved deep learning approach for aneurysm detection and segmentation in time-of-flight MR-angiograms. Sci Rep 2024; 14:18749. [PMID: 39138338 PMCID: PMC11322557 DOI: 10.1038/s41598-024-68805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
This study aimed to (1) replicate a deep-learning-based model for cerebral aneurysm segmentation in TOF-MRAs, (2) improve the approach by testing various fully automatic pre-processing pipelines, and (3) rigorously validate the model's transferability on independent, external test-datasets. A convolutional neural network was trained on 235 TOF-MRAs acquired on local scanners from a single vendor to segment intracranial aneurysms. Different pre-processing pipelines including bias field correction, resampling, cropping and intensity-normalization were compared regarding their effect on model performance. The models were tested on independent, external same-vendor and other-vendor test-datasets, each comprised of 70 TOF-MRAs, including patients with and without aneurysms. The best-performing model achieved excellent results on the external same-vendor test-dataset, surpassing the results of the previous publication with an improved sensitivity (0.97 vs. ~ 0.86), a higher Dice score coefficient (DSC, 0.60 ± 0.25 vs. 0.53 ± 0.31), and an improved false-positive rate (0.87 ± 1.35 vs. ~ 2.7 FPs/case). The model further showed excellent performance in the external other-vendor test-datasets (DSC 0.65 ± 0.26; sensitivity 0.92, 0.96 ± 2.38 FPs/case). Specificity was 0.38 and 0.53, respectively. Raising the voxel-size from 0.5 × 0.5×0.5 mm to 1 × 1×1 mm reduced the false-positive rate seven-fold. This study successfully replicated core principles of a previous approach for detecting and segmenting cerebral aneurysms in TOF-MRAs with a robust, fully automatable pre-processing pipeline. The model demonstrated robust transferability on two independent external datasets using TOF-MRAs from the same scanner vendor as the training dataset and from other vendors. These findings are very encouraging regarding the clinical application of such an approach.
Collapse
Affiliation(s)
- Marius Vach
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Luisa Wolf
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Vivien Lorena Ivan
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Björn B Hofmann
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ludmila Himmelspach
- Heine Center for Artificial Intelligence and Data Science (HeiCAD), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Li Y, Zhang H, Sun Y, Fan Q, Wang L, Ji C, HuiGu, Chen B, Zhao S, Wang D, Yu P, Li J, Yang S, Zhang C, Wang X. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study. Int J Med Inform 2024; 188:105487. [PMID: 38761459 DOI: 10.1016/j.ijmedinf.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA). METHOD This retrospective study encompassed 3D TOF MRA images acquired between January 2023 and June 2023, aiming to validate the presence of intracranial aneurysms via our developed AI platform. The manual segmentation results by experienced neuroradiologists served as the "gold standard". Following annotation of MRA images by neuroradiologists using InferScholar software, the AI platform conducted automatic segmentation of intracranial aneurysms. Various metrics including accuracy (ACC), balanced ACC, area under the curve (AUC), sensitivity (SE), specificity (SP), F1 score, Brier Score, and Net Benefit were utilized to evaluate the generalization of AI platform. Comparison of intracranial aneurysm identification performance was conducted between the AI platform and six radiologists with experience ranging from 3 to 12 years in interpreting MR images. Additionally, a comparative analysis was carried out between radiologists' detection performance based on independent visual diagnosis and AI-assisted diagnosis. Subgroup analyses were also performed based on the size and location of the aneurysms to explore factors impacting aneurysm detectability. RESULTS 510 patients were enrolled including 215 patients (42.16 %) with intracranial aneurysms and 295 patients (57.84 %) without aneurysms. Compared with six radiologists, the AI platform showed competitive discrimination power (AUC, 0.96), acceptable calibration (Brier Score loss, 0.08), and clinical utility (Net Benefit, 86.96 %). The AI platform demonstrated superior performance in detecting aneurysms with an overall SE, SP, ACC, balanced ACC, and F1 score of 91.63 %, 92.20 %, 91.96 %, 91.92 %, and 90.57 % respectively, outperforming the detectability of the two resident radiologists. For subgroup analysis based on aneurysm size and location, we observed that the SE of the AI platform for identifying tiny (diameter<3mm), small (3 mm ≤ diameter<5mm), medium (5 mm ≤ diameter<7mm) and large aneurysms (diameter ≥ 7 mm) was 87.80 %, 93.14 %, 95.45 %, and 100 %, respectively. Furthermore, the SE for detecting aneurysms in the anterior circulation was higher than that in the posterior circulation. Utilizing the AI assistance, six radiologists (i.e., two residents, two attendings and two professors) achieved statistically