1
|
Renu K. Exosomes derived from human adipose mesenchymal stem cells act as a therapeutic target for oral submucous fibrosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102224. [PMID: 39765310 DOI: 10.1016/j.jormas.2025.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Oral submucosal fibrosis is a highly malignant oral condition that necessitates the use of sophisticated therapeutic procedures. OSF is a multifactorial precancerous condition induced by areca nut chewing, deficiencies in vitamins and trace minerals, immunological aspects, and hereditary factors. Adipose tissue-derived mesenchymal stem cells possess the capability for multidirectional activation and are extensively distributed throughout the body. They have minimal immunogenicity and are extensively utilized in cancer treatment. Exosomes are extracellular vesicles produced by the intracellular route. They are biological carriers comprising microRNA, messenger RNA, lipids and proteins crucial for intercellular communication. ADSC exosomes, serving as a vehicle for miRNA, possess accessibility and little immunogenicity. They can significantly contribute to adipose tissue regrowth, angiogenesis, immunological modulation, and tissue repair. ADSC-Exo exhibits antifibrotic properties and may serve as a potential treatment for OSF. This review presents a novel therapeutic approach and clarifies the precise mechanisms involved in the clinical management of OSF using ADSC-Exo.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077, Tamil Nadu, India.
| |
Collapse
|
2
|
Kimura T, Sakata KI, Ohga N, Sato J, Itagaki T, Munekata T, Yanagawa-Matsuda A, Maeda T, Hojo M, Hatanaka KC, Hatanaka Y, Iizasa H. Salivary miRNAs as a novel therapeutic marker in a patient with advanced oral squamous cell carcinoma: A case report. Oncol Lett 2025; 29:52. [PMID: 39564374 PMCID: PMC11574702 DOI: 10.3892/ol.2024.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
The global prevalence of oral squamous cell carcinoma (OSCC) has been increasing. OSCC at the advanced stage tends to resist conventional treatment and causes local recurrence and distant metastasis, resulting in poor prognosis. Therefore, detecting this cancer at an early stage and performing early intervention are important. Promising biomarkers to detect OSCC have yet to be established; however, microRNAs (miRNAs/miRs) serve a crucial role in OSCC tumorigenesis and may be potential biomarkers. In the present case report, the availability of salivary miRNAs as a therapeutic and prognostic marker for patients with OSCC was assessed. The patient was a 33-year-old woman who was diagnosed with advanced OSCC of the tongue, and their miRNA profile isolated from a saliva sample at each clinical course was evaluated. Microarray analysis of the salivary samples revealed changes in the levels of four miRNAs (hsa-miR-6798-5p, miR-6803-5p, miR-6805-5p and miR-6845-5p) in accordance with the clinical course. Neoadjuvant chemotherapy and surgical procedure decreased the levels, whereas the levels increased when the patient was diagnosed with lung metastasis. Furthermore, tongue and lung metastatic lesion specimens exhibited expression of the vascular endothelial growth factor receptor-2, which is regulated by the four miRNAs. Accordingly, the present report proposed that salivary miRNAs could be a therapeutic and prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Taku Kimura
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Ken-Ichiro Sakata
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Noritaka Ohga
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Jun Sato
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Tatsuki Itagaki
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Takeshi Munekata
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Aya Yanagawa-Matsuda
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8648, Japan
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8648, Japan
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
3
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
4
|
Kumar A, George JM, Sharma S, Koyyadi S, Sharma SK, Verwilst P, Bhatia A, Patro SK, Aggarwal A, Gupta S, Sharma S, Sharma A. pH-Activatable Molecular Probe for COX-2 Imaging in Human Oral Squamous Carcinoma Cells and Patient-Derived Tissues. ACS APPLIED BIO MATERIALS 2024; 7:8517-8527. [PMID: 39561328 DOI: 10.1021/acsabm.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
For developing a successful cancer therapeutic modality, the early precise detection of cancer cells in patient biopsies in oral squamous cell carcinoma (OSCC) is crucial. This could help researchers create new diagnostic and therapeutic tools and assist clinicians in recommending more effective treatment plans and improving patient survival. We have developed an SMPD, cyclooxygenase-2 (COX-2) targeting pH-activable fluorophore named CNP, combining a potent COX-2 inhibitor, celecoxib, linked to a naphthalimide fluorophore with an acidic microenvironment-responsive piperazine moiety for specific optical imaging of OSCC in cells and patient tissues. Compared to reference probe RNP lacking celecoxib, CNP selectively enters the COX-2 overexpressing oral cancer cells. Its acidity-responsive imaging response enhances selectivity over cancers with lower COX-2 expression levels and normal cells. Further, CNP is demonstrated in imaging OSCC cells in patient-derived biopsies. Thus, multifunctional CNP shows potential in exploring more reagents for fluorescence-based detection of OSCC cells in patient tissues with translational applications.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Jiya Mary George
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Central Scientific Instruments Organisation, Sector 30C, Chandigarh 160030, India
| | - Sushank Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sundar Koyyadi
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Suchinder K Sharma
- Amity School of Physical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| | - Peter Verwilst
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1041, Leuven 3000, Belgium
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sourabha Kumar Patro
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Shipra Gupta
- Oral Health Sciences Centre, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Prasad M, Sekar R, Priya MDL, Varma SR, Karobari MI. A new perspective on diagnostic strategies concerning the potential of saliva-based miRNA signatures in oral cancer. Diagn Pathol 2024; 19:147. [PMID: 39548527 PMCID: PMC11568613 DOI: 10.1186/s13000-024-01575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Oral cancer, the most prevalent cancer worldwide, is far more likely to occur after the age of forty-five, according to the World Health Organization. Although many biomarkers have been discovered over the years using non-invasive saliva samples, biopsies, and human blood, these biomarkers have not been incorporated into standard clinical practice. Investigating the function of microRNAs (miRNAs) in the diagnosis, aetiology, prognosis, and treatment of oral cancer has drawn more attention in recent years. Though salivary microRNA can act as a window into the molecular environment of the tumour, there are challenges due to the heterogeneity of oral squamous cell carcinoma (OSCC), diversity in sample collection, processing techniques, and storage conditions. The up and downregulation of miRNAs has been found to have a profound role in OSCC as it regulates tumour stages by targeting many genes. As a result, the regulatory functions of miRNAs in OSCC underscore their significance in the field of cancer biology. Salivary miRNAs are useful diagnostic and prognostic indicators because their abnormal expression profiles shed light on tumour behaviour and patient prognosis. In addition to their diagnostic and prognostic value, miRNAs hold promise as therapeutic targets for oral cancer intervention. The current review sheds light on the challenges and potentials of microRNA studies that could lead to a better understanding of oral cancer prognosis, diagnosis, and therapeutic intervention. Furthermore, the clinical translation of OSCC biomarkers requires cooperation between investigators, physicians, regulatory bodies, and business partners. There is much potential for improving early identification, tracking therapy response, and forecasting outcomes in OSCC patients by including saliva-based miRNAs as biomarkers.
