1
|
Jia Z, Zhang H, Lv Y, Yu L, Cui Y, Zhang L, Yang C, Liu H, Zheng T, Xia W, Xu S, Li Y. Intrauterine chromium exposure and cognitive developmental delay: The modifying effect of genetic predisposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174350. [PMID: 38960203 DOI: 10.1016/j.scitotenv.2024.174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Khoshakhlagh AH, Mohammadzadeh M, Gruszecka-Kosowska A. The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health 2024; 24:2079. [PMID: 39090615 PMCID: PMC11293075 DOI: 10.1186/s12889-024-19585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Many studies have investigated the role of metals in various types of malignancies. Considering the wide range of studies conducted in this field and the achievement of different results, the presented systematic review was performed to obtain the results of investigations on the prevention and occurrence of various types of cancer associated with metal exposures. METHODS In this review, research was conducted in the three databases: Scopus, PubMed, and Web of Science without historical restrictions until May 31, 2024. Animal studies, books, review articles, conference papers, and letters to the editors were omitted. The special checklist of Joanna Briggs Institute (JBI) was used for the quality assessment of the articles. Finally, the findings were classified according to the effect of the metal as preventive or carcinogenic. RESULTS The total number of retrieved articles was 4695, and 71 eligible results were used for further investigation. In most studies, the concentration of toxic metals such as lead (Pb), chromium (Cr (VI)), arsenic (As), cadmium (Cd), and nickel (Ni) in the biological and clinical samples of cancer patients was higher than that of healthy people. In addition, the presence of essential elements, such as selenium (Se), zinc (Zn), iron (Fe), and manganese (Mn) in tolerable low concentrations was revealed to have anti-cancer properties, while exposure to high concentrations has detrimental health effects. CONCLUSIONS Metals have carcinogenic effects at high levels of exposure. Taking preventive measures, implementing timely screening, and reducing the emission of metal-associated pollutants can play an effective role in reducing cancer rates around the world.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Agnieszka Gruszecka-Kosowska
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Environmental Protection, Al. A. Mickiewicza 30, Krakow, 30-059, Poland
| |
Collapse
|
3
|
Griffith JA, King RD, Dunn AC, Lewis SE, Maxwell BA, Nurkiewicz TR, Goldsmith WT, Kelley EE, Bowdridge EC. Maternal nano-titanium dioxide inhalation exposure alters placental cyclooxygenase and oxidant balance in a sexually dimorphic manner. ADVANCES IN REDOX RESEARCH 2024; 10:10.1016/j.arres.2023.100090. [PMID: 38562524 PMCID: PMC10979698 DOI: 10.1016/j.arres.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Julie A. Griffith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rachel D. King
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Allison C. Dunn
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sara E. Lewis
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brooke A. Maxwell
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E. Kelley
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C. Bowdridge
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
4
|
Dutta S, Sivakumar KK, Erwin JW, Stanley JA, Arosh JA, Taylor RJ, Banu SK. Alteration of epigenetic methyl and acetyl marks by postnatal chromium(VI) exposure causes apoptotic changes in the ovary of the F1 offspring. Reprod Toxicol 2024; 123:108492. [PMID: 37931768 DOI: 10.1016/j.reprotox.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Hexavalent chromium, Cr(VI), is a heavy metal endocrine disruptor used widely in various industries worldwide and is considered a reproductive toxicant. Our previous studies demonstrated that lactational exposure to Cr(VI) caused follicular atresia, disrupted steroid hormone biosynthesis and signaling, and delayed puberty. However, the underlying mechanism was unknown. The current study investigated the effects of Cr(VI) exposure (25 ppm) during postnatal days 1-21 via dam's milk on epigenetic alterations in the ovary of F1 offspring. Data indicated that Cr(VI) disrupted follicle development and caused apoptosis by increasing DNMT3a /3b and histone methyl marks (H3K27me3 and H3K9me3) along with decreasing histone acetylation marks (H3K9ac and H3K27ac). Our study demonstrates that exposure to Cr(VI) causes changes in the epigenetic marks, partially contributing to the transcriptional repression of genes regulating ovarian development, cell proliferation (PCNA), cell survival (BCL-XL and BCL-2), and activation of genes regulating apoptosis (AIF and cleaved caspase-3), resulting in follicular atresia. The current study suggests a role for epigenetics in Cr(VI)-induced ovotoxicity and infertility.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - John W Erwin
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Trace Element Research Laboratory, VIBS, CVMBS, Texas A& M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Ding A, Wan H, Peng J, Wang H, Zhu S, Dong X. Role of placental barrier on trace element transfer in maternal fetal system and hypertensive disorders complicating pregnancy and gestational diabetes mellitus. BMC Pregnancy Childbirth 2023; 23:867. [PMID: 38104073 PMCID: PMC10724887 DOI: 10.1186/s12884-023-06183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Hypertensive disorders complicating pregnancy (HDCP) and gestational diabetes mellitus (GDM) can affect the placental barrier function to varying degrees. However, current studies show that the transfer and distribution characteristics of trace elements in the maternal-fetal system are still unclear. This study investigated the effect of the placental barrier on the transfer of trace elements from mother to fetus and its relationship with HDCP and GDM. METHODS A case-control method was used in this study. 140 pairs of samples were collected; 60 were from healthy pregnant women, and 80 were from patients with pregnancy complications. The contents of trace elements in paired samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). SPSS software was used to analyze the differences in trace element levels in matched samples of each group. The correlations were analyzed based on Pearson's correlation factor (r). RESULTS The distribution characteristics of Fe content in the pathological group (HDCP group and GDM group) were the same as those in the normal group (umbilical cord blood > maternal blood > placenta), but there was no significant difference in the iron content in maternal blood and cord blood of pathological group. The distribution characteristics of Mn content in the pathological group (placenta > umbilical cord blood > maternal blood) were changed compared with those in the normal group (placenta > maternal blood > umbilical cord blood). In addition, the placental Cr content and cord blood Cr and Ni content of the pathological group were higher than those of the normal group. HDCP placental Cr and GDM placental Fe levels were significantly correlated with the Apgar score. CONCLUSIONS The transfer of Fe and Mn and the placental barrier function of Cr and Ni in the maternal-fetal system of HDCP and GDM are significantly altered, which directly or indirectly increases the maternal and fetal health risk.