significant improvements in mean SE (residents: 71.40 % vs. 88.37 %; attendings: 82.79 % vs. 93.26 %; professors: 90.07 % vs. 97.44 %; P < 0.05) and ACC (residents: 85.29 % vs. 94.12 %; attendings: 91.76 % vs. 97.06 %; professors: 95.29 % vs. 98.82 %; P < 0.05) while no statistically significant change was observed in SP. Overall, radiologists' mean SE increased by 11.40 %, mean SP increased by 1.86 %, and mean ACC increased by 5.88 %, mean balanced ACC promoted by 6.63 %, mean F1 score grew by 7.89 %, and Net Benefit rose by 12.52 %, with a concurrent decrease in mean Brier score declined by 0.06. CONCLUSIONS The deep learning algorithms implemented in the AI platform effectively detected intracranial aneurysms on TOF-MRA and notably enhanced the diagnostic capabilities of radiologists. This indicates that the AI-based auxiliary diagnosis model can provide dependable and precise prediction to improve the diagnostic capacity of radiologists.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Huiling Zhang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Yun Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qianrui Fan
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Long Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Congshan Ji
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - HuiGu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Baojin Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Shuo Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Dawei Wang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Pengxin Yu
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Junchen Li
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
4
|
Lehnen NC, Schievelkamp AH, Gronemann C, Haase R, Krause I, Gansen M, Fleckenstein T, Dorn F, Radbruch A, Paech D. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography. Neuroradiology 2024; 66:1153-1160. [PMID: 38619571 DOI: 10.1007/s00234-024-03351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.
Collapse
Affiliation(s)
- Nils C Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Arndt-Hendrik Schievelkamp
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Christian Gronemann
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Robert Haase
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Inga Krause
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Gansen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Tobias Fleckenstein
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
5
|
Qu J, Niu H, Li Y, Chen T, Peng F, Xia J, He X, Xu B, Chen X, Li R, Liu A, Zhang X, Li C. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images. Eur Radiol 2024; 34:2838-2848. [PMID: 37843574 DOI: 10.1007/s00330-023-10295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES To design a deep learning-based framework for automatic segmentation and detection of intracranial aneurysms (IAs) on magnetic resonance T1 images and test the robustness and performance of framework. METHODS A retrospective diagnostic study was conducted based on 159 IAs from 136 patients who underwent the T1 images. Among them, 127 cases were randomly selected for training and validation, and 32 cases were used to assess the accuracy and consistency of our algorithm. We developed and assembled three convolutional neural networks for the segmentation and detection of IAs. The segmentation and detection performance of the model were compared with the ground truth, and various metrics were calculated at the voxel level, IAs level, and patient level to show the performance of our framework. RESULTS Our assembled model achieved overall Dice, voxel-level sensitivity, specificity, balanced accuracy, and F1 score of 0.802, 0.874, 0.9998, 0.937, and 0.802, respectively. A coincidence greater than 0.7 between the aneurysms predicted by the model and the ground truth was considered as a true positive. For IAs detection, the sensitivity reached 90.63% with 0.58 false positives per case. The volume of IAs segmented by our model showed a high agreement and consistency with the volume of IAs labeled by experts. CONCLUSION The deep learning framework is achievable and robust for IAs segmentation and detection. Our model offers more clinical application opportunities compared to digital subtraction angiography (DSA)-based, CTA-based, and MRA-based methods. CLINICAL RELEVANCE STATEMENT Our deep learning framework effectively detects and segments intracranial aneurysms using clinical routine T1 sequences, showing remarkable effectiveness and offering great potential for improving the detection of latent intracranial aneurysms and enabling early identification. KEY POINTS •There is no segmentation method based on clinical routine T1 images. Our study shows that the proper deep learning framework can effectively localize the intracranial aneurysms. •The T1-based segmentation and detection method is more universal than other angiography-based detection methods, which can potentially reduce missed diagnoses caused by the absence of angiography images. •The deep learning framework is robust and has the potential to be applied in a clinical setting.
