1
|
Sass JB, Donley N, Freese W. Neonicotinoid pesticides: evidence of developmental neurotoxicity from regulatory rodent studies. FRONTIERS IN TOXICOLOGY 2024; 6:1438890. [PMID: 39415959 PMCID: PMC11480014 DOI: 10.3389/ftox.2024.1438890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Neonicotinoids are the most widely used class of insecticides in the United States (U.S.). and the world. Consistent with their high use and persistence, neonicotinoids are often found contaminating drinking water and food. They are also detected in human urine, breast milk, amniotic and cerebrospinal fluids, as well as the brains of treated rodents. Neonicotinoids were once thought to pose little neurotoxic risk to humans, but a growing body of research challenges that assumption. In this study we provide the first comprehensive assessment of unpublished rodent developmental neurotoxicity (DNT) studies on five neonicotinoids that were submitted to the U.S. Environmental Protection Agency (EPA) by neonicotinoid manufacturers. Groups of female rats were administered three different doses of a neonicotinoid during pregnancy and lactation, and their offspring subjected to various neurological tests and brain measurements. We identified nicotine-like effects such as reduced brain size, indicative of neuronal cell loss. Statistically significant shrinkage of brain tissue was observed in high-dose offspring for five neonicotinoids: acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam. Two brain regions reduced in the rodent studies-the corpus callosum and caudate-putamen-tend to be smaller in people diagnosed with attention-deficit hyperactivity disorder (ADHD), and in children of mothers who smoked during pregnancy, suggesting a possible link between perinatal neonicotinoid exposure and ADHD. A decreased auditory startle reflex was reported for acetamiprid at all doses and was statistically significant in the mid- and high-dose offspring, and for clothianidin in juvenile high-dose females. No mid- or low-dose brain morphometric data were submitted for acetamiprid, imidacloprid, or thiacloprid. Thiamethoxam mid- and low-dose brain morphometric data were provided to EPA upon request. Only partial mid-dose brain morphometry data were submitted for clothianidin, but no low-dose data. Yet despite this lack of data, EPA concluded that only the high-dose brain morphometric effects were treatment-related-setting the mid-dose as the study's No Observed Adverse Effect Level (NOAEL) or failing to find a definitive NOAEL for acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam. We found numerous deficiencies in EPA's regulatory oversight and data analyses. EPA dismissed statistically significant adverse effects, accepted substandard DNT studies despite lack of valid positive control data, and allowed neonicotinoid registrants to unduly influence agency decision-making. We conclude that perinatal exposure to neonicotinoids and their metabolites induces adverse, nicotine-like neurotoxic effects in rodent bioassays, and that the exposure limits set by EPA for human exposure are either not protective or not supported by available neurotoxicity data. We propose regulatory changes to empower EPA to better protect public health from developmental neurotoxins like neonicotinoids.