Collapse
Affiliation(s)
- Ailing Ding
- Faculty of Life Science and Technology, Kunming University of Science & Technology, Kunming, 650500, China
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Huimin Wan
- Medical school, Kunming University of Science and Technology, Kunming, 650500, China
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Juan Peng
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Huizi Wang
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Shaodan Zhu
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Xudong Dong
- The Obstetrical Department of the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
6
|
Murthy MK, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:461-478. [PMID: 35537040 DOI: 10.1515/reveh-2021-0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/19/2022] [Indexed: 05/13/2023]
Abstract
Living beings have been devastated by environmental pollution, which has reached its peak. The disastrous pollution of the environment is in large part due to industrial wastes containing toxic pollutants. The widespread use of chromium (Cr (III)/Cr (VI)) in industries, especially tanneries, makes it one of the most dangerous environmental pollutants. Chromium pollution is widespread due to ineffective treatment methods. Bioremediation of chromium (Cr) using bacteria is very thoughtful due to its eco-friendly and cost-effective outcome. In order to counter chromium toxicity, bacteria have numerous mechanisms, such as the ability to absorb, reduce, efflux, or accumulate the metal. In this review article, we focused on chromium toxicity on human and environmental health as well as its bioremediation mechanism.
Collapse
Affiliation(s)
| | | | - Samprit Padhiary
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology, Khordha, India
| |
Collapse
|
7
|
Wuri L, Burghardt RC, Arosh JA, Long CR, Banu SK. Hexavalent Chromium Disrupts Oocyte Development in Rats by Elevating Oxidative Stress, DNA Double-Strand Breaks, Microtubule Disruption, and Aberrant Segregation of Chromosomes. Int J Mol Sci 2023; 24:10003. [PMID: 37373153 DOI: 10.3390/ijms241210003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Environmental and occupational exposure to hexavalent chromium, Cr(VI), causes female reproductive failures and infertility. Cr(VI) is used in more than 50 industries and is a group A carcinogen, mutagenic and teratogenic, and a male and female reproductive toxicant. Our previous findings indicate that Cr(VI) causes follicular atresia, trophoblast cell apoptosis, and mitochondrial dysfunction in metaphase II (MII) oocytes. However, the integrated molecular mechanism of Cr(VI)-induced oocyte defects is not understood. The current study investigates the mechanism of Cr(VI) in causing meiotic disruption of MII oocytes, leading to oocyte incompetence in superovulated rats. Postnatal day (PND) 22 rats were treated with potassium dichromate (1 and 5 ppm) in drinking water from PND 22-29 and superovulated. MII oocytes were analyzed by immunofluorescence, and images were captured by confocal microscopy and quantified by Image-Pro Plus software, Version 10.0.5. Our data showed that Cr(VI) increased microtubule misalignment (~9 fold), led to missegregation of chromosomes and bulged and folded actin caps, increased oxidative DNA (~3 fold) and protein (~9-12 fold) damage, and increased DNA double-strand breaks (~5-10 fold) and DNA repair protein RAD51 (~3-6 fold). Cr(VI) also induced incomplete cytokinesis and delayed polar body extrusion. Our study indicates that exposure to environmentally relevant doses of Cr(VI) caused severe DNA damage, distorted oocyte cytoskeletal proteins, and caused oxidative DNA and protein damage, resulting in developmental arrest in MII oocytes.
