1
|
Tartaglione AM, Camoni L, Calamandrei G, Chiarotti F, Venerosi A. The contribution of environmental pollutants to the risk of autism and other neurodevelopmental disorders: A systematic review of case-control studies. Neurosci Biobehav Rev 2024; 164:105815. [PMID: 39053787 DOI: 10.1016/j.neubiorev.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Exposure to environmental pollutants, such as metals, pesticides, and air pollutants during early life, is a risk factor for neurodevelopmental disorders (NDDs), including Autism Spectrum Disorder (ASD). Our systematic review aimed to select and summarize more recent case-control studies that examined the association between prenatal and early postnatal exposure to environmental pollutants and NDDs. We searched five databases (Web of Science, PubMed, Embase, Scopus, Ovid), screened 2261 records, and included 24 eligible case-control studies. Meta-analyses were conducted on subgroups of at least three studies that shared both the outcome and the exposure. A noteworthy discovery from this literature review is the existence of non-linear or non-monotonic dose-response relationships between the exposure to certain metals and the risk of ASD. The meta-analysis revealed a significant association between exposure to particular matter (PM)10 during the first year of life and the risk of ASD. Overall, studies included in our systematic review indicate that exposure to several pollutants within the first three years of life was significantly associated with the risk of NDDs.
Collapse
Affiliation(s)
- A M Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - L Camoni
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Chiarotti
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Venerosi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Stojsavljević A, Lakićević N, Pavlović S. Mercury and Autism Spectrum Disorder: Exploring the Link through Comprehensive Review and Meta-Analysis. Biomedicines 2023; 11:3344. [PMID: 38137565 PMCID: PMC10741416 DOI: 10.3390/biomedicines11123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury (Hg) is a non-essential trace metal with unique neurochemical properties and harmful effects on the central nervous system. In this study, we present a comprehensive review and meta-analysis of peer-reviewed research encompassing five crucial clinical matrices: hair, whole blood, plasma, red blood cells (RBCs), and urine. We assess the disparities in Hg levels between gender- and age-matched neurotypical children (controls) and children diagnosed with autism spectrum disorder (ASD) (cases). After applying rigorous selection criteria, we incorporated a total of 60 case-control studies into our meta-analysis. These studies comprised 25 investigations of Hg levels in hair (controls/cases: 1134/1361), 15 in whole blood (controls/cases: 1019/1345), 6 in plasma (controls/cases: 224/263), 5 in RBCs (controls/cases: 215/293), and 9 in urine (controls/cases: 399/623). This meta-analysis did not include the data of ASD children who received chelation therapy. Our meta-analysis revealed no statistically significant differences in Hg levels in hair and urine between ASD cases and controls. In whole blood, plasma, and RBCs, Hg levels were significantly higher in ASD cases compared to their neurotypical counterparts. This indicates that ASD children could exhibit reduced detoxification capacity for Hg and impaired mechanisms for Hg excretion from their bodies. This underscores the detrimental role of Hg in ASD and underscores the critical importance of monitoring Hg levels in ASD children, particularly in early childhood. These findings emphasize the pressing need for global initiatives aimed at minimizing Hg exposure, thus highlighting the critical intersection of human-environment interaction and neurodevelopment health.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
3
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
4
|