Collapse
Affiliation(s)
- Monisha Prasad
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Ramya Sekar
- Department of Oral and Maxillofacial Pathology & Oral Microbiology, Meenakshi Ammal Dental College and Hospital, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, Tamil Nadu, 600095, India
| | | | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman University, Ajman - 346, Ajman, UAE
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh, 12211, Cambodia.
| |
Collapse
|
6
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Fathima JHS, Jayaraman S, Sekar R, Syed NH. The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology 2024; 112:1023-1032. [PMID: 38619695 DOI: 10.1007/s10266-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Oral premalignant disorders (OPMDs) are a group of potentially malignant conditions that pose a significant health burden globally. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as crucial regulators of gene expression and have been implicated in various biological processes, including carcinogenesis. This review synthesizes existing knowledge to provide a comprehensive understanding of the molecular mechanisms underlying OPMDs and to highlight the potential of miRNAs as promising biomarkers and therapeutic targets. Additionally, this review seeks to explore the potential of miRNA-based diagnostic biomarkers for early detection of OPMDs in the current literature on miRNAs in OPMDs, examining their involvement in disease pathogenesis, diagnostic potential, and therapeutic implications. Dysregulated miRNAs can target genes involved in critical cellular processes, such as cell cycle regulation, apoptosis, and DNA repair, leading to disease progression. Notably, miR-21, miR-31, miR-135b, and miR-486-5p have shown promise as potential biomarkers for early detection of oral premalignant lesions. Furthermore, the paper discusses the therapeutic implications of miRNAs in OPMDs. Preclinical studies have demonstrated the efficacy of miRNA-targeted therapies, such as miRNA mimics and inhibitors, in suppressing the growth of oral premalignant lesions. Early-phase clinical trials have shown promising results, indicating the potential for personalized treatment approaches. The findings underscore the importance of understanding the molecular mechanisms underlying these disorders and provide insights for the development of improved diagnostic and therapeutic strategies. However, they pose certain limitations given their intrinsic variability in expression profiles, the need for optimized isolation and detection methods, and potential hurdles in transitioning from preclinical success to clinical applications. Thus, future clinical studies are warranted to fully exploit the potential of miRNAs in the management of OPMDs.
Collapse
Affiliation(s)
- J H Shazia Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, India
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospitals, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, 600095, Tamil Nadu, India
| | - Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Xu G, Song X, Wang X, Xue R, Yan X, Qin L, Chang X, Gao J, Chen Z, Song G. Combined miR-181a-5p and Ag Nanoparticles are Effective Against Oral Cancer in a Mouse Model. Int J Nanomedicine 2024; 19:9227-9253. [PMID: 39267724 PMCID: PMC11390847 DOI: 10.2147/ijn.s458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose Oral squamous cell carcinoma is the most common type of malignant tumor in the head and neck region. Despite advancements, metastasis and recurrence rates remain high, and patient survival has not significantly improved. Although miRNA therapies are promising for cancer gene therapy, their applications in treating oral cancer are limited. Targeted medication delivery systems based on nanotechnology offer an efficient way to enhance oral cancer treatment efficacy. Methods We synthesized nanosilver (AgNPs) and loaded them with the tumor suppressor miR-181a-5p. In vitro experiments were conducted to investigate the inhibitory effects of AgNPs and their composites on the malignant behavior of oral cancer cell lines. The xenograft experiment was utilized to examine their effects on tumorigenesis and the potential molecular mechanisms involved. Results The nanosilver exhibited a spherical morphology with a size distribution ranging from 50 to 100 nm. They exhibited a distinct absorption peak at 330 nm and could be excited to emit green fluorescence. The biocompatible AgNPs effectively shielded miRNA from degradation by RNase and serum. The nanocomposites significantly inhibited the proliferation, invasion, migration, and colony formation of oral cancer cell lines. Notably, treatment with the nanocomposites resulted in substantial tumor growth suppression in the xenograft model. Mechanistically, these composites directly targeted BCL2 and exerted their antitumor effects by suppressing the β-catenin signaling pathway and other downstream genes without inducing acute toxicity. Conclusion Collectively, the findings demonstrate that the miR-181a-5p/AgNPs combination significantly impedes the growth and progression of oral cancer both in vitro and in vivo, highlighting a pivotal role for the β-catenin signaling pathway. This multifaceted approach holds promise as a prospective therapeutic strategy for oral cancer management in the future.
Collapse
Affiliation(s)
- Guoqiang Xu
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaona Song
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaotang Wang
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Rui Xue
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoru Yan
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Litao Qin
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoqi Chang
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiping Gao
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zhaoyang Chen
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guohua Song
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
9
|
Bakhshi E, Ghorbanpour M, Entezari M, Jolehar M. Evaluation of the expression of miRNA-214 and circ-0005407 markers and their associated ZFAND3 gene in Oral squamous cell carcinoma. HUMAN GENE 2024; 41:201319. [DOI: 10.1016/j.humgen.2024.201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
11
|
Wang J, Jing J, Zhou C, Fan Y. Emerging roles of exosomes in oral diseases progression. Int J Oral Sci 2024; 16:4. [PMID: 38221571 PMCID: PMC10788352 DOI: 10.1038/s41368-023-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol Res Pract 2024; 253:154953. [PMID: 38039738 DOI: 10.1016/j.prp.2023.154953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Oral cancer tumors occur in the mouth and are mainly derived from oral mucosa linings. It is one of the most common and fatal malignant diseases worldwide. The intratumor heterogeneity (ITH) of oral cancerous tumor is vast, so it is challenging to study and interpret. Due to environmental selection pressures, ITH arises through diverse genetic, epigenetic, and metabolic alterations. The ITH also talks about peri-tumoral vascular/ lymphatic growth, perineural permeation, tumor necrosis, invasion, and clonal expansion/ the coexistence of multiple subclones in a single tumor. The heterogeneity offers tumors the adaptability to survive, induce growth/ metastasis, and, most importantly, escape antitumor therapy. Unfortunately, the ITH is prioritized less in determining disease pathology than the traditional TNM classifications or tumor grade. Understanding ITH is challenging, but with the advancement of technology, this ITH can be decoded. Tumor genomics, proteomics, metabolomics, and other modern analyses can provide vast information. This information in clinics can assist in understanding a tumor's severity and be used for diagnostic, prognostic, and therapeutic decision-making. Lastly, the oral tumor ITH can lead to individualized, targeted therapy strategies fighting against OC.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Kamre, Ranchi 835 222, Jharkhand, India.
| |
Collapse
|
13
|
Hosseini V, Montazersaheb S, Hejazi N, Aslanabadi S, Mohammadinasr M, Hejazi MS. A snapshot of miRNAs in oral squamous cell carcinoma: Difference between cancer cells and corresponding normal cells. Pathol Res Pract 2023; 249:154731. [PMID: 37573620 DOI: 10.1016/j.prp.2023.154731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes the most aggressive tumors of the oral cavity and is one of the leading causes of cancer mortality worldwide. Although recent clinical treatment strategies have improved the survival rate, the outcome of OSCC patients still remains dismal because of the lack of efficient diagnostic and treatment tools. As one of the main actors of OSCC scenario, microRNAs (miRNAs) are involved in triggering, progression and metastasis through the regulation of various cancer-related signaling pathways. Identification followed by precise study of the biology and mechanism of action of miRNAs will greatly help to provide valuable insights regarding OSCC development and can be considered as an anti-OSCC target. In the current review, we have provided a focused summary of the latest published papers on the role of miRNAs in apoptosis, cell cycle, proliferation, EMT and metastasis of OSCC as well as the role of long noncoding RNAs in the modulation of miRNAs in OSCC.
Collapse
Affiliation(s)
- Vahid Hosseini
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Hejazi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sina Aslanabadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Mohammadinasr
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Tan S, Tang H, Wang Y, Xie P, Li H, Zhang Z, Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023; 9:e19296. [PMID: 37662730 PMCID: PMC10474436 DOI: 10.1016/j.heliyon.2023.e19296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
As an extracellular vesicle, exosomes play an important role in intercellular information transmission, delivering cargos of the parent cell, such as RNA, DNA, proteins, and lipids, activating different signaling pathways in the target cell and regulating inflammation, angiogenesis, and tumor progression. In particular, exosomes secreted by tumor cells can change the function of surrounding cells, creating a microenvironment conducive to tumor growth and metastasis. For example, after macrophages phagocytose exosomes and accept their cargos, they activate macrophage polarization-related signaling pathways and polarize macrophages into M1 or M2 types to exert antitumor or protumor functions. Currently, the study of exosomes affecting the polarization of macrophages has attracted increasing attention. Therefore, this paper reviews relevant studies in this field to better understand the mechanism of exosome-induced macrophage polarization and provide evidence for exploring novel targets for tumor therapy and new diagnostic markers in the future.
