1
|
Peng T, Liu C, Qian Y. Copper homeostasis and pregnancy complications: a comprehensive review. J Assist Reprod Genet 2025:10.1007/s10815-024-03375-4. [PMID: 39792348 DOI: 10.1007/s10815-024-03375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Pregnancy complications pose challenges for both pregnant women and obstetricians globally, with the pathogenesis of many remaining poorly understood. Recently coined as a mode of cell death, cuproptosis has been proposed but remains largely unexplored. This process involves copper overload, resulting in the accumulation of fatty acylated proteins and subsequent loss of iron-sulfur cluster proteins. This cascade induces proteotoxic stress, leading to cell death. In recent years, studies have indicated a connection between abnormal copper metabolism and several pregnancy-related diseases, including maternal placental dysplasia, gestational diabetes mellitus (GDM), gestational hypertension (PIH), preterm birth or abortion, as well as conditions in offspring such as intrauterine growth restriction (IUGR), allergic disease, Menkes disease, and Wilson's disease. Investigating the mechanism of cuproptosis and abnormal copper metabolism in these pregnancy-related diseases emerges as a critical research area. This article provides a concise review of cuproptosis mechanisms and emphasizes the association between abnormal copper metabolism and pregnancy-related diseases. Nevertheless, the doubtful viewpoints were also discussed.
Collapse
Affiliation(s)
- Tongyu Peng
- The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chenglin Liu
- Chongqing Medical University, Chongqing, 400016, China
| | - Yuanmin Qian
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Michael T, Solt I, Daniel S, Levy A, Hochwald O, Borenstein-Levin L, Hazan A, Berkovitch M, Brik A, Rabin AM, Betser M, Moskovich M, Livne A, Keidar R, Schwartsburd F, Weiner Z, Kohn E. The association of prenatal volatile organic compounds exposure and newborn anthropometrics: A cross-sectional study. Int J Hyg Environ Health 2024; 264:114493. [PMID: 39631195 DOI: 10.1016/j.ijheh.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Several studies have associated prenatal exposure to volatile organic compounds (VOCs) with adverse health outcomes among newborns. However, little is known about the associations of VOCs at relatively low concentrations with newborn outcomes. Hence, this study aimed to investigate the potential associations between prenatal exposure to VOCs and VOC mixtures with newborn anthropometric measures. METHODS In this cross-sectional study, 883 mother-term infant pairs who lived in urban areas in Israel and were admitted to the delivery rooms of two major hospitals between 2016 and 2020 were recruited. Associations between VOC metabolites detected in maternal urine samples on the day of delivery with weight, length, and head circumference at birth were estimated using single-exposure linear models and weighted quantile sum (WQS) approach. RESULTS Toluene, ethylbenzene/styrene, and xylene metabolites were detected in most samples at levels comparable to OECD populations. In male newborns, higher levels of phenylglyoxylic acid (PGA), a metabolite of ethylbenzene/styrene, were associated with lower birth weight (β = -0.08, 95% CI: 0.14, -0.01; P = 0.03). WQS models suggested PGA as the most prominent contributor to this association. CONCLUSION This study suggests that moderate exposure to ethylbenzene/styrene may be associated with reduced birth weight in male newborns. The sex-specific finding requires further research for the potential endocrine-disrupting mechanisms of these compounds. While the effect size was small, these results highlight the need to better understand the associations of frequent VOC exposures in levels similar to those common in OECD countries with fetal and child development.