Collapse
Affiliation(s)
- Junda Qu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutang Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiaxiang Xia
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuge Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Fundamental Research On Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
白 培, 宋 雪, 刘 庆, 刘 佳, 成 锦, 修 晓, 任 延, 王 成. [Automatic detection method of intracranial aneurysms on maximum intensity projection images based on SE-CaraNet]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:228-236. [PMID: 38686402 PMCID: PMC11058495 DOI: 10.7507/1001-5515.202301008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2024] [Indexed: 05/02/2024]
Abstract
Conventional maximum intensity projection (MIP) images tend to ignore some morphological features in the detection of intracranial aneurysms, resulting in missed detection and misdetection. To solve this problem, a new method for intracranial aneurysm detection based on omni-directional MIP image is proposed in this paper. Firstly, the three-dimensional magnetic resonance angiography (MRA) images were projected with the maximum density in all directions to obtain the MIP images. Then, the region of intracranial aneurysm was prepositioned by matching filter. Finally, the Squeeze and Excitation (SE) module was used to improve the CaraNet model. Excitation and the improved model were used to detect the predetermined location in the omni-directional MIP image to determine whether there was intracranial aneurysm. In this paper, 245 cases of images were collected to test the proposed method. The results showed that the accuracy and specificity of the proposed method could reach 93.75% and 93.86%, respectively, significantly improved the detection performance of intracranial aneurysms in MIP images.
Collapse
Affiliation(s)
- 培瑞 白
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 雪峰 宋
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 庆一 刘
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 佳慧 刘
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 锦 成
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 晓娜 修
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 延德 任
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 成健 王
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| |
Collapse
|
7
|
Zhang F, Turhon M, Huang J, Li M, Liu J, Zhang Y, Zhang Y. Global trend in research of intracranial aneurysm management with artificial intelligence technology: a bibliometric analysis. Quant Imaging Med Surg 2024; 14:1022-1038. [PMID: 38223110 PMCID: PMC10784100 DOI: 10.21037/qims-23-793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/08/2023] [Indexed: 01/16/2024]
Abstract
Background The use of artificial intelligence (AI) technology has been growing in the management of intracranial aneurysms (IAs). This study aims to conduct a bibliometric analysis of researches on intracranial aneurysm management with artificial intelligence technology (IAMWAIT) to gain insights into global research trends and potential future directions. Methods A comprehensive search of articles and reviews related to IAMWAIT, published from January 1, 1900 to July 20, 2023, was conducted using the Web of Science Core Collection (WoWCC).Visualizations of the bibliometric analysis were generated utilizing WPS Office, Scimago Graphica, VOSviewer, CiteSpace, and R. Results A total of 277 papers were included in the study. China emerged as the most prolific country in terms of publications, institutions, cooperating countries, and prolific authors. The United States garnered the highest number of total citations, institutions with the highest citations/H index, cooperating countries (n=9), and 3 of the top 10 cited papers. Both the total number of papers and the citation count exhibited a positive and significant correlation with the gross domestic product (GDP) of countries. The journal with the highest publication frequency was Frontiers in Neurology, while Stroke recorded the highest number of citations, H-index, and impact factor (IF). Areas of primary interest in IAMWAIT, leveraging AI technology, included rupture risk assessment/prediction, computer-assisted diagnosis, outcome prediction, hemodynamics, and laboratory research of IAs. Conclusions IAMWAIT is an active area of research that has undergone rapid development in recent years. Future endeavors should focus on broader application of AI algorithms in various sub-fields of IAMWAIT to better suit the real world.