Shiani A, Sharafi K, Omer AK, Kiani A, Karamimatin B, Massahi T, Ebrahimzadeh G. A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159246. [PMID: 36220469 DOI: 10.1016/j.scitotenv.2022.159246] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by difficulties in social communication and repetitive behaviors. There have been many previous studies of toxic metals in ASD. Therefore, the priority of this study is to review the relationships between exposure to toxic metals and ASD. MATERIALS & METHODS This study was based on a comprehensive search of international databases, such as Web of Science, Science Direct, Scopus, PubMed, and Google Scholar, for all works related to the subject under discussion from 1982 to 2022. We further summarize published data linked to this topic and discuss with clarifying evidence that agrees and conflicts with the association between exposure to toxic metals, including mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), and aluminum (Al) and ASD. RESULTS 40 out of 63 papers met the requirements for meta-analysis. Blood Pb levels (standardized mean difference (SMD) = 0.81; 95 % confidence interval (CI): 0.36-1.25), blood Hg (SMD = 0.90; CI: 0.30-1.49), hair Pb (SMD = 1.47; CI: 0.03-2.92), urine As (SMD = 0.65; CI: 0.22-1.09), and urine Al levels (SMD = 0.85; CI: 0.40-1.29) in autistic individuals were significantly higher than those of healthy control (HC). Whereas, blood As levels (SMD = 1.33; CI: -1.32-3.97), hair As (SMD = 0.55; CI: -0.14-1.24), hair Cd (SMD = 0.60; CI: -0.31-1.51), hair Hg (SMD = 0.41; CI: -0.30-1.12), hair Al (SMD = 0.87; CI: -0.02-1.77), urine Pb (SMD = -0.68; CI: -2.55-1.20), urine Cd (SMD = -0.26; CI: -0.94-0.41), and urine Hg levels (SMD = 0.47; CI: -0.09-1.04) in autistic individuals were significantly lower than those of HC. CONCLUSION Toxic metal content significantly differed between individuals with ASD and HC in the current meta-analysis. The results assist in clarifying the significance of toxic metals as environmental factors in the development of ASD.
Collapse
Affiliation(s)
- Amir Shiani
- Department of Speech Therapy, School of Rehabilitation Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; Razga Company, Kurdistan Region, Iraq.
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Karamimatin
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Massahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
5
|
Zhu Y, Shin HM, Jiang L, Bartell SM. Retrospective exposure reconstruction using approximate Bayesian computation: A case study on perfluorooctanoic acid and preeclampsia. ENVIRONMENTAL RESEARCH 2022; 209:112892. [PMID: 35149111 DOI: 10.1016/j.envres.2022.112892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In environmental epidemiology, measurements of toxicants in biological samples are often used as individual exposure assignments. It is common to obtain only one or a few exposure biomarkers per person and use those measurements to represent each person's relevant toxicant exposure for a given health outcome, even though most exposure biomarkers can fluctuate over time. When the timing of the exposure reflected by the biomarker measurement is misaligned with disease development especially if it occurs after the disease outcome, results could be subject to reverse causality or exposure measurement error. OBJECTIVE This study aimed to use an approximate Bayesian computation (ABC) method to improve PFOA exposure estimates and characterize the effects of PFOA on preeclampsia in the C8 Studies. METHODS Serum PFOA concentrations were measured in blood samples collected during 2005-2006 in West Virginia and Ohio (the C8 Studies), and residential and water use histories and pregnancy outcomes were obtained from self-reports. Our previous results may have been influenced by the choice of methods for characterizing PFOA exposures. Here we use an ABC method to combine measured PFOA serum concentrations and environmentally modeled PFOA concentrations to reconstruct historical PFOA exposures. We also expanded our previous work by assuming more realistic lognormal distributions for key input parameters in the exposure and pharmacokinetic models. RESULTS Compared to using fixed values of model parameters and Monte Carlo simulations, ABC produced similar Spearman correlations between estimated and measured serum PFOA concentrations, yet substantially reduced the mean squared error by over 50%. Based on ABC, compared to previous studies, we found a similar adjusted odds ratio (AOR) for the association between PFOA and preeclampsia. CONCLUSIONS Bayesian combination of modeled exposure and measured biomarker concentrations can reduce exposure measurement error compared to modeled exposure.