Collapse
Affiliation(s)
| | - Nathan Donley
- Center for Biological Diversity, Portland, OR, United States
| | | |
Collapse
|
2
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
3
|
Di Criscio M, Lodahl JE, Stamatakis A, Kitraki E, Bakoyiannis I, Repouskou A, Bornehag CG, Gennings C, Lupu D, Rüegg J. A human-relevant mixture of endocrine disrupting chemicals induces changes in hippocampal DNA methylation correlating with hyperactive behavior in male mice. CHEMOSPHERE 2023; 313:137633. [PMID: 36565761 DOI: 10.1016/j.chemosphere.2022.137633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Humans are ubiquitously exposed to endocrine disrupting chemicals (EDCs), substances that interfere with endogenous hormonal signaling. Exposure during early development is of particular concern due to the programming role of hormones during this period. A previous epidemiological study has shown association between prenatal co-exposure to 8 EDCs (Mixture N1) and language delay in children, suggesting an effect of this mixture on neurodevelopment. Furthermore, in utero exposure to Mixture N1 altered gene expression and behavior in adult mice. In this study, we investigated whether epigenetic mechanisms could underlie the long term effects of Mixture N1 on gene expression and behavior. To this end, we analyzed DNA methylation at regulatory regions of genes whose expression was affected by Mixture N1 in the hippocampus of in utero exposed mice using bisulfite-pyrosequencing. We show that Mixture N1 decreases DNA methylation in males at three genes that are part of the hypothalamus-pituitary-adrenal (HPA) axis: Nr3c1, Nr3c2, and Crhr1, coding for the glucocorticoid receptor, the mineralocorticoid receptor, and the corticotropin releasing hormone receptor 1, respectively. Furthermore, we show that the decrease in Nr3c1 methylation correlates with increased gene expression, and that Nr3c1, Nr3c2, and Crhr1 methylation correlates with hyperactivity and reduction in social behavior. These findings indicate that an EDC mixture corresponding to a human exposure scenario induces epigenetic changes, and thus programming effects, on the HPA axis that are reflected in the behavioral phenotypes of the adult male offspring.
Collapse
Affiliation(s)
- Michela Di Criscio
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Jennifer Ekholm Lodahl
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens 11527, Greece
| | - Efthymia Kitraki
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, NKUA, Athens 15272, Greece
| | - Ioannis Bakoyiannis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens 11527, Greece
| | - Anastasia Repouskou
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, NKUA, Athens 15272, Greece
| | - Carl-Gustaf Bornehag
- Faculty of Health, Science and Technology, Department of Health Sciences, Karlstad University, SE- 651 88 Karlstad, Sweden
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Lupu
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
4
|
Varshavsky JR, Rayasam SDG, Sass JB, Axelrad DA, Cranor CF, Hattis D, Hauser R, Koman PD, Marquez EC, Morello-Frosch R, Oksas C, Patton S, Robinson JF, Sathyanarayana S, Shepard PM, Woodruff TJ. Current practice and recommendations for advancing how human variability and susceptibility are considered in chemical risk assessment. Environ Health 2023; 21:133. [PMID: 36635753 PMCID: PMC9835253 DOI: 10.1186/s12940-022-00940-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A key element of risk assessment is accounting for the full range of variability in response to environmental exposures. Default dose-response methods typically assume a 10-fold difference in response to chemical exposures between average (healthy) and susceptible humans, despite evidence of wider variability. Experts and authoritative bodies support using advanced techniques to better account for human variability due to factors such as in utero or early life exposure and exposure to multiple environmental, social, and economic stressors.This review describes: 1) sources of human variability and susceptibility in dose-response assessment, 2) existing US frameworks for addressing response variability in risk assessment; 3) key scientific inadequacies necessitating updated methods; 4) improved approaches and opportunities for better use of science; and 5) specific and quantitative recommendations to address evidence and policy needs.Current default adjustment factors do not sufficiently capture human variability in dose-response and thus are inadequate to protect the entire population. Susceptible groups are not appropriately protected under current regulatory guidelines. Emerging tools and data sources that better account for human variability and susceptibility include probabilistic methods, genetically diverse in vivo and in vitro models, and the use of human data to capture underlying risk and/or assess combined effects from chemical and non-chemical stressors.We recommend using updated methods and data to improve consideration of human variability and susceptibility in risk assessment, including the use of increased default human variability factors and separate adjustment factors for capturing age/life stage of development and exposure to multiple chemical and non-chemical stressors. Updated methods would result in greater transparency and protection for susceptible groups, including children, infants, people who are pregnant or nursing, people with disabilities, and those burdened by additional environmental exposures and/or social factors such as poverty and racism.