Collapse
Affiliation(s)
- Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yang Wang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
15
|
Xia Y, Hei N, Peng S, Cui Z. The role and mechanism of circ-BNC2 on the malignant progression of oral squamous cell carcinoma. Head Neck 2023; 45:2424-2437. [PMID: 37377048 DOI: 10.1002/hed.27442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a key part in the progression of oral squamous cell carcinoma (OSCC). However, the role of circ-BNC2 (circRNA ID hsa_circ_0086414) in OSCC progression is still unclear. METHODS Plasmid transfection was used to induce overexpression of circ-BNC2. RNA expression of circ-BNC2, microRNA-142-3p (miR-142-3p) and GNAS complex locus (GNAS) was detected by quantitative real-time polymerase chain reaction. Protein expression was assessed by western blot assay or immunohistochemistry assay. Cell proliferation was investigated by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay and flow cytometry analysis. Cell migratory and invasive abilities and cell apoptosis were assessed by transwell assay and flow cytometry analysis, respectively. Oxidative stress was evaluated by superoxide dismutase activity detection assay, lipid peroxidation malondialdehyde assay and cellular reactive oxygen species assay. The binding relationship between miR-142-3p and circ-BNC2 or GNAS was proved by dual-luciferase reporter assay and RNA immunoprecipitation assay. The impacts of circ-BNC2 overexpression on tumor growth in vivo were unveiled by a xenograft mouse model assay. RESULTS Circ-BNC2 expression was downregulated in OSCC tissues and cells when compared with adjacent healthy tissues and normal human oral keratinocytes. Circ-BNC2 overexpression repressed the proliferation, migration and invasion of OSCC cells but induced cell apoptosis and oxidative stress. Additionally, circ-BNC2 overexpression inhibited tumor growth in vivo. Furthermore, circ-BNC2 bound to miR-142-3p, and miR-142-3p targeted GNAS. MiR-142-3p mimic attenuated circ-BNC2 overexpression-mediated effects on the proliferation, migration, invasion, apoptosis and oxidative stress of OSCC cells. The regulation of miR-142-3p in OSCC cell tumor properties involved GNAS. Further, circ-BNC2 introduction promoted GNAS expression by inhibiting miR-142-3p. CONCLUSION Circ-BNC2 suppressed OSCC malignant progression by upregulating GNAS expression in a miR-142-3p-dependent manner, which suggested that circ-BNC2 might be a novel target for OSCC therapy.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Stomatology, Hengshui People's Hospital, Hengshui City, Hebei Province, China
| | - Naiheng Hei
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Shixiong Peng
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Zifeng Cui
- Department of Stomatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
16
|
Gintoni I, Vassiliou S, Chrousos GP, Yapijakis C. Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma. Genes (Basel) 2023; 14:1578. [PMID: 37628629 PMCID: PMC10454361 DOI: 10.3390/genes14081578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent human malignancies and a global health concern with a poor prognosis despite some therapeutic advances, highlighting the need for a better understanding of its molecular etiology. The genomic landscape of OSCC is well-established and recent research has focused on miRNAs, which regulate gene expression and may be useful non-invasive biomarkers or therapeutic targets. A plethora of findings regarding miRNA expression have been generated, posing challenges for the interpretation and identification of disease-specific molecules. Hence, we opted to identify the most important regulatory miRNAs by bridging genetics and epigenetics, focusing on the key genes implicated in OSCC development. Based on published reports, we have developed custom panels of fifteen major oncogenes and five major tumor suppressor genes. Following a miRNA/target gene interaction analysis and a comprehensive study of the literature, we selected the miRNA molecules which target the majority of these panels that have been reported to be downregulated or upregulated in OSCC, respectively. As a result, miR-34a-5p, miR-155-5p, miR-124-3p, miR-1-3p, and miR-16-5p appeared to be the most OSCC-specific. Their expression patterns, verified targets, and the signaling pathways affected by their dysregulation in OSCC are thoroughly discussed.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
| | - George P. Chrousos
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
17
|
Polz A, Morshed K, Bibik R, Drop B, Drop A, Polz-Dacewicz M. Serum and Saliva Level of miR-31-5p and miR-let 7a in EBV Associated Oropharyngeal Cancer. Int J Mol Sci 2023; 24:11965. [PMID: 37569339 PMCID: PMC10418762 DOI: 10.3390/ijms241511965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Epstein-Barr virus (EBV) has a well-documented association with head and neck neoplasms, including nasopharyngeal carcinoma (NPC). In the last few years, research aimed at elucidating the role of the miRs in the pathogenesis of head and neck cancer (HNC) has gained importance. The study of miRs expression has set new directions in the search for biomarkers with diagnostic and prognostic value, and even in the search for new therapeutic targets for various tumors, including HNC. The aim of current study was to approximate the importance of miR-31-5p and miR-let 7a in the pathogenesis of EBV associated oropharyngeal cancer. For this purpose, experiments were carried out to determine the level of mentioned miRs in serum among patients diagnosed with oropharyngeal cancer linked to EBV infection, depending on histological differentiation-grading (G1-G3) and TNM classification. All clinical specimens stratified by HPV status were HPV negative. The level of antibodies EBNA and EBVCA was also assessed. The obtained results showed a significantly increased serum level of miR-31-5p but decreased level of miR-let 7a in EBV positive oropharyngeal cancer patients. We demonstrated association between the level of tested miRs and clinical stage. Our findings showed that miR-31-5p and miR-let-7a may be involved in development and progression of EBV associated oropharyngeal cancer. Therefore, it seems important to further study these molecules, as well as to determine whether they could be important biomarkers in the diagnosis of oropharyngeal cancer associated with EBV infection.