Collapse
Affiliation(s)
- Fujunhui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mirzat Turhon
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiliang Huang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengxing Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci 2023; 17:1254417. [PMID: 37746051 PMCID: PMC10516608 DOI: 10.3389/fnhum.2023.1254417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cerebrovascular diseases are known to cause significant morbidity and mortality to the general population. In patients with cerebrovascular disease, prompt clinical evaluation and radiographic interpretation are both essential in optimizing clinical management and in triaging patients for critical and potentially life-saving neurosurgical interventions. With recent advancements in the domains of artificial intelligence (AI) and machine learning (ML), many AI and ML algorithms have been developed to further optimize the diagnosis and subsequent management of cerebrovascular disease. Despite such advances, further studies are needed to substantively evaluate both the diagnostic accuracy and feasibility of these techniques for their application in clinical practice. This review aims to analyze the current use of AI and MI algorithms in the diagnosis of, and clinical decision making for cerebrovascular disease, and to discuss both the feasibility and future applications of utilizing such algorithms. Methods We review the use of AI and ML algorithms to assist clinicians in the diagnosis and management of ischemic stroke, hemorrhagic stroke, intracranial aneurysms, and arteriovenous malformations (AVMs). After identifying the most widely used algorithms, we provide a detailed analysis of the accuracy and effectiveness of these algorithms in practice. Results The incorporation of AI and ML algorithms for cerebrovascular patients has demonstrated improvements in time to detection of intracranial pathologies such as intracerebral hemorrhage (ICH) and infarcts. For ischemic and hemorrhagic strokes, commercial AI software platforms such as RapidAI and Viz.AI have bene implemented into routine clinical practice at many stroke centers to expedite the detection of infarcts and ICH, respectively. Such algorithms and neural networks have also been analyzed for use in prognostication for such cerebrovascular pathologies. These include predicting outcomes for ischemic stroke patients, hematoma expansion, risk of aneurysm rupture, bleeding of AVMs, and in predicting outcomes following interventions such as risk of occlusion for various endovascular devices. Preliminary analyses have yielded promising sensitivities when AI and ML are used in concert with imaging modalities and a multidisciplinary team of health care providers. Conclusion The implementation of AI and ML algorithms to supplement clinical practice has conferred a high degree of accuracy, efficiency, and expedited detection in the clinical and radiographic evaluation and management of ischemic and hemorrhagic strokes, AVMs, and aneurysms. Such algorithms have been explored for further purposes of prognostication for these conditions, with promising preliminary results. Further studies should evaluate the longitudinal implementation of such techniques into hospital networks and residency programs to supplement clinical practice, and the extent to which these techniques improve patient care and clinical outcomes in the long-term.
Collapse
Affiliation(s)
| | | | | | | | - Reza Dashti
- Dashti Lab, Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, United States
| |
Collapse
|
9
|
Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J Neurointerv Surg 2023; 15:262-271. [PMID: 36375834 PMCID: PMC9985742 DOI: 10.1136/jnis-2022-019456] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed. METHODS MEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC). PROSPERO CRD42021278454. RESULTS 43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC. CONCLUSION AI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
Collapse
Affiliation(s)
- Munaib Din
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Siddharth Agarwal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mariusz Grzeda
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David A Wood
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Chen G, Yifang B, Jiajun Z, Dongdong W, Zhiyong Z, Ruoyu D, Bin D, Sirong P, Daoying G, Meng C, Yakang D, Yuxin L. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research. Eur Radiol 2023; 33:3532-3543. [PMID: 36725720 DOI: 10.1007/s00330-022-09385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Time of flight magnetic resonance angiography (TOF-MRA) is the primary non-invasive screening method for cerebral aneurysms. We aimed to develop a computer-aided aneurysm detection method to improve the diagnostic efficiency and accuracy, especially decrease the false positive rate. METHODS This is a retrospective multicenter study. The dataset contained 1160 TOF-MRA examinations composed of unruptured aneurysms (n = 1096) and normal controls (n = 166) from six hospitals. A total of 1037 examinations acquired from 2013 to 2019 were used as training set; 123 examinations acquired from 2020 to 2021 were used as external test set. We proposed an equalized augmentation strategy based on aneurysm location and constructed a detection model based on dual channel SE-3D UNet. The model was trained with a 5-fold cross-validation in the training set, then tested on the external test set. RESULTS The proposed method achieved 82.46% sensitivity on patient-level, 73.85% sensitivity on lesion-level, and 0.88 false positives per case in the external test set. The performance did not show significant differences in subgroups according to the aneurysm site (except ACA), aneurysm size (except smaller than 3 mm), or MRI scanners. The performance preceded the basic SE-3D UNet by increasing 15.79% patient-level sensitivity and decreasing 4.19 FPs/case. CONCLUSIONS The proposed automated aneurysm detection method achieved acceptable sensitivity while controlling fairly low false positives per case. It might provide a useful auxiliary tool of cerebral aneurysms MRA screening. KEY POINTS • The need for automated cerebral aneurysms detecting is growing. • The strategy of equalized augmentation based on aneurysm location and dual-channel input could improve the model performance. • The retrospective multi-center study showed that the proposed automated cerebral aneurysms detection using dual-channel SE-3D UNet could achieve acceptable sensitivity while controlling a low false positive rate.