Collapse
Affiliation(s)
- Tal Michael
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Sharon Daniel
- Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Amalia Levy
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel; Environment and Health Epidemiology Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, The Andy Lebach Chair of Clinical Pharmacology and Toxicology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Adi Malkoff Rabin
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Moshe Betser
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Miki Moskovich
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Rimona Keidar
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Frieda Schwartsburd
- National Residue Control Laboratory, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
3
|
Yang C, Sun X, Liu H, Yu L, Xu S, Zhou A, Li Y. Prenatal exposure to metal mixtures, body mass index trajectories in early life and effect modifiers: Insights from a prospective birth cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135220. [PMID: 39084009 DOI: 10.1016/j.jhazmat.2024.135220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
Current scientific knowledge is insufficient on the effects of metal mixtures on early life growth trajectories. This study included 7118 mother-infant pairs from a Chinese birth cohort. Concentrations of 18 maternal urinary metals were quantified, and growth trajectories were conducted based on standardized body mass index (BMI) for up to eight times from 0 to 2 years. A three-phase analytical framework was applied to explore the risk ratios (RR) and 95 % confidence intervals (95 % CI) of co-exposure to metals on dynamic growth, along with potential modifiers. Five growth trajectory groups were identified. Exposure to metal mixtures driven by thallium (Tl, 34.8 %) and aluminum (Al, 16.2 %) was associated with an increased risk of low-rising trajectory (RR=1.58, 95 % CI: 1.25, 2.00); however, exposure to mixtures driven by strontium (Sr, 49.5 %) exhibited an inverse correlation (RR = 0.81, 95 % CI: 0.67, 0.97). Furthermore, infants with varying levels of Tl, Al and Sr, as well as modifiers including pre-pregnancy BMI and infant sex faced distinct risks of low-rising trajectory. Our findings highlighted the Tl, Al, and Sr as key metals in relation to the low-rising trajectory in early life characterized as catch-up growth, with pre-pregnancy BMI and infant sex exerting as potential modifiers.
Collapse
Affiliation(s)
- Chenhui Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Aifen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, People's Republic of China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
4
|
Kort S, Wickliffe J, Shankar A, Covert HH, Lichtveld M, Zijlmans W. Association between Liver and Kidney Function and Birth Outcomes in Pregnant Surinamese Women Exposed to Mercury and Lead in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH) Environmental Epidemiologic Cohort Study. J Xenobiot 2024; 14:1051-1063. [PMID: 39189174 PMCID: PMC11348017 DOI: 10.3390/jox14030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Exposure to mercury (Hg) and lead (Pb), in combination with liver and kidney impairment, may result in adverse birth outcomes. From 408 women in the age range of 16 to 46 years, living in rural and urban areas in the interior of Suriname, we looked at the association between adverse birth outcomes and exposure to Hg and Pb in combination with liver and kidney function. This group of women represented a subcohort of pregnant women who participated in the Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH)-Meki Tamara study. Liver function was assessed by measuring aspartate amino transferase (AST), alanine amino transferase (ALT), and gamma-glutamyl transferase (GGT). Kidney function was assessed by measuring creatinine, urea, and cystatin C. We defined preterm births as birth before 37 weeks of gestation, low birthweight as birthweight < 2500 g, and low Apgar score as a score < 7 at 5 min, and these were used as indicators for adverse birth outcomes. Small size for gestational age was defined as gestational age < -2SD weight for GA. We found significant statistical associations between biomarkers for liver and kidney functions and adverse birth outcomes Apgar score and gestational age. No significant association was found between heavy metals Hg and lead and adverse birth outcomes.
Collapse
Affiliation(s)
- Sheila Kort
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| | - Jeffrey Wickliffe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Arti Shankar
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Hannah H. Covert
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Maureen Lichtveld
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (H.H.C.); (M.L.)