Collapse
Affiliation(s)
- Yachen Zhu
- Program in Public Health, University of California, Irvine, CA, 92697-3957, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Science, University of Texas, Arlington, TX, 76019-0049, USA
| | - Luohua Jiang
- Program in Public Health, University of California, Irvine, CA, 92697-3957, USA; Department of Epidemiology and Biostatistics, University of California, Irvine, CA, 92697-3957, USA
| | - Scott M Bartell
- Program in Public Health, University of California, Irvine, CA, 92697-3957, USA; Department of Statistics, University of California, Irvine, CA, 92697-1250, USA; Department of Environmental and Occupational Health, University of California, Irvine, CA, 92697-1250, USA.
| |
Collapse
|
6
|
Baj J, Flieger W, Flieger M, Forma A, Sitarz E, Skórzyńska-Dziduszko K, Grochowski C, Maciejewski R, Karakuła-Juchnowicz H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci Biobehav Rev 2021; 129:117-132. [PMID: 34339708 DOI: 10.1016/j.neubiorev.2021.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
The identification of biomarkers as diagnostic tools and predictors of response to treatment of neurological developmental disorders (NDD) such as schizophrenia (SZ), attention deficit hyperactivity disorder (ADHD), or autism spectrum disorder (ASD), still remains an important challenge for clinical medicine. Metallomic profiles of ASD patients cover, besides essential elements such as cobalt, chromium, copper, iron, manganese, molybdenum, zinc, selenium, also toxic metals burden of: aluminum, arsenic, mercury, lead, beryllium, nickel, cadmium. Performed studies indicate that children with ASD present a reduced ability of eliminating toxic metals, which leads to these metals' accumulation and aggravation of autistic symptoms. Extensive metallomic studies allow a better understanding of the importance of trace elements as environmental factors in the pathogenesis of ASD. Even though a mineral imbalance is a fact in ASD, we are still expecting relevant tests and the elaboration of reference levels of trace elements as potential biomarkers useful in diagnosis, prevention, and treatment of ASD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland.
| | - Wojciech Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego Street 8b, 20-090, Lublin, Poland
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| | - Katarzyna Skórzyńska-Dziduszko
- Chair and Department of Human Physiology, Medical University of Lublin, Radziwillowska Street 11, Lublin, 20-080, Poland
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego Street 8b, 20-400, Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland; Department of Clinical Neuropsychiatry, Medical University of Lublin, Gluska Street 1, 20-439, Lublin, Poland
| |
Collapse
|
7
|
Skogheim TS, Weyde KVF, Engel SM, Aase H, Surén P, Øie MG, Biele G, Reichborn-Kjennerud T, Caspersen IH, Hornig M, Haug LS, Villanger GD. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. ENVIRONMENT INTERNATIONAL 2021; 152:106468. [PMID: 33765546 DOI: 10.1016/j.envint.2021.106468] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prenatal exposure to toxic metals or variations in maternal levels of essential elements during pregnancy may be a risk factor for neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in offspring. OBJECTIVES We investigated whether maternal levels of toxic metals and essential elements measured in mid-pregnancy, individually and as mixtures, were associated with childhood diagnosis of ADHD or ASD. METHODS This study is based on the Norwegian Mother, Father and Child Cohort Study and included 705 ADHD cases, 397 ASD cases and 1034 controls. Cases were identified through linkage with the Norwegian Patient Registry. Maternal concentrations of 11 metals/elements were measured in blood at week 17 of gestation; cadmium; cesium; cobalt; copper; lead; magnesium; manganese; selenium; zinc; total arsenic; and total mercury. Multivariable adjusted logistic regression models were used to examine associations between quartile levels of individual metals/elements and outcomes. We also investigated non-linear associations using restricted cubic spline models. The joint effects of the metal/element mixture on ASD and ADHD diagnoses were estimated using a quantile-based g-computation approach. RESULTS For ASD, we identified positive associations (increased risks) in the second quartile of arsenic [OR = 1.77 (CI: 1.26, 2.49)] and the fourth quartiles of cadmium and manganese [OR = 1.57 (CI: 1.07 2.31); OR = 1.84 (CI: 1.30, 2.59)], respectively. In addition, there were negative associations between cesium, copper, mercury, and zinc and ASD. For ADHD, we found increased risk in the fourth quartiles of cadmium and magnesium [OR = 1.59 (CI: 1.15, 2.18); [OR = 1.42 (CI: 1.06, 1.91)]. There were also some negative associations, among others with mercury. In addition, we identified non-linear associations between ASD and arsenic, mercury, magnesium, and lead, and between ADHD and arsenic, copper, manganese, and mercury. There were no significant findings in the mixture approach analyses. CONCLUSION Results from the present study show several associations between levels of metals and elements during gestation and ASD and ADHD in children. The most notable ones involved arsenic, cadmium, copper, mercury, manganese, magnesium, and lead. Our results suggest that even population levels of these compounds may have negative impacts on neurodevelopment. As we observed mainly similarities among the metals' and elements' impact on ASD and ADHD, it could be that the two disorders share some neurochemical and neurodevelopmental pathways. The results warrant further investigation and replication, as well as studies of combined effects of metals/elements and mechanistic underpinnings.