Collapse
Affiliation(s)
- Geng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China
| | - Bao Yifang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhang Jiajun
- School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Wang Dongdong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhou Zhiyong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Di Ruoyu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dai Bin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Piao Sirong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Geng Daoying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chen Meng
- School of Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Dai Yakang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China.
| | - Li Yuxin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Lehnen NC, Haase R, Schmeel FC, Vatter H, Dorn F, Radbruch A, Paech D. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study. AJNR Am J Neuroradiol 2022; 43:1700-1705. [PMID: 36357154 DOI: 10.3174/ajnr.a7695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysms yield the risk of rupture, severe disability and death. Thus, early detection of cerebral aneurysms is crucial to ensure timely treatment, if necessary. AI-based software tools are expected to enhance radiologists' performance in detecting pathologies like cerebral aneurysms in the future. Our aim was to evaluate the diagnostic performance of an artificial intelligence-based software designed to detect intracranial aneurysms on TOF-MRA. MATERIALS AND METHODS One hundred ninety-one MR imaging data sets were analyzed using the software mdbrain for the presence of intracranial aneurysms on TOF-MRA obtained using two 3T MR imaging scanners or a 1.5T MR imaging scanner according to our clinical standard protocol. The results were compared with the reading of an experienced radiologist as a criterion standard to measure the sensitivity, specificity, positive and negative predictive values, and accuracy of the software. Additionally, detection rates depending on size, morphology, and location of the aneurysms were evaluated. RESULTS Fifty-four aneurysms were detected by the expert reader. The overall sensitivity of the software for the detection of cerebral aneurysms was 72.6%, the specificity was 87.2%, and the accuracy was 82.6%. The positive predictive value was 67.9%, and the negative predictive value was 88.5%. We observed a sensitivity of 100% for saccular aneurysms of >5 mm without signs of thrombosis and low detection rates for fusiform or thrombosed aneurysms of 33.3% and 16.7%, respectively. Of 8 aneurysms that were not included in the initial written reports but were detected by the expert reader, retrospectively, 4 were detected by the software. CONCLUSIONS Our data suggest that the software can assist radiologists in reporting TOF-MRA. The software was highly reliable in detecting saccular aneurysms, while for fusiform or thrombosed aneurysms, further improvements are needed. Further studies are necessary to investigate the impact of the software on detection rates, interrater reliability, and reading times.
Collapse
Affiliation(s)
- N C Lehnen
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - R Haase
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - F C Schmeel
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - H Vatter
- Neurosurgery (H.V.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - F Dorn
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - A Radbruch
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - D Paech
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| |
Collapse
|
12
|
Chen M, Geng C, Wang D, Zhou Z, Di R, Li F, Piao S, Zhang J, Li Y, Dai Y. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography. Biomed Eng Online 2022; 21:71. [PMID: 36163014 PMCID: PMC9513890 DOI: 10.1186/s12938-022-01041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Accurate segmentation of unruptured cerebral aneurysms (UCAs) is essential to treatment planning and rupture risk assessment. Currently, three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA) has been the most commonly used method for screening aneurysms due to its noninvasiveness. The methods based on deep learning technologies can assist radiologists in achieving accurate and reliable analysis of the size and shape of aneurysms, which may be helpful in rupture risk prediction models. However, the existing methods did not accomplish accurate segmentation of cerebral aneurysms in 3D TOF-MRA. METHODS This paper proposed a CCDU-Net for segmenting UCAs of 3D TOF-MRA images. The CCDU-Net was a cascade of a convolutional neural network for coarse segmentation and the proposed DU-Net for fine segmentation. Especially, the dual-channel inputs of DU-Net were composed of the vessel image and its contour image which can augment the vascular morphological information. Furthermore, a newly designed weighted loss function was used in the training process of DU-Net to promote the segmentation performance. RESULTS A total of 270 patients with UCAs were enrolled in this study. The images were divided into the training (N = 174), validation (N = 43), and testing (N = 53) cohorts. The CCDU-Net achieved a dice similarity coefficient (DSC) of 0.616 ± 0.167, Hausdorff distance (HD) of 5.686 ± 7.020 mm, and volumetric similarity (VS) of 0.752 ± 0.226 in the testing cohort. Compared with the existing best method, the DSC and VS increased by 18% and 5%, respectively, while the HD decreased by one-tenth. CONCLUSIONS We proposed a CCDU-Net for segmenting UCAs in 3D TOF-MRA, and the obtained results show that the proposed method outperformed other existing methods.