Collapse
Affiliation(s)
- Anna Polz
- Synevo Poland, 80-180 Gdańsk, Poland;
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Robert Bibik
- Department of Radiation Oncology, Oncology Center of Radom, 26-600 Radom, Poland;
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, 20-090 Lublin, Poland;
| | - Andrzej Drop
- 1st Department of Medical Radiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Conrad O, Burgy M, Foppolo S, Jehl A, Thiéry A, Guihard S, Vauchelles R, Jung AC, Mourtada J, Macabre C, Ledrappier S, Chenard MP, Onea MA, Danic A, Dourlhes T, Thibault C, Schultz P, Dontenwill M, Martin S. Tumor-Suppressive and Immunomodulating Activity of miR-30a-3p and miR-30e-3p in HNSCC Cells and Tumoroids. Int J Mol Sci 2023; 24:11178. [PMID: 37446353 DOI: 10.3390/ijms241311178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are heterogeneous tumors, well known for their frequent relapsing nature. To counter recurrence, biomarkers for early diagnosis, prognosis, or treatment response prediction are urgently needed. miRNAs can profoundly impact normal physiology and enhance oncogenesis. Among all of the miRNAs, the miR-30 family is frequently downregulated in HNSCC. Here, we determined how levels of the 3p passenger strands of miR-30a and miR-30e affect tumor behavior and clarified their functional role in LA-HNSCC. In a retrospective study, levels of miR-30a-3p and miR-30e-3p were determined in 110 patients and correlated to overall survival, locoregional relapse, and distant metastasis. miR-30a/e-3p were expressed in HNSCC cell lines and HNSCC patient-derived tumoroids (PDTs) to investigate their effect on tumor cells and their microenvironment. Both miRNAs were found to have a prognosis value since low miR-30a/e-3p expression correlates to adverse prognosis and reduces overall survival. Low expression of miR-30a/e-3p is associated with a shorter time until locoregional relapse and a shorter time until metastasis, respectively. miR-30a/e-3p expression downregulates both TGF-βR1 and BMPR2 and attenuates the survival and motility of HNSCC. Results were confirmed in PDTs. Finally, secretomes of miR-30a/e-3p-transfected HNSCC activate M1-type macrophages, which exert stronger phagocytic activities toward tumor cells. miR-30a/e-3p expression can discriminate subgroups of LA-HNSCC patients with different prognosis, making them good candidates as prognostic biomarkers. Furthermore, by targeting members of the TGF-β family and generating an immune-permissive microenvironment, they may emerge as an alternative to anti-TGF-β drugs to use in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Mickaël Burgy
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sophie Foppolo
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Aude Jehl
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alicia Thiéry
- Department of Public Health, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Romain Vauchelles
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Alain C Jung
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Jana Mourtada
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
| | - Christine Macabre
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sonia Ledrappier
- Laboratory STREINTH, Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Aurélien Danic
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Thomas Dourlhes
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Claire Thibault
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Philippe Schultz
- Department of Otolaryngology and Cervico-Facial Surgery, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France
| |
Collapse
|
19
|
Chugh A, Purohit P, Vishnoi JR, Kaur A, Modi A, Mishra S, Sharma P, Rodha MS, Pareek P, Bhattacharya S, Gigi PG. Correlation of hsa miR-101-5p and hsa miR-155-3p Expression With c-Fos in Patients of Oral Submucous Fibrosis (OSMF) and Oral Squamous Cell Carcinoma (OSCC). J Maxillofac Oral Surg 2023; 22:381-387. [PMID: 37122804 PMCID: PMC10130318 DOI: 10.1007/s12663-021-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Aim MicroRNAs have been widely acknowledged as a diagnostic, prognostic, and/or therapeutic biomarker for the progression of OSCC, but the correlation of hsa-miR-101-5p and hsa-miR-155-3p is yet to be established with c-Fos in OSCC and OSMF. Methodology An observational study enrolled 40 patients divided into 2 groups: Group I-21 OSMF patients without malignant transformation, Group II-19 patients with locally advanced, large-operable, or metastatic OSCC, after applying inclusion and exclusion criteria. Both miRNAs were extracted and analyzed from the tissue sample excised from the involved site. The linear regression analysis of the expression of hsa-miR-155-3p, hsa-miR-101-5p, and levels of c-fos in OSMF and OSCC patients and its correlation for habits, age, and gender were evaluated. Results The expression of hsa-miR-101-5p was 0.81 times downregulated in OSCC tissue compared to OSMF, whereas hsa-miR-155-3p and c-fos were both upregulated 9.30 times and 1.75 times, respectively, in OSCC tissue. In Gutkha and tobacco chewers, the hsa-miR-155-3p expression could explain 12.3% (p = 0.031) for Gutkha chewers, whereas c-fos could explain 38.6% of the cases (p = 0.020) for tobacco chewers. The expression of hsa-miR-101-5p and hsa-miR-155-3p explained 43.7% and 59.5% of OSCC cases in alcoholics, respectively. Interestingly, in non-alcoholics, hsa-miR-155-3p and hsa-miR-101-5p were significant predictors of OSCC. Conclusion Downregulation of tumor-suppressor hsa-miR-101-5p and upregulation of proto-onco hsa-miR-155-3p is responsible for intricate regulation of the progression of OSMF to OSCC via deregulated expression of c-Fos and tobacco chewing and advancing age is significant contributors for OSCC.
Collapse
Affiliation(s)
- Ankita Chugh
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Jeewan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Amanjot Kaur
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Sanjeev Mishra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Mahaveer Singh Rodha
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Puneet Pareek
- Department of Radiotherapy, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Shilajit Bhattacharya
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - P. G. Gigi
- Department of Dentistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| |
Collapse
|
20
|
Moustafa MA, El-Refaie WM, Elnaggar YSR, El-Mezayen NS, Awaad AK, Abdallah OY. Fucoidan/hyaluronic acid cross-linked zein nanoparticles loaded with fisetin as a novel targeted nanotherapy for oral cancer. Int J Biol Macromol 2023; 241:124528. [PMID: 37086764 DOI: 10.1016/j.ijbiomac.2023.124528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Fisetin (FS) is an anticancer drug having potential role in oral tumors management. However, its clinical application is limited due to its hydrophobicity and instability. Bioactive polymers-based nanosystems have a great potential in cancer therapy. Herein, different biopolymers were selected for their anticancer activity and targeting ability for nanoparticles preparation namely; fucoidan (FU), zein (Zn) and hyaluronic acid (HA). The selected FS-loaded cross-linked Zn nanoparticles (ZFH) which contains HA& FU for Zn nanoparticles stabilization showed the most suitable particle size (196 ± 6.53 nm), mean surface net charge (-38.8 ± 1.47 mV) and entrapment efficiency (98 ± 1.2 %). This is the first study to utilize both HA &FU not only for stabilization but also for dual targeting effect due to their targeting ability to multiple tumor targets. In-vitro anticancer activity of ZHF revealed remarkable uptake by SCC-4 cells with significant cytotoxic action. Further, ZHF was appraised using 4-nitroquinoline 1-oxide (4-NQO)-induced oral cancer in-vivo; ZHF significantly reduced OSCC-specific serum biomarkers levels, histologic tumor grade and increased caspase-3 level. Moreover, potential of destroying two key tumor regulatory cells; TECs and CSCs, was evaluated using their specific markers. The elaborated ZFH nanoparticles could be considered as promising targeted nanotherapy for oral cancer treatment with enhanced efficacy and survival rate.
Collapse
Affiliation(s)
- Mona A Moustafa
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt
| | - Wessam M El-Refaie
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | | | - Ashraf K Awaad
- Center for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
21
|
Dixit S, Kumar A, Srinivasan K. A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics (Basel) 2023; 13:1353. [PMID: 37046571 PMCID: PMC10093759 DOI: 10.3390/diagnostics13071353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer is a problematic global health issue with an extremely high fatality rate throughout the world. The application of various machine learning techniques that have appeared in the field of cancer diagnosis in recent years has provided meaningful insights into efficient and precise treatment decision-making. Due to rapid advancements in sequencing technologies, the detection of cancer based on gene expression data has improved over the years. Different types of cancer affect different parts of the body in different ways. Cancer that affects the mouth, lip, and upper throat is known as oral cancer, which is the sixth most prevalent form of cancer worldwide. India, Bangladesh, China, the United States, and Pakistan are the top five countries with the highest rates of oral cavity disease and lip cancer. The major causes of oral cancer are excessive use of tobacco and cigarette smoking. Many people's lives can be saved if oral cancer (OC) can be detected early. Early identification and diagnosis could assist doctors in providing better patient care and effective treatment. OC screening may advance with the implementation of artificial intelligence (AI) techniques. AI can provide assistance to the oncology sector by accurately analyzing a large dataset from several imaging modalities. This review deals with the implementation of AI during the early stages of cancer for the proper detection and treatment of OC. Furthermore, performance evaluations of several DL and ML models have been carried out to show that the DL model can overcome the difficult challenges associated with early cancerous lesions in the mouth. For this review, we have followed the rules recommended for the extension of scoping reviews and meta-analyses (PRISMA-ScR). Examining the reference lists for the chosen articles helped us gather more details on the subject. Additionally, we discussed AI's drawbacks and its potential use in research on oral cancer. There are methods for reducing risk factors, such as reducing the use of tobacco and alcohol, as well as immunization against HPV infection to avoid oral cancer, or to lessen the burden of the disease. Additionally, officious methods for preventing oral diseases include training programs for doctors and patients as well as facilitating early diagnosis via screening high-risk populations for the disease.