Collapse
Affiliation(s)
- Julia R Varshavsky
- Department of Health Sciences and Department of Civil and Environmental Engineering Northeastern University, Boston, MA, 02115, USA.
| | - Swati D G Rayasam
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Carl F Cranor
- Department of Philosophy, University of California, Riverside, Riverside, CA, USA
- Environmental Toxicology Graduate Program, College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, CA, USA
| | - Dale Hattis
- The George Perkins Marsh Institute, Clark University, Worcester, MA, USA
| | - Russ Hauser
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Patricia D Koman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Rachel Morello-Frosch
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Catherine Oksas
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | | | - Joshua F Robinson
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Tracey J Woodruff
- Department of Obstetrics, Program on Reproductive Health and the Environment, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Chartres N, Sass JB, Gee D, Bălan SA, Birnbaum L, Cogliano VJ, Cooper C, Fedinick KP, Harrison RM, Kolossa-Gehring M, Mandrioli D, Mitchell MA, Norris SL, Portier CJ, Straif K, Vermeire T. Conducting evaluations of evidence that are transparent, timely and can lead to health-protective actions. Environ Health 2022; 21:123. [PMID: 36471342 PMCID: PMC9720912 DOI: 10.1186/s12940-022-00926-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In February 2021, over one hundred scientists and policy experts participated in a web-based Workshop to discuss the ways that divergent evaluations of evidence and scientific uncertainties are used to delay timely protection of human health and the environment from exposures to hazardous agents. The Workshop arose from a previous workshop organized by the European Environment Agency (EEA) in 2008 and which also drew on case studies from the EEA reports on 'Late Lessons from Early Warnings' (2001, 2013). These reports documented dozens of hazardous agents including many chemicals, for which risk reduction measures were delayed for decades after scientists and others had issued early and later warnings about the harm likely to be caused by those agents. RESULTS Workshop participants used recent case studies including Perfluorooctanoic acid (PFOA), Extremely Low Frequency - Electrical Magnetic Fields (ELF-EMF fields), glyphosate, and Bisphenol A (BPA) to explore myriad reasons for divergent outcomes of evaluations, which has led to delayed and inadequate protection of the public's health. Strategies to overcome these barriers must, therefore, at a minimum include approaches that 1) Make better use of existing data and information, 2) Ensure timeliness, 3) Increase transparency, consistency and minimize bias in evidence evaluations, and 4) Minimize the influence of financial conflicts of interest. CONCLUSION The recommendations should enhance the production of "actionable evidence," that is, reliable evaluations of the scientific evidence to support timely actions to protect health and environments from exposures to hazardous agents. The recommendations are applicable to policy and regulatory settings at the local, state, federal and international levels.
Collapse
Affiliation(s)
- Nicholas Chartres
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA.
| | - Jennifer B Sass
- Natural Resources Defense Council, Washington, DC, USA
- George Washington University, Washington, DC, USA
| | | | - Simona A Bălan
- California Department of Toxic Substances Control, Berkeley, CA, USA
- University of California at Berkeley, Berkeley, CA, USA
| | - Linda Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Courtney Cooper
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, 490 Illinois Street, Floor 10, San Francisco, CA, 94143, USA
| | | | - Roy M Harrison
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Environmental Sciences/Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marike Kolossa-Gehring
- Department of Environmental Hygiene, Section Toxicology, Health Related Environmental Monitoring, German Federal Environmental Agency, Dessau-Roßlau, Germany
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Mark A Mitchell
- George Mason University, Fairfax, VA, USA
- Connecticut Coalition for Environmental Justice, Hartford, CT, USA
| | - Susan L Norris
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Christopher J Portier
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- CJP Consulting, Seattle, WA, USA
| | - Kurt Straif
- ISGlobal, Barcelona, Spain
- Boston College, Newton, MA, USA
| | - Theo Vermeire
- Retired, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| |
Collapse
|
6
|
Ren L, Feng W, Hong F, Wang Z, Huang H, Chen Y. One-step homogeneous micro-orifice resistance immunoassay for detection of chlorpyrifos in orange samples. Food Chem 2022; 386:132712. [PMID: 35339078 DOI: 10.1016/j.foodchem.2022.132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
In this work, a one-step homogeneous micro-orifice resistance immunoassay has been proposed for chlorpyrifos detection by integrating functionalized polystyrene (PS) microsphere probes with particle counting technology. The particle counter is highly sensitive and accurate for detecting the state of PS microspheres, where the particles of different states exhibit significant differences in resistance. The state of the functionalized PS microspheres is altered from dispersed to aggregated during the antigen-antibody recognition. Based on the degree of aggregation of the functionalized PS microsphere probes, chlorpyrifos can be quantitatively detected through the competitive immune response between PS antibodies and PS complete antigens. This one-step homogeneous micro-orifice resistance immunoassay simplified the procedures and greatly increased the sensitivity of detection, which has been successfully applied to detect chlorpyrifos in orange samples within 0.5 h, with the detection limit of 0.058 ng/mL.