| | - Wilco Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, P.O. Box 9212 Paramaribo, Suriname;
| |
Collapse
|
5
|
Trees IR, Saha A, Putnick DL, Clayton PK, Mendola P, Bell EM, Sundaram R, Yeung EH. Prenatal exposure to air pollutant mixtures and birthweight in the upstate KIDS cohort. ENVIRONMENT INTERNATIONAL 2024; 187:108692. [PMID: 38677086 DOI: 10.1016/j.envint.2024.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Single-pollutant models have linked prenatal PM2.5 exposure to lower birthweight. However, analyzing air pollutant mixtures better captures pollutant interactions and total effects. Unfortunately, strong correlations between pollutants restrict traditional methods. OBJECTIVES We explored the association between exposure to a mixture of air pollutants during different gestational age windows of pregnancy and birthweight. METHODS We included 4,635 mother-infant dyads from a New York State birth cohort born 2008-2010. Air pollution data were sourced from the EPA's Community Multiscale Air Quality model and matched to the census tract centroid of each maternal home address. Birthweight and gestational age were extracted from vital records. We applied linear regression to study the association between prenatal exposure to PM2.5, PM10, NOX, SO2, and CO and birthweight during six sensitive windows. We then utilized Bayesian kernel machine regression to examine the non-linear effects and interactions within this five-pollutant mixture. Final models adjusted for maternal socio-demographics, infant characteristics, and seasonality. RESULTS Single-pollutant linear regression models indicated that most pollutants were associated with a decrement in birthweight, specifically during the two-week window before birth. An interquartile range increase in PM2.5 exposure (IQR: 3.3 µg/m3) from the median during this window correlated with a 34 g decrement in birthweight (95 % CI: -54, -14), followed by SO2 (IQR: 2.0 ppb; β: -31), PM10 (IQR: 4.6 µg/m3; β: -29), CO (IQR: 60.8 ppb; β: -27), and NOX (IQR: 7.9 ppb; β: -26). Multi-pollutant BKMR models revealed that PM2.5, NOX, and CO exposure were negatively and non-linearly linked with birthweight. As the five-pollutant mixture increased, birthweight decreased until the median level of exposure. DISCUSSION Prenatal exposure to air pollutants, notably PM2.5, during the final two weeks of pregnancy may negatively impact birthweight. The non-linear relationships between air pollution and birthweight highlight the importance of studying pollutant mixtures and their interactions.
Collapse
Affiliation(s)
- Ian R Trees
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| | - Abhisek Saha
- Biostatistics and Bioinformatics Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| | - Diane L Putnick
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| | - Priscilla K Clayton
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, University at Buffalo, United States
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany School of Public Health, United States
| | - Rajeshwari Sundaram
- Biostatistics and Bioinformatics Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States.
| | - Edwina H Yeung
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States.
| |
Collapse
|
6
|
Yanai T, Yoshida S, Takeuchi M, Kawakami C, Kawakami K, Ito S. Association between maternal heavy metal exposure and Kawasaki Disease, the Japan Environment and Children's Study (JECS). Sci Rep 2024; 14:9947. [PMID: 38689029 PMCID: PMC11061304 DOI: 10.1038/s41598-024-60830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/27/2024] [Indexed: 05/02/2024] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting young children, with an unclear etiology. We investigated the link between maternal heavy metal exposure and KD incidence in children using the Japan Environment and Children's Study, a large-scale nationwide prospective cohort with approximately 100,000 mother-child pairs. Maternal blood samples collected during the second/third trimester were analyzed for heavy metals [mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), manganese (Mn)], divided into four quartiles based on concentration levels. KD incidence within the first year of life was tracked via questionnaire. Among 85,378 mother-child pairs, 316 children (0.37%) under one year were diagnosed with KD. Compared with the lowest concentration group (Q1), the highest (Q4) showed odds ratios (95% confidence interval) for Hg, 1.29 (0.82-2.03); Cd, 0.99 (0.63-1.58); Pb, 0.84 (0.52-1.34); Se, 1.17 (0.70-1.94); Mn, 0.70 (0.44-1.11), indicating no concentration-dependent increase. Sensitivity analyses with logarithmic transformation and extended outcomes up to age 3 yielded similar results. No significant association was found between maternal heavy metal levels and KD incidence, suggesting that heavy metal exposure does not increase KD risk.