Collapse
Affiliation(s)
- Shriniket Dixit
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Anant Kumar
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
22
|
Roi A, Boia S, Rusu LC, Roi CI, Boia ER, Riviș M. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines 2023; 11:biomedicines11030965. [PMID: 36979943 PMCID: PMC10046112 DOI: 10.3390/biomedicines11030965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Oral cancer is currently challenging the healthcare system, with a high incidence among the population and a poor survival rate. One of the main focuses related to this malignancy is the urge to implement a viable approach for improving its early diagnosis. By introducing the use of liquid biopsy and the identification of potential biomarkers, aiming for a noninvasive approach, new advancements offer promising perspectives in the diagnosis of oral cancer. The present review discusses the potential of circulating miRNAs as oral cancer biomarkers identified in body fluids such as serum, plasma, and saliva samples of oral cancer patients. Existing results reveal an important implication of different miRNA expressions involved in the initiation, development, progression, and metastasis rate of oral malignancy. Liquid biomarkers can play a crucial role in the development of the concept of personalized medicine, providing a wide range of clinical applications and future targeted therapies.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ciprian Ioan Roi
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| | - Eugen Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mircea Riviș
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| |
Collapse
|
23
|
Xu G, Yang Y, Yang J, Xiao L, Wang X, Qin L, Gao J, Xuan R, Wu X, Chen Z, Sun R, Song G. Screening and identification of miR-181a-5p in oral squamous cell carcinoma and functional verification in vivo and in vitro. BMC Cancer 2023; 23:162. [PMID: 36800936 PMCID: PMC9936757 DOI: 10.1186/s12885-023-10600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.
Collapse
Affiliation(s)
- Guoqiang Xu
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Yiyan Yang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Junting Yang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Lanfei Xiao
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Xiaotang Wang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Litao Qin
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Jiping Gao
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Ruijing Xuan
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Xiaofen Wu
- grid.263452.40000 0004 1798 4018Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
| | - Zhaoyang Chen
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Rui Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
| |
Collapse
|
24
|
Chemoprevention of 4NQO-Induced Mouse Tongue Carcinogenesis by AKT Inhibitor through the MMP-9/RhoC Signaling Pathway and Autophagy. Anal Cell Pathol (Amst) 2022; 2022:3770715. [PMID: 36247874 PMCID: PMC9556259 DOI: 10.1155/2022/3770715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC), the most common cancer in the head and neck, which has a poor prognosis, histopathologically follows a stepwise pattern of hyperplasia, dysplasia, and cancer. Blocking the progression of OC in the precancer stage could greatly improve the survival and cure rates. AKT protein plays a critical role in the signal transduction of cancer cells, and we found that AKT was overexpressed in human OC samples through analysis of TCGA database. Therefore, this study is aimed at investigating the chemopreventive effect of an AKT inhibitor (MK2206 2HCl) on OC. In vivo, we established a 4-nitroquinoline-1-oxide- (4NQO-) induced mouse tongue carcinogenesis model to investigate the potential chemopreventive effect of MK2206 2HCl on mouse OC resulting from 4NQO. The results showed that MK2206 2HCl could significantly reduce the incidence rate and growth of OC, inhibit the transformation of dysplasia to cancer in the 4NQO-induced mouse tongue carcinogenesis model, and simultaneously markedly suppress cell proliferation, angiogenesis, and mast cell (MC) infiltration in 4NQO-induced mouse tongue cancers. In vitro, our results revealed that MK2206 2HCl could also inhibit oral squamous cell carcinoma (OSCC) cell malignant biological behaviors, including cell proliferation, colony formation, cell invasion, and migration, while promoting apoptosis. Mechanistic studies revealed that MK2206 2HCl suppressed matrix metalloproteinase 9 (MMP-9) and RhoC expression and promoted autophagy gene LC3 II expression. In summary, our findings demonstrated the chemopreventive effect of MK2206 2HCl on the 4NQO-induced mouse tongue carcinogenesis model, which likely has an underlying mechanism mediated by the MMP-9/RhoC signaling pathway and autophagy.
Collapse
|
25
|
Liu YT, Yu CC, Lu MY, Chao SC, Liao YW, Yu CH, Lee YH. miR-146a participates in the regulation of cancer stemness of oral carcinoma cells. J Dent Sci 2022; 18:503-509. [PMID: 37021226 PMCID: PMC10068381 DOI: 10.1016/j.jds.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Indexed: 12/09/2022] Open
Abstract
Background/purpose Increasing evidence regarded the existence of cancer stem cells (CSCs) as a leading cause of therapy failure and tumor relapse due to their self-renewal and differentiation abilities. Although ectopic overexpression of micro-RNAs (miRNAs) can modulate the cancer stemness and tumor development in oral cancer, their molecular mechanism is still unclear. Therefore, in the present study, we attempt to uncover the role of miR-146a in the maintenance of oral CSCs. Materials and methods The expression of miR-146a was determined using qRT-PCR analysis. Aldehyde dehydrogenase (ALDH) enzymic activity and sphere formation assays were used to evaluate the cancer stemness and self-renewal, respectively. Functional assays, including migration/invasion Transwell and colony formation assay, were used to evaluate the aggressive abilities. Luciferase reporter assay was performed to validate the relationship between miR-146a and Numb. Results In the present study, we reported an increased expression of miR-146a in the oral squamous cell carcinoma (OSCC) specimen, primary OSCC cells sphere, and high ALDH1 activity population within OSCC cells. Inhibition of miR-146a significantly suppressed the ALDH1 activity, self-renewal capacity, and aggressive abilities, including migration, invasion, and colony formation. Moreover, we demonstrated that Numb is a functional target of miR-146a in OSCC-CSCs. Notably, silencing of Numb could retrieve the self-renewal and migration impaired by knockdown of miR-146a. Conclusion Our results indicate that miR-146a can regulate the cancer stemness in OSCC by modulating Numb, and hence miR-146a/Numb axis can serve as a potential target for oral cancer therapy.
Collapse
Affiliation(s)
- Yen-Tze Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Holistic Wellness, MingDao University, Changhua, Taiwan
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Corresponding author. School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan. Fax: 886-4-24759065.
| | - Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Corresponding author. School of Dentistry, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan. Fax: 886-4-24759065.
| |
Collapse
|
26
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
27
|
Tseng CC, Tsou CH, Huang SY, Wu CW, Hsieh TH. Using Next-Generation Sequencing and Bioinformatic Methods to Predict New Genes That May Be Regulated by CD47 in Oral Squamous Cell Carcinoma. Curr Issues Mol Biol 2022; 44:2243-2256. [PMID: 35678681 PMCID: PMC9164064 DOI: 10.3390/cimb44050152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers in the world, and the incidence and death rate of OSCC in men is twice that of women. CD47 is a ubiquitous cell surface transmembrane protein, also known as integrin-related protein (IAP). Previous studies have pointed out that CD47 can inhibit the growth of OSCC, but the detailed mechanism is not clear. This study aimed to explore the effect of CD47 gene expression profiles in OSCC. The OSCC cell lines, OECM-1 and OC-2, overexpressed CD47, and the expression profiles of mRNAs were analyzed through next-generation sequencing (NGS) with a bioinformatic approach. A total of 14 differentially expressed genes (DEGs) were listed. In addition, ingenuity pathway analysis (IPA) was used to analyze the molecular function (MF), biological process (BP), and cellular component (CC) network signaling. The human protein atlas (HPA) database was used to analyze gene expression and the survivability of human cancer. The results found that HSPA5, HYOU1, and PDIA4 were involved in the IPA network and when highly expressed, mediated the survivability of cancer. In addition, HSPA5 was positively and significantly correlated with CD47 expression (p < 0.0001) and induced by CD47-overexpression in the OECM-1 and OC-2 OSCC cancer cell lines. These findings provide important insights into possible new diagnostic strategies, including unfolded protein for OSCC-targeting CD47.