Collapse
Affiliation(s)
- Liga Wuri
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Li T, Zheng Y, Wu Z, Guo M, Liu R, Zeng W, Lv Y. YTHDF2 controls hexavalent chromium-induced mitophagy through modulating Hif1α and Bnip3 decay via the m 6A/mRNA pathway in spermatogonial stem cells/progenitors. Toxicol Lett 2023; 377:38-50. [PMID: 36739042 DOI: 10.1016/j.toxlet.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and SSC homeostasis is essential for lifelong male fertility. Currently, environmental pollution remains one of the factors affecting human reproductive health. Chromium is a prevalent metal element, and excessive exposure to hexavalent chromium (Cr (VI)) can cause male reproductive disorders. Nevertheless, the toxic effects of Cr (VI) on SSCs and the underlying mechanisms remain incompletely understood. Here, we showed that Cr (VI) exposure triggered mitophagy in mouse SSCs/progenitors in a time-dependent manner. Concurrently, Cr (VI) treatment caused reactive oxygen species (ROS) accumulation and activated the HIF1α-mediated BNIP3 expression to trigger mitophagy. In addition, Cr (VI) exposure significantly decreased the level of m6A modification. Further, we identified that YTHDF2 regulated the stability of Bnip3 and Hif1α mRNAs in an m6A-dependent manner, which was involved in Cr (VI)-induced mitophagy. Collectively, our study not only expands the mechanisms for Cr (VI)-caused male reproductive toxicity, but also provides pharmacological targets for prevention and treatment of Cr (VI)-induced male fertility impairment.
Collapse
Affiliation(s)
- Tianjiao Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhili Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Dietrich AM, Yao W, Gohlke JM, Gallagher DL. Environmental risks from consumer products: Acceptable drinking water quality can produce unacceptable indoor air quality with ultrasonic humidifier use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158787. [PMID: 36116655 DOI: 10.1016/j.scitotenv.2022.158787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The commonly used consumer product of an ultrasonic humidifier (e.g., cool mist humidifier) emits fine particles containing metals from tap water used to fill the humidifier. The objectives are: 1) predict emitted indoor air inhalable metal concentrations produced by an ultrasonic humidifier filled with tap-water containing As, Cd, Cr, Cu, Mn, and Pb in 33 m3 or 72 m3 rooms with varying air exchange rates; 2) calculate daily ingestion and 8-h inhalation average daily dose (ADD) and hazard quotient (HQ) for adults and children (aged 0.25-6 yr); and 3) quantify deposition in respiratory tract via multi-path particle dosimetry (MPPD) model. Mass concentrations of indoor air metals increase proportionally with aqueous metal concentrations in fill water, and are inversely related to ventilation. Inhalation-ADDs are 2 magnitudes lower than ingestion-ADDs, using identical water quality for ingestion and fill-water. However, in the 33 m3, low 0.2/h ventilated room, inhalation-HQs are >1 for children and adults, except for Pb. HQ inhalation risks exceed ingestion risks at drinking water regulated levels for As, Cd, Cr, and Mn. MPPD shows greater dose deposits in lungs of children than adults, and 3 times greater deposited doses in a 33 m3 vs 72 m3 room. Rethinking health effects of drinking water and consumer products to broaden consideration of multiple exposure routes is needed.
Collapse
Affiliation(s)
- Andrea M Dietrich
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Wenchuo Yao
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Julia M Gohlke
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Daniel L Gallagher
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Sharma P, Gupta V, Kumar K, Khetarpal P. Assessment of Serum Elements Concentration and Polycystic Ovary Syndrome (PCOS): Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 200:4582-4593. [PMID: 35028866 DOI: 10.1007/s12011-021-03058-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
Change in the levels of trace elements has been linked with PCOS pathogenesis by various studies, whereas some had reported no such association. Therefore, in order to evaluate association of eleven trace element (Cu, Zn, Cr, Cd, Se, Mn, Fe, Mg, Co, Ni and Pb) serum concentration with PCOS pathogenesis, current systematic review and meta-analysis has been carried out. Literature search was conducted using PubMed, Central Cochrane Library, Google Scholar and Science Direct databases with appropriate keywords. Studies published upto 3rd of September were evaluated for eligibility with suitable inclusion and exclusion criteria. Only case-control studies examining the association of serum trace element concentrations between PCOS cases and controls were selected. Present meta-analysis identified 32 articles with 2317 PCOS and 1898 controls. The serum Cu (MD = 15.40; 95% CI = 4.32 to 26.48; p = 0.006), Co (MD = 0.01; 95% CI = 0.01 to 0.02; p = 0.000), Cr (MD = 0.04; 95% CI = 0.00 to 0.07; p = 0.03) and Fe (MD = 12.98; 95% CI = 5.87-20.09; p = 0.0003) concentration is significantly higher, while lower concentration has been observed for Se (MD = - 0.99; 95% CI = - 1.31 to - 0.67; p = 0.000) and Mg (MD = - 223.41; 95% CI = - 391.60 to - 55.23; p = 0.009) among women with PCOS in comparison with the healthy group. Concentration of other elements which were analysed is not significantly related to PCOS. In short, PCOS women has higher serum concentrations of Cu, Co, Cr and Fe and lower concentrations of Se and Mg. Studies with sub-population of obese, non-obese and with and without insulin resistance are important to understand the pathomechanism of these elements in the syndrome.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Vartika Gupta
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kush Kumar
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
11
|
Ding JJ, Jiao C, Qi YL, Guo HX, Yuan QQ, Huang YN, Han JQ, Ma XY, Xu J. New insights into the reverse of chromium-induced reprotoxicity of pregnant mice by melatonin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113608. [PMID: 35525112 DOI: 10.1016/j.ecoenv.2022.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium Cr(VI) is a well-known environmental toxic metal that causes reprotoxicity in pregnant females. There are currently no appropriate interventions or treatments for Cr(VI) exposure during pregnancy. Herein, the protective effect of melatonin (MLT) against Cr(VI)-induced reprotoxicity is investigated by administrating MLT to pregnant mice exposed to Cr(VI). The results indicate that MLT effectively alleviates Cr(VI)-induced adverse pregnancy outcomes, restoring the decreased fetal weight and increased fetal resorption and malformation caused by Cr(VI) exposure to normal levels. MLT reduces the negative effects of Cr(VI) on follicular atresia and the development of primordial follicle in the maternal ovarian, thereby mitigating the decline in the reserve of primordial follicles. MLT alleviates Cr(VI)-induced oxidative stress, hence reducing the excessive accumulation of malondialdehyde in the maternal ovary. MLT inhibits Cr(VI)-induced apoptosis of ovarian granulosa cells and the expression of cleaved caspase-3 in the ovary. MLT reduces the increase in serum follicle-stimulating hormone caused by Cr(VI) exposure, while elevating anti-Mullerian hormone levels. We demonstrate that MLT reverses Cr(VI)-induced reprotoxicity in pregnant mice, opening up a new avenue for treating reproductive defects caused by environmental stress.