Collapse
Affiliation(s)
- Takanori Yanai
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Satomi Yoshida
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Takeuchi
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Chihiro Kawakami
- Kanagawa Regional Center for JECS, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shuichi Ito
- Kanagawa Regional Center for JECS, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
7
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
8
|
Sazakli E. Human Health Effects of Oral Exposure to Chromium: A Systematic Review of the Epidemiological Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:406. [PMID: 38673319 PMCID: PMC11050383 DOI: 10.3390/ijerph21040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The toxicity and carcinogenicity of hexavalent chromium via the inhalation route is well established. However, a scientific debate has arisen about the potential effects of oral exposure to chromium on human health. Epidemiological studies evaluating the connection between ingested chromium and adverse health effects on the general population are limited. In recent years, a wealth of biomonitoring studies has emerged evaluating the associations between chromium levels in body fluids and tissues and health outcomes. This systematic review brings together epidemiological and biomonitoring evidence published over the past decade on the health effects of the general population related to oral exposure to chromium. In total, 65 studies were reviewed. There appears to be an inverse association between prenatal chromium exposure and normal fetal development. In adults, parameters of oxidative stress and biochemical alterations increase in response to chromium exposure, while effects on normal renal function are conflicting. Risks of urothelial carcinomas cannot be overlooked. However, findings regarding internal chromium concentrations and abnormalities in various tissues and systems are, in most cases, controversial. Environmental monitoring together with large cohort studies and biomonitoring with multiple biomarkers could fill the scientific gap.
Collapse
Affiliation(s)
- Eleni Sazakli
- Lab of Public Health, Medical School, University of Patras, GR 26504 Patras, Greece
| |
Collapse
|
9
|
Zhou Y, Zhou J, He Y, Fang J, Tang J, Li S, Guo J, Luo Q, Zhong K, Huang K, Chen G. Associations between prenatal metal exposure and growth rate in children: Based on Hangzhou Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170164. [PMID: 38242450 DOI: 10.1016/j.scitotenv.2024.170164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND It has been reported that prenatal metal exposure is associated with child anthropometry. However, studies focusing on the growth rate of anthropometry among children have not been conducted. This study aimed to examine associations between the exposure of multiple metals during pregnancy and the growth rate of anthropometry among offspring. METHODS 743 mother-child pairs from the Hangzhou Birth Cohort Study (HBCS) were included. Levels of eleven metals in mother's blood during pregnancy were measured. Offspring had a mean of 5.7 measurements on anthropometric indicators including weight, length/height, head circumference, and body mass index (BMI) within 1.5 years of birth. Generalized estimating equation (GEE) model was used to investigate the associations between maternal metal exposure and growth rate of anthropometric indicators in children. Stratification analysis by sex was also examined. RESULTS Levels of selenium (Se, β = 0.213, 95 % CI = 0.017 to 0.409, P = 0.033) were positively associated with length/height gain per month in children. Levels of chromium (Cr, β = 0.025, 95 % CI = 0.018 to 0.033, P < 0.001) were positively associated with the rate of weight gain. Levels of manganese (Mn, β = -0.030, 95 % CI = -0.052 to -0.008, P = 0.009) and cobalt (Co, β = -0.012, 95 % CI = -0.024 to -0.000, P = 0.044) were inversely associated with growth rate of head circumference. Children with higher maternal Mn levels had a lower BMI change rate. Associations between metals and growth rate were stronger in girls than in boys. Besides, significant associations between metal mixtures and growth rate were found. CONCLUSION Prenatal exposure to Se, Cr, Mn, and Co was associated with growth rate in children, with sex-specific disparities. Our results suggested important effects of maternal exposure to multiple metals on development in offspring.