Collapse
Affiliation(s)
- Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Department of Dentistry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
| | - Chen-Han Tsou
- Department of Dentistry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 5072)
| |
Collapse
|
28
|
Seif S, Afra N, Dadgar E, Enteghad S, Argani P, Aghdasi N, Masouleh SS, Barati G. The expression of salivary microRNAs in oral lichen planus: Searching for a prognostic biomarker. Pathol Res Pract 2022; 234:153923. [PMID: 35526303 DOI: 10.1016/j.prp.2022.153923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
Abstract
Oral lichen planus (OLP) is a premalignant disease with unknown etiology. It has been demonstrated that inflammation and immune activation play a central role in the pathogenesis of OLP. Various cellular and molecular mechanisms are involved in the pathogenesis of OLP. Studies have shown that 2-7% of OLP patients develop oral squamous cell carcinoma (OSCC). As a result, determining the prognosis of the disease will be promising in preventing oral carcinoma. MicroRNAs are involved in the regulation of cytokine expression and cytokines have a central role in the pathogenesis of OLP. As a result, their evaluation in body fluids may be helpful in assessing the disease's status and progression, and facilitating the treatment process. In this regard, much attention has been paid to the saliva of OLP patients as the sampling is cost-effective and non-invasive. Here, we discuss the potential of miRNAs in predicting the disease severity and progression.
Collapse
Affiliation(s)
- Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Enteghad
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pendar Argani
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noura Aghdasi
- Faculty of Dentistry, Inonu University, Malatya, Turkey
| | | | | |
Collapse
|
29
|
Dysregulation of miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p in Oral Squamous Cell Carcinoma: A Potential Biomarkers Panel? Curr Issues Mol Biol 2022; 44:1754-1767. [PMID: 35723379 PMCID: PMC9164081 DOI: 10.3390/cimb44040121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is considered the sixth most common cancer worldwide. To reduce the high mortality of the disease, sensitive and specific diagnostic and prognostic biomarkers are urgently needed. Non-coding RNA, microRNAs (miRNAs), which are short length non-coding transcripts, or long non-coding RNA (lncRNA) seem to be potential biomarkers, considering that they have an important role in regulation of cell fate being involved in a wide range of biological processes. Literature data emphasized the important role of these transcripts as a biomarker for diagnosis and prognosis in oral squamous cell carcinoma. Therefore, we have evaluated the expression levels of a panel of four miRNAs (miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p) and H19, MALAT1 by quantitative real-time PCR (qRT-PCR) from 33 fresh frozen tissues and 33 normal adjacent tissues. Our date revealed miR-21-5p and miR-93-5p to be upregulated, while miR-200c-3p and miR-205-5p to be downregulated. Regarding the long non-coding RNAs, H19 and MALAT1, were also downregulated. We also investigated the expression of BCL2, which is another important gene correlated to non-coding RNAs investigated by as, and it was also under-expressed. Additional validation step at protein level was done for KI67, TP53 and BCL2. In our patient cohort no correlation with clinical stage and smoking status was observed. The results of the present study indicated the important role of miR-21-5p, miR-93-5p, miR-200c-3p, miR-205-5p and H19 in OSCC. Differential expression of these transcripts at sub-sites, may serve as a diagnostic marker with further elaboration on a larger sample size. Additional studies should be conducted to confirm the results, particularly the interconnection with coding and non-coding genes.
Collapse
|
30
|
Wang S, Jiang S, Feng R, Liu J, Liu L, Cui J, Shi Y, Ning J, Jia B, Hu Z, Wang S. MicroRNA profile of circulating CD4+ T cells in aged patients with atherosclerosis obliterans. BMC Cardiovasc Disord 2022; 22:172. [PMID: 35428200 PMCID: PMC9013077 DOI: 10.1186/s12872-022-02616-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
To evaluate the specificity of the expression patterns of microRNAs (miRNAs) in circulating CD4+ T cells in aged patients with atherosclerosis obliterans (ASO).
Methods
A comprehensive miRNA expression study was conducted using a miRNA microarray of CD4+ T cells isolated from peripheral blood mononuclear cells (PBMCs) of 33 patients with ASO and 24 healthy donors. A t test was used for statistical analysis, and the average linkage method was used for hierarchical clustering. The results were validated by qRT–PCR. Putative targeted pathways associated with validated miRNAs were predicted with the online software DIANA miRPath.
Results
We identified 44 miRNAs based on a cutoff value of a 1.3-fold change in expression between the two groups, with 18 miRNAs showing a false discovery rate (FDR) p value < 0.05. The qRT–PCR analysis validated differences in 12 miRNAs, and 6 miRNAs were proven to be differentially expressed among three age groups (age: 35–55 years; 56–75 years; 76–95 years): the miRNAs miR-21 (p: 0.0008; 0.0009; 0.0022), miR-29b (p: 0.453; < 0.0001; < 0.0001), and miR-374b (p: < 0.0001; < 0.0001; 0.2493) showed upregulated expression in patients with ASO, while miR-142-3p (p: < 0.0001; < 0.0001; < 0.0001), miR-142-5p (p: < 0.0001; < 0.0001; < 0.0001), and miR-150 (p: < 0.0001; < 0.0001; 0.0001) showed downregulated expression in patients with ASO. The validated miRNAs participated in CD4+ T cell activation, proliferation, and migration pathways.
Conclusions
Circulating CD4+ T cells in aged patients with ASO may show a distinct molecular signature. This is the first time that a distinctive, validated miRNA profile from circulating CD4+ T cells in atherosclerosis has been presented. This miRNA signature may be used to help elucidate the underlying mechanism of atherosclerosis. Further clinical studies and in-depth reports will contribute to identifying predictive and therapeutic targets in these patients with atherosclerosis.