Collapse
Affiliation(s)
- Jia-Jie Ding
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chan Jiao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Peninsula Cancer Center, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ya-Lei Qi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hui-Xia Guo
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qin-Qin Yuan
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu-Nuo Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jian-Qiu Han
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xue-Yun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
12
|
Sivakumar KK, Stanley JA, Behlen JC, Wuri L, Dutta S, Wu J, Arosh JA, Banu SK. Inhibition of Sirtuin-1 hyperacetylates p53 and abrogates Sirtuin-1-p53 interaction in Cr(VI)-induced apoptosis in the ovary. Reprod Toxicol 2022; 109:121-134. [PMID: 35307491 PMCID: PMC9884489 DOI: 10.1016/j.reprotox.2022.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/31/2023]
Abstract
Environmental contamination with hexavalent chromium, Cr(VI), has been increasing in the United States as well as in developing countries. Exposure to Cr(VI) predisposes the human population to various diseases, including cancer, infertility, and developmental problems in children. Previous findings from our laboratory reported that prenatal exposure to Cr(VI) caused premature ovarian failure through p53-mediated mechanisms. Sirtuin 1 (SIRT1) is an NAD+ -dependent histone deacetylase class III. SIRT1 deacetylates several histones and non-histone proteins such as p53 and NFkB. The current study determines a role for the SIRT1-p53 network in apoptosis induced by Cr(VI) in the ovary and establishes physical interaction between SIRT1 and p53. Adult pregnant dams were given regular drinking water or Cr(VI) (10 ppm potassium dichromate in drinking water, ad libitum), and treated with SIRT1 inhibitor, EX-527 (50 mg/kg body weight, i.p.,), during 9.5 - 14.5 days post-coitum. On postnatal day-1, ovaries from F1 offspring were collected for various analyses. Results indicated that Cr(VI) increased germ cell and somatic cell apoptosis, upregulated acetyl-p53, activated the apoptotic pathway, and inhibited cell survival pathways. Cr(VI) decreased acetyl-p53-SIRT1 co-localization in the ovary. In an immortalized rat granulosa cell line SIGC, Cr(VI) inhibited the physical interaction between SIRT1 and acetyl-p53 by altering the p53:SIRT1 ratio. EX-527 exacerbated Cr(VI)-induced mechanisms. The current study shows a novel mechanism for Cr(VI)-induced apoptosis in the ovary, mediated through the p53-SIRT1 network, suggesting that targeting the p53 pathway may be an ideal approach to rescue ovaries from Cr(VI)-induced apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sakhila K. Banu
- Address correspondence to: Sakhila K. Banu, PhD., Associate Professor, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA, Phone: 979-458-3613, Fax: 979-847-8981,
| |
Collapse
|
13
|
Zhao M, Ge X, Xu J, Li A, Mei Y, Zhao J, Zhou Q, Liu X, Wei L, Xu Q. Negatively interactive effect of chromium and cadmium on obesity: Evidence from adults living near ferrochromium factory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113196. [PMID: 35051768 DOI: 10.1016/j.ecoenv.2022.113196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Researchers have reported that chromium (Cr) exposure may be associated with metabolism of glucose and lipids in residents living in a long-term Cr polluted area. Previous statistical analysis is mainly focused on individual chromium exposure. Furtherly, we aim to investigated the independent, combined, and interaction effects of the co-exposure of urine Cr (UCr) with cadmium (UCd), lead (UPb) and manganese (UMn) on body mass index (BMI), waist circumference, and the risk of overweight and abdominal obesity. METHOD We enrolled 1187 participants from annual surveys between 2017 and 2019. Heavy metal concentrations in urine were standardized using covariate-adjusted urine creatinine levels. Multiple linear/logistic regression models were applied to measure the single effect of urine heavy metal concentration on the outcomes. The quantile-based g-computation (g-comp) model was used to evaluate the combined effect of metal mixture on the outcomes and to compare the contribution of each metal. Both additive and multiplicative interactions were measured for UCr with UCd, UPb, UMn on the outcomes. Analysis was performed on the overall population and stratified by smoking