Collapse
Affiliation(s)
- Meng Chen
- Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221000, China
| | - Chen Geng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200000, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China.,Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan, 250000, China
| | - Ruoyu Di
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200000, China
| | - Fengmei Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200000, China
| | - Jiajun Zhang
- Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200000, China.
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China.
| |
Collapse
|
13
|
Shu Z, Chen S, Wang W, Qiu Y, Yu Y, Lyu N, Wang C. Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis. World Neurosurg 2022; 165:e137-e147. [PMID: 35690311 DOI: 10.1016/j.wneu.2022.05.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms. METHODS We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases' inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values. RESULTS A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75-0.90); specificity, 0.78 (95% CI, 0.68-0.85); positive likelihood ratio, 3.8 (95% CI, 2.4-5.9); negative likelihood ratio, 0.21 (95% CI, 0.12-0.35), diagnostic odd ratio, 18 (95% CI, 7-46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85-0.90). CONCLUSIONS Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.
Collapse
Affiliation(s)
- Zhang Shu
- Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
| | - Song Chen
- Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
| | - Wei Wang
- Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
| | - Yufa Qiu
- Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
| | - Ying Yu
- Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China
| | - Nan Lyu
- Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China
| | - Chi Wang
- Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China.
| |
Collapse
|
14
|
Heit JJ, Honce JM, Yedavalli VS, Baccin CE, Tatit RT, Copeland K, Timpone VM. RAPID Aneurysm: Artificial intelligence for unruptured cerebral aneurysm detection on CT angiography. J Stroke Cerebrovasc Dis 2022; 31:106690. [PMID: 35933764 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Cerebral aneurysms may result in significant morbidity and mortality. Identification of these aneurysms on CT Angiography (CTA) studies is critical to guide patient treatment. Artificial intelligence platforms to assist with automated aneurysm detection are of high interest. We determined the performance of a semi-automated artificial intelligence software program (RAPID Aneurysm) for the detection of cerebral aneurysms. MATERIALS AND METHODS RAPID Aneurysm was used to detect retrospectively the presence of cerebral aneurysms in CTA studies performed between January 2019 and December 2020. The gold standard was aneurysm presence and location as determined by the consensus of three expert neuroradiologists. Aneurysm detection accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and positive and negative likelihood ratios by RAPID Aneurysm were determined. RESULTS 51 patients (mean age, 56±15; 24 women [47.1%]) with a single CTA were included. A total of 60 aneurysms were identified. RAPID Aneurysm had a sensitivity of 0.950 (95% CI: 0.863-0.983), specificity of 1.000 (95% CI: 0.996-1.000), a positive predictive value (PPV) of 1.000 (95% CI: 0.937-1.000), a negative predictive value (NPV) of 0.997 (95% CI: 0.991-0.999), and an accuracy of 0.997 (95% CI: 0.991-0.999) for cerebral aneurysm detection. CONCLUSIONS RAPID Aneurysm is highly accurate for the detection of cerebral aneurysms on CTA.
Collapse
Affiliation(s)
- Jeremy J Heit
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States.