Collapse
Affiliation(s)
- Yexinyi Zhou
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiena Zhou
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yinyin He
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiawei Fang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310052, China
| | - Shuai Li
- Department of Clinical Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jing Guo
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Kunhong Zhong
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kegui Huang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Guangdi Chen
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Zuo J, Zhang H, Gang H, Mai Q, Jia Z, Liu H, Xia W, Xu S, Li Y. Associations of intrauterine exposure to manganese with fetal and early-childhood growth: a prospective prenatal cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14303-14317. [PMID: 38273082 DOI: 10.1007/s11356-023-31773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Prenatal manganese (Mn) exposure may be related to poor birth outcomes; however, there are few relevant epidemiological reports on the effects of intrauterine Mn levels on intrauterine fetal and early childhood growth. From 2013 to 2016, 2082 pairs of mothers and infants were recruited in Wuhan, China, who provided an entire set of urine samples during their first, second, and third trimesters. Fetal head circumference (HC), abdominal circumference (AC), femoral length (FL), and estimated fetal weight (EFW) were obtained by ultrasound at the 16, 24, and 31 weeks of pregnancy. When the children were born, 6 months old, 12 months old, and 24 months old, their weight, height, weight-for-height, and BMI were measured. We used generalized linear models, generalized estimated equations, and restricted cubic spline curves (RCS) to investigate the linear and nonlinear relationships between antenatal Mn levels and fetal and early childhood growth. In all fetuses, Mn exposure during the 1st and 2nd gestation was associated with decreased fetal AC, FL, and EFW at 24 weeks (e.g., for each doubling of urinary Mn concentrations during the 1st and 2nd gestation, the SD score of EFW at 24 weeks decreased by - 4.16% (95% CI, - 6.22%, - 2.10%) and - 3.78% (95% CI, - 5.86%, - 1.70%)). Mn concentrations in the highest tertile group of the 1st and 2nd gestation were related to decreased fetus growth parameters compared to the lowest tertile group. For each doubling of the average Mn concentrations during pregnancy, the z-scores of weight, weight-for-height, and BMI at 12 months decreased, with percentage changes of - 2.93% (95% CI, - 5.08%, - 0.79%), - 3.25% (95% CI, - 5.56%, - 0.94%), and - 3.09% (95% CI, - 5.44%, - 0.73%). In the RCS model, we found a reverse U-shaped association between 1st trimester Mn concentration and fetal FL at 16 weeks and HC at 31 weeks in male fetuses and a non-linear association between mean Mn concentration during pregnancy and girls' weight-for-height and BMI at 6 months. Intrauterine exposure to Mn may be related to restricted growth in the fetus and early childhood, especially in fetuses at 24 weeks of gestation and children at 12 months of age. Also, meaningful curvilinear relationships were found in the sex stratification.
Collapse
Affiliation(s)
- Jingwen Zuo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, People's Republic of China
| | - Huiqing Gang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Mai
- Center for Public Health Laboratory Service, Wuhan Centers for Disease Control & Prevention, Institute of Environmental Health, Wuhan, Hubei, 430024, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Issah I, Duah MS, Arko-Mensah J, Bawua SA, Agyekum TP, Fobil JN. Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168380. [PMID: 37963536 DOI: 10.1016/j.scitotenv.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Prenatal exposure to metal mixtures is associated with adverse pregnancy and birth outcomes like low birth weight, preterm birth, and small for gestational age. However, prior studies have used individual metal analysis, lacking real-life exposure scenarios. OBJECTIVES This systematic review aims to evaluate the strength and consistency of the association between metal mixtures and pregnancy and birth outcomes, identify research gaps, and inform future studies and policies in this area. METHODS The review adhered to the updated Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) checklist, along with the guidelines for conducting systematic reviews and meta-analyses of observational studies of etiology (COSMOS-E). Our data collection involved searching the PubMed, MEDLINE, and SCOPUS databases. We utilized inclusion criteria to identify relevant studies. These chosen studies underwent thorough screening and data extraction procedures. Methodological quality evaluations were conducted using the NOS framework for cohort and case-control studies, and the AXIS tool for cross-sectional studies. RESULTS The review included 34 epidemiological studies, half of which focused on birth weight, and the others investigated neonate size, preterm birth, small for gestational age, miscarriage, and placental characteristics. The findings revealed significant associations between metal mixtures (including mercury (Hg), nickel (Ni), arsenic (As), cadmium (Cd), manganese (Mn), cobalt (Co), lead (Pb), zinc (Zn), barium (Ba), cesium (Cs), copper (Cu), selenium (Se), and chromium (Cr)) and adverse pregnancy and birth outcomes, demonstrating diverse effects and potential interactions. CONCLUSION In conclusion, this review consistently establishes connections between metal exposure during pregnancy and adverse consequences for birth weight, gestational age, and other vital birth-related metrics. This review further demonstrates the need to apply mixture methods with caution but also shows that they can be superior to traditional approaches. Further research is warranted to deeper understand the underlying mechanisms and to develop effective strategies for mitigating the potential risks associated with metal mixture exposure during pregnancy.