habit. RESULTS For the overall study population, UCr was positively associated with BMI (p trend = 0.023) and waist circumference (p trend = 0.018). For smoking participants, the g-comp model demonstrated that the metal mixture was negatively associated with BMI, with UCr and UCd contributing the most in the positive and negative direction. A negative additive interaction was observed between UCr and UCd on BMI and abdominal obesity. We did not observe a significant interaction effect of UCr with UPb or UMn. CONCLUSION Our study indicated that Cr and Cd exposure may be associated with BMI and waist circumference, with combined and interaction effects of the heavy metals noted. Further epidemiological and experimental researches could simultaneously consider single and complex mixed exposure to verify the findings and biological mechanisms.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
14
|
Wuri L, Arosh JA, Wu JZ, Banu SK. Exposure to hexavalent chromium causes infertility by disrupting cytoskeletal machinery and mitochondrial function of the metaphase II oocytes in superovulated rats. Toxicol Rep 2022; 9:219-229. [DOI: 10.1016/j.toxrep.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022] Open
|
15
|
Essentiality of Trace Elements in Pregnancy, Fertility, and Gynecologic Cancers-A State-of-the-Art Review. Nutrients 2021; 14:nu14010185. [PMID: 35011060 PMCID: PMC8746721 DOI: 10.3390/nu14010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Gynecological neoplasms pose a serious threat to women's health. It is estimated that in 2020, there were nearly 1.3 million new cases worldwide, from which almost 50% ended in death. The most commonly diagnosed are cervical and endometrial cancers; when it comes to infertility, it affects ~48.5 million couples worldwide and the number is continually rising. Ageing of the population, environmental factors such as dietary habits, environmental pollutants and increasing prevalence of risk factors may affect the reproductive potential in women. Therefore, in order to identify potential risk factors for these issues, attention has been drawn to trace elements. Trace mineral imbalances can be caused by a variety of causes, starting with hereditary diseases, finishing with an incorrect diet or exposure to polluted air or water. In this review, we aimed to summarize the current knowledge regarding trace elements imbalances in the case of gynecologic cancers as well as female fertility and during pregnancy.
Collapse
|
16
|
Navin AK, Aruldhas MM, Navaneethabalakrishnan S, Mani K, Michael FM, Srinivasan N, Banu SK. Prenatal exposure to hexavalent chromium disrupts testicular steroidogenic pathway in peripubertal F 1 rats. Reprod Toxicol 2021; 101:63-73. [PMID: 33675932 DOI: 10.1016/j.reprotox.2021.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 11/21/2022]
Abstract
We have reported sub-fertility in F1 progeny rats with gestational exposure to hexavalent chromium [Cr(VI)], which had disrupted Sertoli cell (SC) structure and function, and decreased testosterone (T). However, the underlying mechanism for reduced T remains to be understood. We tested the hypothesis "transient prenatal exposure to Cr(VI) affects testicular steroidogenesis by altering hormone receptors and steroidogenic enzyme proteins in Leydig cells (LCs)." Pregnant Wistar rats were given drinking water containing 50, 100, and 200 mg/L potassium dichromate during gestational days 9-14, encompassing fetal differentiation window of the testis from the bipotential gonad. F1 male rats were euthanized on postnatal day 60 (peripubertal rats with adult-type LCs alone). Results showed that prenatal exposure to Cr(VI): (i) increased accumulation of Cr(III) in the testis of F1 rats; (ii) increased serum levels of luteinizing and follicle stimulating hormones (LH and FSH), and 17β estradiol, and decreased prolactin and T; (iii) decreased steroidogenic acute regulatory protein, cytochrome P450 11A1, cytochrome P450 17A1, 3β- and 17β-hydroxysteroid dehydrogenases, cytochrome P450 aromatase and 5α reductase proteins, (iv) decreased specific activities of 3β and 17β hydroxysteroid dehydrogenases; (v) decreased receptors of LH, androgen and estrogen in LCs; (vi) decreased 5α reductase and receptor proteins of FSH, androgen, and estrogen in SCs. The current study concludes that prenatal exposure to Cr(VI) disrupts testicular steroidogenesis in F1 progeny by repressing hormone receptors and key proteins of the steroidogenic pathway in LCs and SCs.