Collapse
|
31
|
Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14040795. [PMID: 35456629 PMCID: PMC9025168 DOI: 10.3390/pharmaceutics14040795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Jenifer Ngu Shao Ying
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jessica Foo Sze Ling
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jong Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jocelyn Su Szhiou Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ivory Kuek Zhia Hwen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ho Wan Suen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Hazimah Syazwani Samsul Kamar
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
32
|
Zhang H, Xun W, Guo S, Wang X, Liu X. Anticancer activity of heptazoline against the SCC-15 human oral cancer cells and inhibition of PI3K/AKT signalling pathway. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2052191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hongmei Zhang
- Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People’s Republic of China
| | - Wenxing Xun
- Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People’s Republic of China
| | - Shaoxiong Guo
- Department of Oral Anatomy and Physiology& TMD and Orofacial Pain, School of Stomatology, The Air Force Medical University, Xi'an, People’s Republic of China
| | - Xiaoxia Wang
- Department of Dermatology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People’s Republic of China
| | - Xiaolu Liu
- Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, People’s Republic of China
| |
Collapse
|
33
|
Stojkovic G, Jovanovic I, Dimitrijevic M, Jovanovic J, Tomanovic N, Stankovic A, Arsovic N, Boricic I, Zeljic K. The meta-signature guided investigation of miRNA candidates as potential biomarkers of oral cancer. Oral Dis 2022; 29:1550-1564. [PMID: 35262985 DOI: 10.1111/odi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to experimentally validate dysregulated expression of miRNA candidates selected through updated meta-analysis of most commonly deregulated miRNAs in oral cancer and to explore their diagnostic and prognostic potential. MATERIALS AND METHODS Five miRNAs (miR-31-3p, miR-135b-5p, miR-18a-5p, miR-30a-5p, miR-139-5p) from updated meta-signature were selected for validation by qRT-PCR method in 35 oral cancer clinical specimens and adjacent non-cancerous tissue. RESULTS Updated meta-analysis has identified 13 most commonly deregulated miRNAs in oral cancer. Seven miRNAs were consistently up-regulated (miR-21-5p, miR-31-3p, miR-135b-5p, miR-31-5p, miR-424-5p, miR-18a-5p, miR-21-3p), while five were down-regulated (miR-139-5p, miR-30a-3p, miR-375-3p, miR-376c-3p, miR-30a-5p). Increased expression of miR-31-3p, miR-135b-5p, as well as decreased expression of miR-139-5p and miR-30a-5p were confirmed in oral cancer compared to adjacent non-cancerous tissue. A three-miRNAs combination (miR-31-3p, miR-139-5p, miR-30a-5p) gave the most promising diagnostic potential for discriminating oral cancer from non-cancerous tissue (AUC: 0.780 (95% CI: 0.673-0.886), p<0.0005, sensitivity 94.3%, specificity 51.4%). High expression of miR-135b-5p, miR-18a-5p and miR-30a-5p was associated with poor survival (p=0.003, p=0.048, p=0.016, respectively). CONCLUSION miR-31-3p, miR-139-5p, miR-30a-5p panel was confirmed as a potential diagnostic biomarker when distinguishing oral cancer from non-cancerous tissue. miR-135b-5p, miR-18a-5p and miR-30a-5p might serve as potential biomarkers of poor survival of oral cancer patients.
Collapse
Affiliation(s)
- Goran Stojkovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanovic
- VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milovan Dimitrijevic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Nada Tomanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nenad Arsovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Boricic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Garajei A, Parvin M, Mohammadi H, Allameh A, Hamidavi A, Sadeghi M, Emami A, Brand S. Evaluation of the Expression of miR-486-3p, miR-548-3p, miR-561-5p and miR-509-5p in Tumor Biopsies of Patients with Oral Squamous Cell Carcinoma. Pathogens 2022; 11:pathogens11020211. [PMID: 35215154 PMCID: PMC8875679 DOI: 10.3390/pathogens11020211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background and objective: Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. Expression patterns of microRNAs (miRNAs) can direct us in identifying valuable biomarkers for the prognosis of different neoplasms. Inappropriate regulation of miRNAs during physiological procedures can result in malignancies including OSCC. The aim of the present study was to evaluate the expression of miR-486-3p, miR-561-5p, miR-548-3p, and miR-509-5p in tissue biopsy samples with and without OSCC. Materials and methods: This case-control study was conducted on 17 healthy and 17 OSCC tissue biopsy samples. The expression of miRNAs was assessed using quantitative real-time PCR (q-RT-PCR) after RNA extraction from normal and cancer tissues and cDNA synthesis. Results: The means of miRNA-486-3p, miR-561-5p, and miR-548-3p expression were significantly different between OSCC and control groups (p < 0.001), but there was no significant difference in means of miR-509-5p expression between OSCC and control groups (p = 0.179). Conclusions: The findings of this study revealed that the expression of miR-486-3p and miR-561-5p was significantly lower in cancer samples compared to normal tissue samples. On the other hand, miR-548-3p expression increased in the OSCC group compared to the control group.
Collapse
Affiliation(s)
- Ata Garajei
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Department of Head and Neck Surgical Oncology and Reconstructive Surgery, Cancer Institute, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Milad Parvin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Bushehr University of Medical Sciences, Bushehr 7514633341, Iran;
| | - Hady Mohammadi
- Department of Oral and Maxillofacial Surgery, Fellowship in Maxillofacial Trauma, Health Services, Kurdistan University of Medical Sciences, Sanandaj 6617713446, Iran;
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1416753955, Iran; (A.A.); (A.H.)
| | - Azin Hamidavi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1416753955, Iran; (A.A.); (A.H.)
| | - Masoud Sadeghi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1416753955, Iran;
| | - Azadeh Emami
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Serge Brand
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 6719851115, Iran
- Center for Affective, Stress and Sleep Disorders, University of Basel, Psychiatric Clinics, 4002 Basel, Switzerland
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052 Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Correspondence:
| |
Collapse
|
35
|
Fu Y, Liu Y, Nasiroula A, Wang Q, Cao X. Long non‑coding RNA HCG22 inhibits the proliferation, invasion and migration of oral squamous cell carcinoma cells by downregulating miR‑425‑5p expression. Exp Ther Med 2022; 23:246. [PMID: 35222723 PMCID: PMC8815030 DOI: 10.3892/etm.2022.11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yating Fu
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Liu
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Aheli Nasiroula
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Qichao Wang
- Department of Oncology II, Dalian Fifth People's Hospital, Dalian, Liaoning 116021, P.R. China
| | - Xinhua Cao
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
36
|
Supic G, Stefik D, Ivkovic N, Sami A, Zeljic K, Jovic S, Kozomara R, Vojvodic D, Stosic S. Prognostic impact of miR-34b/c DNA methylation, gene expression, and promoter polymorphism in HPV-negative oral squamous cell carcinomas. Sci Rep 2022; 12:1296. [PMID: 35079080 PMCID: PMC8789922 DOI: 10.1038/s41598-022-05399-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Micro RNAs (miRNAs) have a key role in gene expression regulation in cancer. The aim of the current study is to evaluate the prognostic value of miR-34b/c promoter hypermethylation, gene expression, and polymorphism in HPV-negative oral squamous cell carcinomas (OSCC). MiR-34b/c promoter hypermethylation and pre-miR-34b/c polymorphism rs4938723 were evaluated in tumor tissues of 148 patients, and miR-34b expression in 123 HPV-negative OSCC. For risk assessment, the control group was comprised of 175 healthy individuals. MiR-34b/c promoter hypermethylation was determined by methylation-specific PCR. Gene expression, genotyping and HPV screening was assessed by Q-PCR. The data from our hospital cohort indicated that miR-34b/c DNA methylation was associated with nodal status (p = 0.048), and predicted the shorter overall survival of HPV-negative OSCC patients (p = 0.008). Down-regulated miR-34b/c expression was associated with smoking (p = 0.047), alcohol use (p = 0.009), stage (p = 0.025), recurrences (p = 0.000), and a poor survival (p = 0.00029). Median values of miR-34b expression were significantly lower in advanced stages III/IV as opposed to stage I/II, p = 0.006, and in nodal positive vs negative patients (p = 0.045). TCGA data also indicated that tumors with stage I-III expressed significantly higher levels of miR-34b, compared to tumors with stage IV (p = 0.035), Low miR-34b/c expression was associated with poor survival in smokers (p = 0.001) and patients with tongue carcinomas (p = 0.00003), and TCGA analysis confirmed these findings although miR-34b expression and miR-34b/c methylation were not associated with survival outcome in the whole TCGA cohort. A significant negative miR-34b/c expression-methylation correlation was observed in our hospital cohort (p = 0.017) and in TCGA cohort. Pre-miR-34b/c polymorphism was not associated with oral cancer risk. Our findings indicate that miR-34b/c hypermethylation and low miR-34b expression could promote the progression and predict the poor prognosis for HPV-negative OSCC, which suggests miR-34b/c as a promising biomarker and therapeutic target for OSCC in the future.
Collapse
Affiliation(s)
- Gordana Supic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia.