Collapse
Affiliation(s)
- Ibrahim Issah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Surgery, Tamale Teaching Hospital, Tamale, Ghana.
| | - Mabel S Duah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - John Arko-Mensah
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Serwaa A Bawua
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Thomas P Agyekum
- Department of Occupational and Environmental Health and Safety, School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana
| | - Julius N Fobil
- West Africa Center for Global Environmental & Occupational Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biological, Environmental and Occupational Health, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
12
|
Huang CC, Pan SC, Chin WS, Hsu JF, Guo YL. Urinary heavy metals and attention-deficit/hyperactivity symptoms of preschool children: a mixed-exposure analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115714. [PMID: 37992648 DOI: 10.1016/j.ecoenv.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The neurotoxic effects of certain heavy metals are well established, but only a few studies have investigated the joint effect of concurrent exposure to multiple ones. The study aims to evaluate the association between mixed exposure to neurotoxic metals and the psychosocial behavior of preschool children. Using a stratified sampling strategy, we recruited participants from 105 kindergartens in 41 townships of Taiwan and excluded those with blood lead levels ≥ 3.5 µg/L. The first-morning void urines were collected and analyzed for cadmium, manganese, arsenic, chromium, lead, and nickel concentrations using inductively coupled plasma mass spectrometry. We applied the parentally reported Strengths and Difficulties Questionnaire (SDQ) and Swanson, Nolan, and Pelham IV (SNAP-IV) scales to evaluate the psychosocial behaviors. Multiple linear regressions were utilized to evaluate the associations between each heavy metal and the outcomes, while the mixed effect of concurrent exposure was estimated by using a Quantile g-computation approach. A total of 977 preschool children were included in the study, and the mean (SD) age was 5.7 (0.7) years old. In single pollutant models, we observed adverse effects of urinary manganese, nickel, arsenic, and lead on the specific subsets of SDQ. Furthermore, the combined effect of six heavy metals significantly affected the hyperactivity/inattention symptoms (beta = 0.46, 95% CI: 0.13-0.78, with all metals increased by one quartile), and chromium and lead were the two major contributors. Similar detrimental effects of urinary cadmium and lead were also observed in the SNAP-IV subsets, although the joint effect analysis was not significant. The study provided evidence that concurrent exposure to multiple heavy metals may exert increased risks of hyperactivity/inattention in children compared to single pollutant exposure. Further studies are needed to verify our findings regarding mixed exposure to multiple neurotoxic metals.
Collapse
Affiliation(s)
- Ching-Chun Huang
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; Environmental and Occupational Medicine, National Taiwan University Hospital Hsin-Chu Branch, HsinChu, Taiwan
| | - Shih-Chun Pan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 10005, Taiwan.