Collapse
Affiliation(s)
- Thea S Skogheim
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| | - Kjell Vegard F Weyde
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Campus Box 7435, Chapel Hill, NC 27599-7435, USA
| | - Heidi Aase
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Pål Surén
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Merete G Øie
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway
| | - Guido Biele
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, 0318 Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Mady Hornig
- Department of Epidemiology, Columbia University, Mailman School of Public Health, 722 W 168th St, Rm. 736, New York, NY 10032, USA
| | - Line S Haug
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Gro D Villanger
- Division of Mental and Physical Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
8
|
Vecchione R, Vigna C, Whitman C, Kauffman EM, Braun JM, Chen A, Xu Y, Hamra GB, Lanphear BP, Yolton K, Croen LA, Fallin MD, Irva Hertz-Picciotto, Newschaffer CJ, Lyall K. The Association Between Maternal Prenatal Fish Intake and Child Autism-Related Traits in the EARLI and HOME Studies. J Autism Dev Disord 2021; 51:487-500. [PMID: 32519188 PMCID: PMC7725860 DOI: 10.1007/s10803-020-04546-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We examined the association between prenatal fish intake and child autism-related traits according to Social Responsiveness Scale (SRS) and cognitive development scores in two US prospective pregnancy cohorts. In adjusted linear regression analyses, higher maternal fish intake in the second half of pregnancy was associated with increased child autism traits (higher raw SRS scores; ß = 5.60, 95%CI 1.76, 12.97). Differences by fish type were suggested; shellfish and large fish species were associated with increases, and salmon with decreases, in child SRS scores. Clear patterns with cognitive scores in the two cohorts were not observed. Future work should further evaluate potential critical windows of prenatal fish intake, and the role of different fish types in association with child autism-related outcomes.
Collapse
Affiliation(s)
- Rachel Vecchione
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Chelsea Vigna
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Casey Whitman
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Elizabeth M Kauffman
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA
| | - Joseph M Braun
- School of Public Health, Department of Epidemiology, Brown University, Providence, RI, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins, Baltimore, MD, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, British Columbia, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA.,College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Kristen Lyall
- Dornsife School of Public Health, Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA. .,AJ Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, Philadelphia, PA, 19104-3734, USA.
| |
Collapse
|
9
|
Associations of Metabolic Genes ( GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041377. [PMID: 33546147 PMCID: PMC7913200 DOI: 10.3390/ijerph18041377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
We investigated interactive roles of three metabolic glutathione S-transferase (GST) genes (GSTP1, GSTT1, and GSTM1) and autism spectrum disorder (ASD) status in relation to blood Hg concentrations (BHC) of Jamaican children. We used data from 266 children (2-8 years) with ASD and their 1:1 age- and sex-matched typically developing (TD) controls. After adjusting General Linear Models for child’s age, socioeconomic status, consumption of leafy vegetables, fried plantain, canned fish, and the interaction between GSTP1 and GSTT1, we found significant interactions between GSTP1 and ASD status in relation to BHC either in a co-dominant or dominant genetic model for GSTP1(P < 0.001, P = 0.007, respectively). In the co-dominant model for the Ile105Val GSTP1 polymorphism, geometric mean (GM) BHC in ASD cases with genotype Ile/Ile were significantly higher than in cases with the Ile/Val genotype (0.73 vs. 0.48 µg/L, P = 0.01). In contrast, in TD controls with the Ile/Val genotype GM BHC were significantly higher than in those with the Ile/Ile genotype (0.72 vs. 0.49 µg/L, P = 0.03) or the Val/Val genotype (0.72 vs. 0.51 µg/L, P = 0.04). Although our findings are consistent with the role of GSTP1 in detoxification of Hg, replication in other populations is warranted.