| | - Justin M Honce
- Department of Radiology, University of Colorado School of Medicine, Denver, CO, United States
| | - Vivek S Yedavalli
- Department of Radiology, Johns Hopkins Medical School, Baltimore, MD, United States
| | - Carlos E Baccin
- Department of Radiology, Albert Einstein Hospital, São Paulo, Brazil
| | - Rafael T Tatit
- Department of Radiology, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Vincent M Timpone
- Department of Radiology, University of Colorado School of Medicine, Denver, CO, United States
| |
Collapse
|
15
|
Chen X, Lei Y, Su J, Yang H, Ni W, Yu J, Gu Y, Mao Y. A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges. Curr Neuropharmacol 2022; 20:1359-1382. [PMID: 34749621 PMCID: PMC9881077 DOI: 10.2174/1570159x19666211108141446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A variety of emerging medical imaging technologies based on artificial intelligence have been widely applied in many diseases, but they are still limitedly used in the cerebrovascular field even though the diseases can lead to catastrophic consequences. OBJECTIVE This work aims to discuss the current challenges and future directions of artificial intelligence technology in cerebrovascular diseases through reviewing the existing literature related to applications in terms of computer-aided detection, prediction and treatment of cerebrovascular diseases. METHODS Based on artificial intelligence applications in four representative cerebrovascular diseases including intracranial aneurysm, arteriovenous malformation, arteriosclerosis and moyamoya disease, this paper systematically reviews studies published between 2006 and 2021 in five databases: National Center for Biotechnology Information, Elsevier Science Direct, IEEE Xplore Digital Library, Web of Science and Springer Link. And three refinement steps were further conducted after identifying relevant literature from these databases. RESULTS For the popular research topic, most of the included publications involved computer-aided detection and prediction of aneurysms, while studies about arteriovenous malformation, arteriosclerosis and moyamoya disease showed an upward trend in recent years. Both conventional machine learning and deep learning algorithms were utilized in these publications, but machine learning techniques accounted for a larger proportion. CONCLUSION Algorithms related to artificial intelligence, especially deep learning, are promising tools for medical imaging analysis and will enhance the performance of computer-aided detection, prediction and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Xi Chen
- School of Information Science and Technology, Fudan University, Shanghai, China; ,These authors contributed equally to this work
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,These authors contributed equally to this work
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; ,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Chen G, Meng C, Ruoyu D, Dongdong W, Liqin Y, Wei X, Yuxin L, Daoying G. An Automatic Detection Method Of Cerebral Aneurysms In Time-Of-Flight Magnetic Resonance Angiography Images Based On Attention 3D U-Net. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:106998. [PMID: 35939977 DOI: 10.1016/j.cmpb.2022.106998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/23/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
|
17
|
Ivantsits M, Goubergrits L, Kuhnigk JM, Huellebrand M, Bruening J, Kossen T, Pfahringer B, Schaller J, Spuler A, Kuehne T, Jia Y, Li X, Shit S, Menze B, Su Z, Ma J, Nie Z, Jain K, Liu Y, Lin Y, Hennemuth A. Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge. Med Image Anal 2022; 77:102333. [PMID: 34998111 DOI: 10.1016/j.media.2021.102333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
The Cerebral Aneurysm Detection and Analysis (CADA) challenge was organized to support the development and benchmarking of algorithms for detecting, analyzing, and risk assessment of cerebral aneurysms in X-ray rotational angiography (3DRA) images. 109 anonymized 3DRA datasets were provided for training, and 22 additional datasets were used to test the algorithmic solutions. Cerebral aneurysm detection was assessed using the F2 score based on recall and precision, and the fit of the delivered bounding box was assessed using the distance to the aneurysm. The segmentation quality was measured using the Jaccard index and a combination of different surface distance measures. Systematic errors were analyzed using volume correlation and bias. Rupture risk assessment was evaluated using the F2 score. 158 participants from 22 countries registered for the CADA challenge. The U-Net-based detection solutions presented by the community show similar accuracy compared to experts (F2 score 0.92), with a small number of missed aneurysms with diameters smaller than 3.5 mm. In addition, the delineation of these structures, based on U-Net variations, is excellent, with a Jaccard score of 0.92. The rupture risk estimation methods achieved an F2 score of 0.71. The performance of the detection and segmentation solutions is equivalent to that of human experts. The best results are obtained in rupture risk estimation by combining different image-based, morphological, and computational fluid dynamic parameters using machine learning methods. Furthermore, we evaluated the best methods pipeline, from detecting and delineating the vessel dilations to estimating the risk of rupture. The chain of these methods achieves an F2-score of 0.70, which is comparable to applying the risk prediction to the ground-truth delineation (0.71).