| |
Collapse
|
13
|
Freedman AN, Roell K, Engwall E, Bulka C, Kuban KCK, Herring L, Mills CA, Parsons PJ, Galusha A, O’Shea TM, Fry RC. Prenatal Metal Exposure Alters the Placental Proteome in a Sex-Dependent Manner in Extremely Low Gestational Age Newborns: Links to Gestational Age. Int J Mol Sci 2023; 24:14977. [PMID: 37834424 PMCID: PMC10573797 DOI: 10.3390/ijms241914977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Prenatal exposure to toxic metals is associated with altered placental function and adverse infant and child health outcomes. Adverse outcomes include those that are observed at the time of birth, such as low birthweight, as well as those that arise later in life, such as neurological impairment. It is often the case that these adverse outcomes show sex-specific responses in relation to toxicant exposures. While the precise molecular mechanisms linking in utero toxic metal exposures with later-in-life health are unknown, placental inflammation is posited to play a critical role. Here, we sought to understand whether in utero metal exposure is associated with alterations in the expression of the placental proteome by identifying metal associated proteins (MAPs). Within the Extremely Low Gestational Age Newborns (ELGAN) cohort (n = 230), placental and umbilical cord tissue samples were collected at birth. Arsenic (As), cadmium (Cd), lead (Pb), selenium (Se), and manganese (Mn) concentrations were measured in umbilical cord tissue samples via ICP-MS/MS. Protein expression was examined in placental samples using an LC-MS/MS-based, global, untargeted proteomics analysis measuring more than 3400 proteins. MAPs were then evaluated for associations with pregnancy and neonatal outcomes, including placental weight and gestational age. We hypothesized that metal levels would be positively associated with the altered expression of inflammation/immune-associated pathways and that sex-specific patterns of metal-associated placental protein expression would be observed. Sex-specific analyses identified 89 unique MAPs expressed in female placentas and 41 unique MAPs expressed in male placentas. Notably, many of the female-associated MAPs are known to be involved in immune-related processes, while the male-associated MAPs are associated with intracellular transport and cell localization. Further, several MAPs were significantly associated with gestational age in males and females and placental weight in males. These data highlight the linkage between prenatal metal exposure and an altered placental proteome, with implications for altering the trajectory of fetal development.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Kyle Roell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Eiona Engwall
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
| | - Catherine Bulka
- College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Karl C. K. Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, MA 02118, USA;
| | - Laura Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.H.); (C.A.M.)
| | - Christina A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (L.H.); (C.A.M.)
| | - Patrick J. Parsons
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (P.J.P.); (A.G.)
- Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY 12222, USA
| | - Aubrey Galusha
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (P.J.P.); (A.G.)
- Department of Environmental Health Sciences, School of Public Health, University of Albany, Rensselaer, NY 12222, USA
| | - Thomas Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA; (A.N.F.); (E.E.)
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC 27599, USA;
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Riseberg E, Melamed RD, James KA, Alderete TL, Corlin L. Development and application of an evidence-based directed acyclic graph to evaluate the associations between metal mixtures and cardiometabolic outcomes. EPIDEMIOLOGIC METHODS 2023; 12:20220133. [PMID: 37377511 PMCID: PMC10292771 DOI: 10.1515/em-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Objectives Specifying causal models to assess relationships among metal mixtures and cardiometabolic outcomes requires evidence-based models of the causal structures; however, such models have not been previously published. The objective of this study was to develop and evaluate a directed acyclic graph (DAG) diagraming metal mixture exposure and cardiometabolic outcomes. Methods We conducted a literature search to develop the DAG of metal mixtures and cardiometabolic outcomes. To evaluate consistency of the DAG, we tested the suggested conditional independence statements using linear and logistic regression analyses with data from the San Luis Valley Diabetes Study (SLVDS; n=1795). We calculated the proportion of statements supported by the data and compared this to the proportion of conditional independence statements supported by 1,000 DAGs with the same structure but randomly permuted nodes. Next, we used our DAG to identify minimally sufficient adjustment sets needed to estimate the association between metal mixtures and cardiometabolic outcomes (i.e., cardiovascular disease, fasting glucose, and systolic blood pressure). We applied them to the SLVDS using Bayesian kernel machine regression, linear mixed effects, and Cox proportional hazards models. Results From the 42 articles included in the review, we developed an evidence-based DAG with 74 testable conditional independence statements (43 % supported by SLVDS data). We observed evidence for an association between As and Mn and fasting glucose. Conclusions We developed, tested, and applied an evidence-based approach to analyze associations between metal mixtures and cardiometabolic health.
Collapse
Affiliation(s)
- Emily Riseberg
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|