Collapse
Affiliation(s)
- Ajit Kumar Navin
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, TAMU-4458, Texas A&M University, College Station, TX, 77843, USA
| | - Mariajoseph Michael Aruldhas
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India.
| | - Shobana Navaneethabalakrishnan
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Kathireshkumar Mani
- Department of Endocrinology, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Felicia Mary Michael
- Department of Anatomy, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Taramani-Velachery Link Road, Chennai, 600113, Tamil Nadu, India
| | - Narasimhan Srinivasan
- Department of Tissue Engineering and Regenerative Medicine, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamil Nadu, India
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, TAMU-4458, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
17
|
Cr(VI)-induced overactive mitophagy contributes to mitochondrial loss and cytotoxicity in L02 hepatocytes. Biochem J 2021; 477:2607-2619. [PMID: 32597464 DOI: 10.1042/bcj20200262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Hexavalent chromium [Cr(VI)] has aroused the main interest of environmental health researchers due to its high toxicity. Liver is the main target organ of Cr(VI), and the purpose of this study was to explore whether mitophagy contributes to Cr(VI)-induced hepatotoxicity and to demonstrate the potential mechanisms. Cr(VI) exposure induced mitochondrial loss, energy metabolism disorders and cell apoptosis, which were associated with the occurrence of excessive mitophagy characterized by the increased number of green fluorescent protein-microtubule-associated protein light chain 3 (GFP-LC3) puncta and lysosomal colocalization with mitochondria. In addition, the suppression of mitophagy by autophagy-related 5 (ATG5) siRNA can effectively inhibit Cr(VI)-induced mitochondrial loss and cytotoxicity. In summary, we reached the conclusion that Cr(VI)-induced overactive mitophagy contributes to mitochondrial loss and cytotoxicity in L02 hepatocytes, which will further reveal the possible mechanisms of Cr(VI)-induced hepatotoxicity, and provide a new experimental basis for the study of the health hazard effects of chromium.
Collapse
|
18
|
Schipani G, Del Duca E, Todaro G, Scali E, Dastoli S, Bennardo L, Bonacci S, DI Raimondo C, Pavel AB, Colica C, Xu X, Procopio A, Patruno C, Nisticò SP. Arsenic and chromium levels in hair correlate with actinic keratosis/non-melanoma skin cancer: results of an observational controlled study. Ital J Dermatol Venerol 2020; 156:703-708. [PMID: 32938163 DOI: 10.23736/s2784-8671.20.06600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The role of heavy metals in carcinogenetic process has been widely established; however, information on the most common environmental metals that serve as major risk factors for actinic keratosis (AK)/non-melanoma skin cancer (NMSC) are still lacking. The aim of this study was to evaluate levels of the most common environmental heavy metals in hair of patients with AK/NMSC as compared to healthy controls. METHODS Thirty-one patients diagnosed with AK/NMSC and 34 healthy controls were enrolled. Patients were interviewed for heavy metals exposure and underwent hair analysis for detection of arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). Continuous variables were analyzed using Wilcoxon Non-Parametric Rank Test and proportions were compared by Fisher's Exact Test. Statistical significance was determined by P<0.05. RESULTS In our cohort we observed 48.4% patients had AKs, 16.1% basal cell carcinoma (BCC), 9.7% squamous cell carcinoma (SCC) and 25.9% of patients presented with a combination of these lesions. There were significantly elevated levels of As and Cr in AK-NMSC group as compared to controls. CONCLUSIONS We identified a strong positive correlation between As and Cr concentration and AK/NMSC adding new clues to the scenery of NMSC risk factors that should be taken under consideration in exposed populations.
Collapse
Affiliation(s)
- Giusy Schipani
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ester Del Duca
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giuseppe Todaro
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Elisabetta Scali
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Stefano Dastoli
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Luigi Bennardo
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy -
| | - Sonia Bonacci
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | - Ana B Pavel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmela Colica
- CNR, IBFM UOS of Germaneto, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Xu Xu
- Alibaba Group, Hangzhou, China
| | - Antonio Procopio
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Cataldo Patruno
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Steven P Nisticò
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
19
|
Zhao M, Xu J, Li A, Mei Y, Ge X, Liu X, Wei L, Xu Q. Multiple exposure pathways and urinary chromium in residents exposed to chromium. ENVIRONMENT INTERNATIONAL 2020; 141:105753. [PMID: 32417613 DOI: 10.1016/j.envint.2020.105753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Environmental hexavalent chromium contamination in northeast China has been ongoing for over 60 years and health outcomes related with chromium (Cr) pollution were observed in polluted arears, but exposure pathways remains unclear. This study aims to evaluate the association between Cr exposure dose through multiple exposure pathways and Cr concentration in urine, and identify the most contributed pathway. METHODS We used risk assessment tools with individual exposure parameters to estimate eight individual Cr exposure doses (CD) for three exposure routes (inhalation, ingestion, and dermal contact) with four environmental media (underground water, soil, household dust, and PM10 