Collapse
Affiliation(s)
- Liangqiong Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wanxian Feng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Hong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, China.
| | - Hanying Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen, China.
| |
Collapse
|
7
|
Carlson JM, Janulewicz PA, Kleinstreuer NC, Heiger-Bernays W. Impact of High-Throughput Model Parameterization and Data Uncertainty on Thyroid-Based Toxicological Estimates for Pesticide Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5620-5631. [PMID: 35446564 PMCID: PMC9070357 DOI: 10.1021/acs.est.1c07143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/23/2023]
Abstract
Chemical-induced alteration of maternal thyroid hormone levels may increase the risk of adverse neurodevelopmental outcomes in offspring. US federal risk assessments rely almost exclusively on apical endpoints in animal models for deriving points of departure (PODs). New approach methodologies (NAMs) such as high-throughput screening (HTS) and mechanistically informative in vitro human cell-based systems, combined with in vitro to in vivo extrapolation (IVIVE), supplement in vivo studies and provide an alternative approach to calculate/determine PODs. We examine how parameterization of IVIVE models impacts the comparison between IVIVE-derived equivalent administered doses (EADs) from thyroid-relevant in vitro assays and the POD values that serve as the basis for risk assessments. Pesticide chemicals with thyroid-based in vitro bioactivity data from the US Tox21 HTS program were included (n = 45). Depending on the model structure used for IVIVE analysis, up to 35 chemicals produced EAD values lower than the POD. A total of 10 chemicals produced EAD values higher than the POD regardless of the model structure. The relationship between IVIVE-derived EAD values and the in vivo-derived POD values is highly dependent on model parameterization. Here, we derive a range of potentially thyroid-relevant doses that incorporate uncertainty in modeling choices and in vitro assay data.
Collapse
Affiliation(s)
- Jeffrey M. Carlson
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Patricia A. Janulewicz
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| | - Nicole C. Kleinstreuer
- Division
of Intramural Research, Biostatistics and Computational Biology Branch,
and National Toxicology Program Interagency Center for the Evaluation
of Alternative Toxicological Methods, National
Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Durham, North Carolina 27709, United States
| | - Wendy Heiger-Bernays
- Environmental
Health Department, Boston University School
of Public Health, 715 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
8
|
Donley N, Bullard RD, Economos J, Figueroa I, Lee J, Liebman AK, Martinez DN, Shafiei F. Pesticides and environmental injustice in the USA: root causes, current regulatory reinforcement and a path forward. BMC Public Health 2022; 22:708. [PMID: 35436924 PMCID: PMC9017009 DOI: 10.1186/s12889-022-13057-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Many environmental pollutants are known to have disproportionate effects on Black, Indigenous and People of Color (BIPOC) as well as communities of low-income and wealth. The reasons for these disproportionate effects are complex and involve hundreds of years of systematic oppression kept in place through structural racism and classism in the USA. Here we analyze the available literature and existing datasets to determine the extent to which disparities in exposure and harm exist for one of the most widespread pollutants in the world – pesticides. Our objective was to identify and discuss not only the historical injustices that have led to these disparities, but also the current laws, policies and regulatory practices that perpetuate them to this day with the ultimate goal of proposing achievable solutions. Disparities in exposures and harms from pesticides are widespread, impacting BIPOC and low-income communities in both rural and urban settings and occurring throughout the entire lifecycle of the pesticide from production to end-use. These disparities are being perpetuated by current laws and regulations through 1) a pesticide safety double standard, 