Collapse
|
10
|
Ijomone OM, Olung NF, Akingbade GT, Okoh COA, Aschner M. Environmental influence on neurodevelopmental disorders: Potential association of heavy metal exposure and autism. J Trace Elem Med Biol 2020; 62:126638. [PMID: 32891009 PMCID: PMC7655547 DOI: 10.1016/j.jtemb.2020.126638] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Environmental factors have been severally established to play major roles in the pathogenesis of neurodevelopmental disorders including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that is associated with symptoms that reduce the quality of life of affected individuals such as social interaction deficit, cognitive impairment, intellectual disabilities, restricted and repetitive behavioural patterns. ASD pathogenesis has been associated with environmental and genetic factors that alter physiologic processes during development. Here, we review literatures highlighting the environmental impact on neurodevelopmental disorders, and mechanisms by which environmental toxins may influence neurodevelopment. Furthermore, this review discusses reports highlighting neurotoxic metals (specifically, lead, mercury, cadmium, nickel and manganese) as environmental risk factors in the aetiology of ASD. This work, thus suggests that improving the environment could be vital in the management of ASD.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| | - Nzube F Olung
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Grace T Akingbade
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria; Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
11
|
Zhong C, Tessing J, Lee BK, Lyall K. Maternal Dietary Factors and the Risk of Autism Spectrum Disorders: A Systematic Review of Existing Evidence. Autism Res 2020; 13:1634-1658. [PMID: 33015977 PMCID: PMC9234972 DOI: 10.1002/aur.2402] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/07/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Prenatal maternal diet is a critical factor in offspring neurodevelopment. Emerging evidence suggests that prenatal diet may also play a role in the etiology autism spectrum disorder (ASD). This review summarizes studies published in English that examined prenatal nutrients or maternal diet in association with ASD from PubMed as of July 2020. Thiry-six studies from nine countries were included in this systematic review; these focused on multivitamin (n = 5), prenatal vitamin (n = 3), folic acid (FA; n = 14), Vitamin D (n = 11), polyunsaturated fatty acid or fish/supplement intake (n = 7), iron (n = 3), Vitamin B12 (n = 1), calcium (n = 1), magnesium (n = 1), and broad maternal dietary habits (n = 3). Overall, higher or moderate intake of prenatal/multivitamin, FA, and Vitamin D was associated with reductions in odds of ASD, though results have not been uniform and there is a need to clarify differences in findings based on biomarkers versus reported intake. Evidence was inconclusive or insufficient for other nutrients. Differences in the timing and measurement of these dietary factors, as well as potential residual confounding, may contribute to existing discrepancies. Key areas for future research to better understand the role of maternal diet in ASD include the need to address potential critical windows, examine the combined effect of multiple nutrients, and consider interactions with genetic or environmental factors. LAY SUMMARY: Maternal diet during pregnancy is important for child neurodevelopment. We reviewed 36 studies examining maternal diet and autism spectrum disorder (ASD) and found that prenatal vitamin/multivitamin use and adequate intake of folic acid and Vitamin D were each associated with lower likelihood of having a child with ASD. Future studies on these and other dietary factors are needed to better understand the role of maternal diet in the development of ASD. Autism Res 2020, 13: 1634-1658. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA
| | | | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Raciti M, Salma J, Spulber S, Gaudenzi G, Khalajzeyqami Z, Conti M, Anderlid BM, Falk A, Hermanson O, Ceccatelli S. NRXN1 Deletion and Exposure to Methylmercury Increase Astrocyte Differentiation by Different Notch-Dependent Transcriptional Mechanisms. Front Genet 2019; 10:593. [PMID: 31316548 PMCID: PMC6610538 DOI: 10.3389/fgene.2019.00593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 01/11/2023] Open