Collapse
Affiliation(s)
- Matthias Ivantsits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany.
| | - Leonid Goubergrits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Einstein Center Digital Future, Wilhelmstrae 67, Berlin 10117, Germany
| | | | - Markus Huellebrand
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany
| | - Jan Bruening
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Tabea Kossen
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Boris Pfahringer
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Jens Schaller
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Andreas Spuler
- Helios Hospital Berlin-Buch, Schwanebecker Chaussee 50, Berlin 13125, Germany
| | - Titus Kuehne
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Yizhuan Jia
- Mediclouds Medical Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Suprosanna Shit
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany
| | - Bjoern Menze
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany; Department of Quantitative Biomedicine of UZH, Zurich, Switzerland
| | - Ziyu Su
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jun Ma
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Ziwei Nie
- Department of Mathematics, Nanjing University, Nanjing, China
| | - Kartik Jain
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, Enschede 7500, AE, the Netherlands
| | - Yanfei Liu
- Jarvis Lab, Tencent, Shenzhen, China; Shenzhen United Imaging Research Institute of Innovative Medical Equipment Innovation Research, Shenzhen, China
| | - Yi Lin
- Jarvis Lab, Tencent, Shenzhen, China
| | - Anja Hennemuth
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
18
|
Alwalid O, Long X, Xie M, Han P. Artificial Intelligence Applications in Intracranial Aneurysm: Achievements, Challenges and Opportunities. Acad Radiol 2022; 29 Suppl 3:S201-S214. [PMID: 34376335 DOI: 10.1016/j.acra.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023]
Abstract
Intracranial aneurysms present in about 3% of the general population and the number of detected aneurysms is continuously rising with the advances in imaging techniques. Intracranial aneurysm rupture carries a high risk of death or permanent disabilities; therefore assessment of the intracranial aneurysm along the entire course is of great clinical importance. Given the outstanding performance of artificial intelligence (AI) in image-based tasks, many AI-based applications have emerged in recent years for the assessment of intracranial aneurysms. In this review we will summarize the state-of-the-art of AI applications in intracranial aneurysms, emphasizing the achievements, and exploring the challenges. We will also discuss the future prospects and potential opportunities. This article provides an updated view of the AI applications in intracranial aneurysms and may act as a basis for guiding the related future works.
Collapse
Affiliation(s)
- Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingfei Xie
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
19
|
Mensah E, Pringle C, Roberts G, Gurusinghe N, Golash A, Alalade AF. Deep Learning in the Management of Intracranial Aneurysms and Cerebrovascular Diseases: A Review of the Current Literature. World Neurosurg 2022; 161:39-45. [DOI: 10.1016/j.wneu.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
20
|
Artificial Intelligence Assistance Improves the Accuracy and Efficiency of Intracranial Aneurysm Detection with CT Angiography. Eur J Radiol 2022; 149:110169. [DOI: 10.1016/j.ejrad.2022.110169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
|
21
|
Nomura Y, Hanaoka S, Nakao T, Hayashi N, Yoshikawa T, Miki S, Watadani T, Abe O. Performance changes due to differences in training data for cerebral aneurysm detection in head MR angiography images. Jpn J Radiol 2021; 39:1039-1048. [PMID: 34125368 DOI: 10.1007/s11604-021-01153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE The performance of computer-aided detection (CAD) software depends on the quality and quantity of the dataset used for machine learning. If the data characteristics in development and practical use are different, the performance of CAD software degrades. In this study, we investigated changes in detection performance due to differences in training data for cerebral aneurysm detection software in head magnetic resonance angiography images. MATERIALS AND METHODS We utilized three types of CAD software for cerebral aneurysm detection in MRA images, which were based on 3D local intensity structure analysis, graph-based features, and convolutional neural network. For each type of CAD software, we compared three types of training pattern, which were two types of training using single-site data and one type of training using multisite data. We also carried out internal and external evaluations. RESULTS In training using single-site data, the performance of CAD software largely and unpredictably fluctuated when the training dataset was changed. Training using multisite data did not show the lowest performance among the three training patterns for any CAD software and dataset. CONCLUSION The training of cerebral aneurysm detection software using data collected from multiple sites is desirable to ensure the stable performance of the software.
Collapse
Affiliation(s)
- Yukihiro Nomura
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shouhei Hanaoka
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahiro Nakao
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoto Hayashi
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeharu Yoshikawa
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Soichiro Miki
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeyuki Watadani
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|