in ambient air) in 134 residents living in three chromium polluted villages. We used the covariate-adjusted standardized urinary Cr concentration (casUCr) as the internal Cr exposure biomarker. Ridge Regression, Weighted Quantile Sum Regression (WQS) and Bayesian Kernel Machine Regression (BKMR) models were used to assess the effect of overall eight CDs on urine Cr concentration and compare the contribution of each CD. RESULTS In the ridge regression analysis, Cr exposure through ingestion of dust (βstd = 0.418, p-value = 0.009), inhalation of dust (βstd = 0.384, p = 0.031) and dermal contact with soil (βstd = 0.264, p = 0.192) had the highest impact on casUCr. In the WQS model, the overall CDs demonstrated a non-significant positive association with casUCr. CDs of dust ingestion, air inhalation and dust inhalation had the largest contribution on casUCr when fitted in the WQS model. In the BKMR model, the hierarchical variable selection showed that casUCr was mainly affected by CDs of household dust and dermal contact with soil. CD of dermal contact with soil exhibited a negative association with casUCr, while CDs of dust showed positive or non-linear trend. CONCLUSIONS This research proposed a new method to calculate individual Cr exposure dose of multi-pathway and applied different statistical methods to identify predominant pathway. For this study, Cr exposure through dust has the strongest effect on Cr concentration in urine. The results could help conduct target interventions to reduce Cr intake, such as blocking dust exposure to reduce Cr uptake for villagers living in these contaminated areas.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
20
|
Harris SM, Jin Y, Loch-Caruso R, Padilla IY, Meeker JD, Bakulski KM. Identification of environmental chemicals targeting miscarriage genes and pathways using the comparative toxicogenomics database. ENVIRONMENTAL RESEARCH 2020; 184:109259. [PMID: 32143025 PMCID: PMC7103533 DOI: 10.1016/j.envres.2020.109259] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Miscarriage is a prevalent public health issue and many events occur before women are aware of their pregnancy, complicating research design. Thus, risk factors for miscarriage are critically understudied. Our goal was to identify environmental chemicals with a high number of interactions with miscarriage genes, based on known toxicogenomic responses. METHODS We used miscarriage (MeSH: D000022) and chemical gene lists from the Comparative Toxicogenomics Database in human, mouse, and rat. We assessed enrichment for gene ontology biological processes among the miscarriage genes. We prioritized chemicals (n = 25) found at Superfund sites or in the blood or urine pregnant women. For chemical-disease gene sets of sufficient size (n = 13 chemicals, n = 20 comparisons), chi-squared enrichment tests and proportional reporting ratios (PRR) were calculated. We cross-validated enrichment results. RESULTS Miscarriage was annotated with 121 genes and overrepresented in inflammatory response (q = 0.001), collagen metabolic process (q = 1 × 10-13), cell death (q = 0.02), and vasculature development (q = 0.005) pathways. The number of unique genes annotated to a chemical ranged from 2 (bromacil) to 5607 (atrazine). In humans, all chemicals tested were highly enriched for miscarriage gene overlap (all p < 0.001; parathion PRR = 7, cadmium PRR = 6.5, lead PRR = 3.9, arsenic PRR = 3.5, atrazine PRR = 2.8). In mice, highest enrichment (p < 0.001) was observed for naphthalene (PRR = 16.1), cadmium (PRR = 12.8), arsenic (PRR = 11.6), and carbon tetrachloride (PRR = 7.7). In rats, we observed highest enrichment (p < 0.001) for cadmium (PRR = 8.7), carbon tetrachloride (PRR = 8.3), and dieldrin (PRR = 5.3). Our findings were robust to 1000 permutations each of variable gene set sizes. CONCLUSION We observed chemical gene sets (parathion, cadmium, naphthalene, carbon tetrachloride, arsenic, lead, dieldrin, and atrazine) were highly enriched for miscarriage genes. Exposures to chemicals linked to miscarriage, and thus linked to decreased probability of live birth, may limit the inclusion of fetuses susceptible to adverse birth outcomes in epidemiology studies. Our findings have critical public health implications for successful pregnancies and the interpretation of adverse impacts of environmental chemical exposures on pregnancy.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuan Jin
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid Y Padilla
- Department of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, Puerto Rico
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Kumar S, Sharma A, Kshetrimayum C. Environmental & occupational exposure & female reproductive dysfunction. Indian J Med Res 2019; 150:532-545. [PMID: 32048617 PMCID: PMC7038808 DOI: 10.4103/ijmr.ijmr_1652_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 01/08/2023] Open
Abstract
All individuals are exposed to certain chemical, physical, biological, environmental as well as occupational factors. The data pertaining to role of these factors on female reproduction are scanty as compared to male. The available data suggest the adverse effects of certain toxicants, viz., metals such as lead, cadmium and mercury, pesticides such as bis(4-chlorophenyl)-1,1,1-trichloroethane and organic solvent such as benzene, toluene and ionizing radiation on the female reproductive system affecting directly the organ system or impacting in directly through hormonal impairments, molecular alterations, oxidative stress and DNA methylation impairing fertility as well as pregnancy and its outcomes. Thus, there is a need for awareness and prevention programme about the adverse effects of these factors and deterioration of female reproductive health, pregnancy outcome and offspring development as some of these chemicals might affect the developing foetus at very low doses by endocrine disruptive mechanism.