Abstract
Controversial evidence points to a possible involvement of methylmercury (MeHg) in the etiopathogenesis of autism spectrum disorders (ASD). In the present study, we used human neuroepithelial stem cells from healthy donors and from an autistic patient bearing a bi-allelic deletion in the gene encoding for NRXN1 to evaluate whether MeHg would induce cellular changes comparable to those seen in cells derived from the ASD patient. In healthy cells, a subcytotoxic concentration of MeHg enhanced astroglial differentiation similarly to what observed in the diseased cells (N1), as shown by the number of GFAP positive cells and immunofluorescence signal intensity. In both healthy MeHg-treated and N1 untreated cells, aberrations in Notch pathway activity seemed to play a critical role in promoting the differentiation toward glia. Accordingly, treatment with the established Notch inhibitor DAPT reversed the altered differentiation. Although our data are not conclusive since only one of the genes involved in ASD is considered, the results provide novel evidence suggesting that developmental exposure to MeHg, even at subcytotoxic concentrations, induces alterations in astroglial differentiation similar to those observed in ASD.
Collapse
Affiliation(s)
- Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jahan Salma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Gaudenzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Centre for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Improving autism perinatal risk factors: A systematic review. Med Hypotheses 2019; 127:26-33. [DOI: 10.1016/j.mehy.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
|
14
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
15
|
Skalny AV, Simashkova NV, Skalnaya MG, Klyushnik TP, Chernova LN, Tinkov AA. Mercury and autism spectrum disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:75-79. [DOI: 10.17116/jnevro20181185275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Jafari T, Rostampour N, Fallah AA, Hesami A. The association between mercury levels and autism spectrum disorders: A systematic review and meta-analysis. J Trace Elem Med Biol 2017; 44:289-297. [PMID: 28965590 DOI: 10.1016/j.jtemb.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The relationship between mercury and autism spectrum disorders (ASD) has always been a topic of controversy among researchers. This study aimed to assess the relationship between ASD and mercury levels in hair, urine, blood, red blood cells (RBC), and brain through a meta-analysis. METHODS A systematic search was performed in several databases including PubMed, ISI Web of Science, Cochrane register of controlled trials, Google Scholar, Scopus, and MagIran until June 2017. Case-control studies evaluating concentration of total mercury in different tissues of ASD patients and comparing them to the healthy subjects (control group) were identified. Necessary data were extracted and random effects model was used to calculate overall effect and its 95% corresponding confidence interval (CI) from the effect sizes. RESULTS A total of 44 studies were identified that met the necessary criteria for meta-analysis. The mercury level in whole blood (Hedges=0.43, 95% CI: 0.12, 0.74, P=0.007), RBC (Hedges=1.61, 95% CI: 0.83, 2.38, P<0.001), and brain (0.61ng/g, 95% CI, 0.02, 1.19, P=0.043) was significantly higher in ASD patients than healthy subjects, whereas mercury level in hair (-0.14mg/g, 95% CI: -0.28, -0.01, P=0.039) was significantly lower in ASD patients than healthy subjects. The mercury level in urine was not significantly different between ASD patients and healthy subjects (0.51mg/g creatinine, 95% CI: -0.14, 1.16, P=0.121). CONCLUSIONS Results of the current meta-analysis revealed that mercury is an important causal factor in the etiology of ASD. It seems that the detoxification and excretory mechanisms are impaired in ASD patients which lead to accumulation of mercury in the body. Future additional studies on mercury levels in different tissues of ASD patients should be undertaken.