2) inadequate worker protections, and 3) export of dangerous pesticides to developing countries. Racial, ethnic and income disparities are also maintained through policies and regulatory practices that 4) fail to implement environmental justice Executive Orders, 5) fail to account for unintended pesticide use or provide adequate training and support, 6) fail to effectively monitor and follow-up with vulnerable communities post-approval, and 7) fail to implement essential protections for children. Here we’ve identified federal laws, regulations, policies, and practices that allow for disparities in pesticide exposure and harm to remain entrenched in everyday life for environmental justice communities. This is not simply a pesticides issue, but a broader public health and civil rights issue. The true fix is to shift the USA to a more just system based on the Precautionary Principle to prevent harmful pollution exposure to everyone, regardless of skin tone or income. However, there are actions that can be taken within our existing framework in the short term to make our unjust regulatory system work better for everyone.
Collapse
|
9
|
Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 2021; 41:317-338. [PMID: 33730938 DOI: 10.1080/07388551.2020.1853032] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The application of microbial strains as axenic cultures has frequently been employed in a diverse range of sectors. In the natural environment, microbes exist as multispecies and perform better than monocultures. Cell signaling and communication pathways play a key role in engineering microbial consortia, because in a consortium, the microorganisms communicate via diffusible signal molecules. Mixed microbial cultures have gained little attention due to the lack of proper knowledge about their interactions with each other. Some ideas have been proposed to deal with and study various microbes when they live together as a community, for biotechnological application purposes. In natural environments, microbes can possess unique metabolic features. Therefore, microbial consortia divide the metabolic burden among strains in the group and robustly perform pesticide degradation. Synthetic microbial consortia can perform the desired functions at naturally contaminated sites. Therefore, in this article, special attention is paid to the microbial consortia and their function in the natural environment. This review comprehensively discusses the recent applications of microbial consortia in pesticide degradation and environmental bioremediation. Moreover, the future directions of synthetic consortia have been explored. The review also explores the future perspectives and new platforms for these approaches, besides highlighting the practical understanding of the scientific information behind consortia.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Anita Sharma
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
A Simple Approach for Determining the Maximum Sorption Capacity of Chlorpropham from Aqueous Solution onto Granular Activated Charcoal. Processes (Basel) 2020. [DOI: 10.3390/pr8040398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UV-Vis spectrophotometer was used to determine chlorpropham (CIPC) concentration in aqueous solution. The method was validated in term of linearity, precision and limit of detection and limit of quantitation. The correlation coefficient of standards calibration curve of (1.0–10.0 µg/mL CIPC) was R2 = 1 with a precision (RSD%, n=10) ranged from (0.87–0.53%). The limit of detection (LOD) and limit of quantitation (LOQ) based on the regression statistics of the calibration curve data of (1.0–10.0 µg/mL CIPC) were 0.04 µg/mL and 0.11 µg/mL respectively. The activated carbon adsorbent was found to be effective for the removal approximately 80% of CIPC from aqueous solution. Several isotherm models (Langmuir, Freundlich, Tempkin and Dubinin–Radushkevich) were evaluated. The maximum monolayer sorption capacity (Qm) from the Langmuir isotherm model was determined to be (44316.92 µg/g). The separation factor (RL) is 0.11 which indicates a favorable equilibrium sorption with the R2 value of 0.99, indicating that the Langmuir isotherm model fit the experimental sorption data well.
Collapse
|