Collapse
Affiliation(s)
- Sunil Kumar
- Division of Reproductive & Cyto-toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Anupama Sharma
- Division of Reproductive & Cyto-toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Chaoba Kshetrimayum
- Division of Reproductive & Cyto-toxicology, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Mihaileanu R, Neamtiu IA, Bloom M, Stamatian F. Birth defects in Tarnaveni area, Romania - preliminary study results. Med Pharm Rep 2019; 92:59-65. [PMID: 30957088 PMCID: PMC6448501 DOI: 10.15386/cjmed-984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background and aims In the development of any human body, defects may occur, resulting in the occurrence of congenital malformations, also referred to as birth defects. The aim of this preliminary study was to assess the prevalence of birth defects registered during a period of 5 years in Tarnaveni area. As Tarnaveni is located in close proximity to a former chemical plant, a recognized hazardous waste site, we conducted this pilot study to assess the prevalence of birth defects, in order to evaluate the need for a more comprehensive investigation of a potential relation between the exposure to toxic metals contaminating the environmental media as a result of the past industrial activities, and the prevalence of the birth defects in this area. Methods We abstracted birth information (gestational age at delivery (GA), birth weight (BW), birth length (BL), head circumference (HC), and major structural birth defects), from medical records at “Dr. Gheorghe Marinescu“ Tarnaveni Municipal Hospital, of the 2010–2014 period. We expressed BW as Z-scores relative to expected mean values at each gestational age for a reference population, calculated the ponderal index, and determined the 5 years birth defects prevalence among live births during the study interval. Results The 5 years (2010–2014) prevalence of birth defects, was 3.3% (95% confidence interval (CI): 2.47, 4.09). There were n = 163 (8.7%) preterm deliveries (less than 37 weeks of gestation at delivery), mean birth weight was 3108.3 g (standard deviation (SD) = 517.1), ranging from 450–4600 g, and n = 187 (10%) were low birth weight (LBW) (less than 2500 g). The ponderal index was 2.2 g/cm3 on average (SD = 0.5), with range 1.2–20.7 g/cm3. Conclusions While preliminary, our data show a 5 years (2010–2014) prevalence of major structural birth defects among newborns from Tarnaveni area of 3.3%. These pilot results indicate the need for a more comprehensive investigation of a potential relation between the exposure to toxic metals contaminating the environmental media as a result of the past industrial activities and the prevalence of the birth defects in Tarnaveni area.
Collapse
Affiliation(s)
- Razvan Mihaileanu
- 1 Gynecology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,IMOGEN Research Institute, Cluj-Napoca, Romania.,"Dr. Gheorghe Marinescu" Municipal Hospital, Tarnaveni, Romania
| | - Iulia Adina Neamtiu
- IMOGEN Research Institute, Cluj-Napoca, Romania.,Health Department, Environmental Health Center, Cluj-Napoca, Romania.,Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Michael Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, United States
| | - Florin Stamatian
- 1 Gynecology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,IMOGEN Research Institute, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Banu SK, Stanley JA, Taylor RJ, Sivakumar KK, Arosh JA, Zeng L, Pennathur S, Padmanabhan V. Sexually Dimorphic Impact of Chromium Accumulation on Human Placental Oxidative Stress and Apoptosis. Toxicol Sci 2019; 161:375-387. [PMID: 29069462 DOI: 10.1093/toxsci/kfx224] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental contamination with hexavalent chromium (CrVI) is a growing problem both in the United States and developing countries. Hexavalent chromium is widely used in numerous industries. Environmental exposure to CrVI adversely affects pregnancy outcomes and subsequent health of 2 generations, resulting in higher pregnancy loss, spontaneous abortion and low birth rate. Pregnant women exposed to CrVI through occupational settings experience increased risk of spontaneous abortion, stillbirth, preterm birth, and neonatal death. Children of the CrVI exposed women experience respiratory problems, perinatal jaundice, and increased birth defects. Because placental dysfunction may have a role in such adverse pregnancy outcome, we tested the hypothesis that environmental Cr exposure in pregnant women results in Cr accumulation in the human placenta, which could increase placental oxidative stress by disrupting antioxidant machinery and inducing apoptosis. Studies using frozen, deidentified human term placenta samples indicated that: (1) Cr accumulates in human term placenta tissues and (2) increase in Cr accumulation is positively correlated with oxidative stress and apoptotic markers, and altered antioxidants levels. Interestingly, there was a sexual dimorphism in the correlation between Cr accumulation and oxidative stress, and expression of apoptotic and antioxidant markers. Mechanistic in vitro studies using human trophoblast cells BeWo confirmed the detrimental effects of Cr in altering antioxidant genes. For the first time, this study provides evidence in support of a positive correlation between Cr accumulation in the human placenta and accelerated oxidative stress, with a gender bias toward the male sex.
Collapse
Affiliation(s)
- Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Robert J Taylor
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Lixia Zeng
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105
| | | |
Collapse
|
24
|
A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol 2018; 2018:4854152. [PMID: 30675155 PMCID: PMC6323513 DOI: 10.1155/2018/4854152] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of metals in the environment is a matter of concern, since human activities are the major cause of pollution and metals can enter the food chain and bioaccumulate in hard and soft tissues/organs, which results in a long half-life of the metal in the body. Metal intoxication has a negative impact on human health and can alter different systems depending on metal type and concentration and duration of metal exposure. The present review focuses on the most common metals found in contaminated areas (cadmium, zinc, copper, nickel, mercury, chromium, lead, aluminum, titanium, and iron, as well as metalloid arsenic) and their effects on bone tissue. Both the lack and excess of these metals in the body can alter bone dynamics. Long term exposure and short exposure to high concentrations induce an imbalance in the bone remodeling process, altering both formation and resorption and leading to the development of different bone pathologies.
Collapse
|