Collapse
Affiliation(s)
- Tina Jafari
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Sharhekord, Iran; Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Noushin Rostampour
- Department of Pediatrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Afshin Hesami
- Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Sharhekord, Iran
| |
Collapse
|
17
|
Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:340-368. [PMID: 28716727 DOI: 10.1016/j.pnpbp.2017.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. METHODS We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. RESULTS 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0.77, CI: 0.31 to 1.23). These findings were confirmed by meta-regression analyses indicating that development status of countries significantly influences the overall effect size of mean difference for hair arsenic, cadmium, lead, and mercury between patients with ASD and controls. CONCLUSION The findings help highlighting the role of toxic metals as environmental factors in the etiology of ASD, especially in developing lands. While there are environmental factors other than toxic metals that greatly contribute to the etiology of ASD in developed lands. It would be, thus, expected that classification of ASD includes etiological entities of ASD on the basis of implication of industrial pollutants (developed vs. developing ASD).
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
18
|
Association of blood heavy metals with developmental delays and health status in children. Sci Rep 2017; 7:43608. [PMID: 28252669 PMCID: PMC5333623 DOI: 10.1038/srep43608] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the association of blood lead, mercury, and cadmium concentrations with developmental delays and to explore the association of these concentrations with the health status of children. This study recruited 89 children with developmental delays and 89 age- and sex-matched children with typical development. Their health status was evaluated using the Pediatric Quality of Life (PedsQL) Inventory for health-related quality of life (HRQOL) and the Pediatric Outcomes Data Collection Instrument for function. Family function was also evaluated. Blood lead, mercury, and cadmium concentrations were measured using inductively coupled mass spectrometry. The children with developmental delays had a considerably poorer HRQOL, lower functional performance and family function, and a higher blood lead concentration than those with typical development. The blood lead concentration had a significantly positive association with developmental delays [odds ratio (OR) = 1.54, p < 0.01] in a dose-response manner, and it negatively correlated with PedsQL scores (regression coefficient: −0. 47 to −0.53, p < 0.05) in all the children studied. The higher blood cadmium concentration showed a significantly positive association with developmental delays (OR = 2.24, for >1.0 μg/L vs. <0.6 μg/L, p < 0.05). The blood mercury concentration was not associated with developmental delays and health status.
Collapse
|
19
|
Abu Bakar N, Mohd Sata NSA, Ramlan NF, Wan Ibrahim WN, Zulkifli SZ, Che Abdullah CA, Ahmad S, Amal MNA. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae. Neurotoxicol Teratol 2017; 59:53-61. [DOI: 10.1016/j.ntt.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
|
20
|
Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elem Med Biol 2016; 37:8-24. [PMID: 27473827 DOI: 10.1016/j.jtemb.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The brain pathology in autism spectrum disorders (ASD) indicates marked and ongoing inflammatory reactivity with concomitant neuronal damage. These findings are suggestive of neuronal insult as a result of external factors, rather than some type of developmental mishap. Various xenobiotics have been suggested as possible causes of this pathology. In a recent review, the top ten environmental compounds suspected of causing autism and learning disabilities were listed and they included: lead, methyl-mercury, polychorinated biphenyls, organophosphate pesticides, organochlorine pesticides, endocrine disruptors, automotive exhaust, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, and perfluorinated compounds. This current review, however, will focus specifically on mercury exposure and ASD by conducting a comprehensive literature search of original studies in humans that examine the potential relationship between mercury and ASD, categorizing, summarizing, and discussing the published research that addresses this topic. This review found 91 studies that examine the potential relationship between mercury and ASD from 1999 to February 2016. Of these studies, the vast majority (74%) suggest that mercury is a risk factor for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates that mercury exposure is causal and/or contributory in ASD.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; Council for Nutritional and Environmental Medicine, Mo i Rana, Norway; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Lisa K Sykes
- CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| | - Boyd E Haley
- University of Kentucky, 410 Administration Drive, Lexington, KY, 40506 USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA; CoMeD, Inc., 14 Redgate Court, Silver Spring, MD, 20905 USA
| |
Collapse
|