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia.
| | - Debora Stefik
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Nemanja Ivkovic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Ahmad Sami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sasa Jovic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Ruzica Kozomara
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002, Belgrade, Serbia
| | - Srboljub Stosic
- Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia
- Clinic for Maxillofacial Surgery, Military Medical Academy, Belgrade, Serbia
| |
Collapse
|
37
|
Sun S, Zhao S, Yang H, Wang F. microRNA 21 Promotes the Proliferation and Metastasis of Oral Squamous Cell Carcinoma by Targeting RECK. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuntao Sun
- Department of Stomatology, Tongde Hospital of Zhejiang Province
| | - Shanshan Zhao
- Department of Stomatology, Tongde Hospital of Zhejiang Province
| | - Hongyu Yang
- Department of Stomatology, Shenzhen Hospital, Peking University
| | - Feng Wang
- Department of Stomatology, Shenzhen Hospital, Peking University
| |
Collapse
|
38
|
Unveiling the tumour-regulatory roles of miR-1275 in cancer. Pathol Res Pract 2021; 230:153745. [PMID: 34953353 DOI: 10.1016/j.prp.2021.153745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
Collapse
|
39
|
Shen H, Ye F, Xu D, Fang L, Zhang X, Zhu J. The MYEOV-MYC association promotes oncogenic miR-17/93-5p expression in pancreatic ductal adenocarcinoma. Cell Death Dis 2021; 13:15. [PMID: 34930894 PMCID: PMC8688437 DOI: 10.1038/s41419-021-04387-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.
Collapse
Affiliation(s)
- Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuqiang Ye
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Fang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
40
|
MicroRNAs: Their Role in Metabolism, Tumor Microenvironment, and Therapeutic Implications in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225604. [PMID: 34830755 PMCID: PMC8615702 DOI: 10.3390/cancers13225604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma (HNSCC), which arises from the oral epithelium, is one of the most common cancers worldwide. Despite excellent diagnosis and treatment improvements, the mortality rate associated with HNSCC is still extremely high. Current data suggest that dysregulation of exosomes and metabolic abnormalities are involved in the initiation and progression of HNSCC. Thus, approaches for targeting exosomes in the tumor microenvironment and metabolic reprogramming pathways represent potential therapeutic strategies. Moreover, some miRNAs are thought to have significant functions in regulating the progression of HNSCC. The present article aims to summarize the current knowledge concerning the important miRNAs in both exosomes and cancer metabolism, as well as discuss future perspectives regarding their future diagnostic potential and treatment recommendations. Abstract MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that negatively regulate gene expression by binding to target mRNAs. Deregulated miRNAs can act as either oncogenic miRNAs or tumor suppressor miRNAs in controlling proliferation, differentiation, apoptosis, metastasis, epithelial–mesenchymal transition, and immune responses, which are all involved in the carcinogenesis process of HNSCC. Recent findings have shown that metabolic reprogramming is an important hallmark of cancer, which is necessary for malignant transformation and tumor development. Some reprogrammed metabolisms are believed to be required for HNSCC against an unfavorable tumor microenvironment (TME). The TME is composed of various cell types embedded in the altered extracellular matrix, among which exosomes, secreted by cancer cells, are one of the most important factors. Tumor-derived exosomes reshape the tumor microenvironment and play a crucial role in cell-to-cell communication during HNSCC development. Exosomes encapsulate many biomolecules, including miRNAs, circulate in body fluids, and can transmit intercellular regulatory messages to nearby and distant sites, which indicates that exosomal miRNAs have the potential to become non-invasive biomarkers. This review aims to clarify the functions of diverse miRNAs in HNSCC metabolic reprogramming and tumor-derived exosomes. In addition, it also emphasizes the potential role of miRNA as a biomarker in the diagnosis, prognosis, and treatment of HNSCC cancer.
Collapse
|
41
|
Peng CY, Lin CY, Chen SH, Liao YW, Yu CC, Lee SP. microRNA-1266-5p directly targets DAB2IP to enhance oncogenicity and metastasis in oral cancer. J Dent Sci 2021; 17:718-724. [PMID: 35756756 PMCID: PMC9201632 DOI: 10.1016/j.jds.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background/purpose Oral cancer has been recognized as one of the most common malignancies worldwide and ranks the fifth leading cause of cancer death in Taiwan. A variety of studies have demonstrated that microRNAs are involved in the regulation of the hallmarks of oral carcinogenesis. Nevertheless, the effect of miR-1266-5p on the tumorigenesis of oral cancer has not been investigated, and not to mention, its functional role in oral cancer. Materials and methods The upregulation of miR-1266-5p in SASVO3 and SASM5 cells was identified by RNA-Seq and examined by qRT-PCR analysis. The phenotypic assays including proliferation activity, migration capacity, invasion, wound healing, and colony-forming abilities were conducted in oral cancer cells after knockdown of miR-1266-5p. Luciferase reporter and western blotting were used to validate DAB2IP was a direct target of miR-1266-5p in oral cancer. Results We identified that miR-1266-5p was significantly overexpressed in highly tumorigenic SASVO3 cells and metastatic SASM5 cells. qRT-PCR revealed that miR-1266 significantly increased upregulated in oral cancer and lymph node metastatic tissues compared to normal counterparts We found that downregulation of miR-1266-5p inhibited the proliferation and clonogenicity capacities of SASVO3 cells. Knockdown of miR-1266-5p also inhibited migration/invasion and self-renewal abilities in SASM5 cells. Moreover, we validated miR-1266-5p directly bound to the 3′UTR of DAB2IP in oral cancer cells. We found that DAB2IP knockdown reversed the inhibitory effects of self-renewal and migration mediated by silencing of miR-1266-5p. Conclusion miR-1266 functions as a biomarker in oral cancer patients, and downregulation of miR-1266 may ameliorate the oncogenic and metastasis potential of oral cancer by targeting DAB2IP.
Collapse
|
42
|
Leng F, Miu YY, Zhang Y, Luo H, Lu XL, Cheng H, Zheng ZG. A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc. Oncol Lett 2021; 22:697. [PMID: 34457052 PMCID: PMC8358592 DOI: 10.3892/ol.2021.12958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
HOXB-AS3 is a long non-coding RNA and recent studies have shown that the HOXB-AS3-encoded micro-peptide was associated with the progression of colon cancer tumorigenesis; however, the biofunction of HOXB-AS3 varies in different types of cancer and the potential function in oral squamous cell carcinoma (OSCC) is still unknown. The Cancer Genome Atlas (TCGA) database was searched and the expression patterns of HOXB-AS3 in head and neck carcinoma were analyzed. Reverse transcription-quantitative PCR and western blot analysis was used to measure the mRNA and protein expression level of HOXB-AS3 in patients with OSCC, respectively. Next, HOXB-AS3 was knocked down in 2 OSCC cell lines to investigate the biological function of the HOXB-AS3-encoded protein using a Cell Counting Kit-8 and colony formation assays. To further identify the potential mechanism of the HOXB-AS3-encoded protein, co-immunoprecipitation was also used to detect the interaction between HOXB-AS3 and IGF2BP2, while HOXB-AS3 was re-expressed to determine whether the HOXB-AS3-encoded protein and not HOXB-AS3 exerted its function in OSCC. HOXB-AS3 was upregulated in OSCC tissues, in both TCGA database and in patients with OSCC recruited into the present study. HOXB-AS3 was associated with poor prognosis in OSCC. The proliferation and viability decreased in the 2 OSCC cell lines following knock down of HOXB-AS3. HOXB-AS3 was also found to encode a protein that directly interacted with IGF2BP2 and thereby promoted the stability of c-myc. Taken together, the results from the present study indicated that increased HOXB-AS3 expression was associated with poor prognosis in OSCC. This indicated that HOXB-AS3 and its encoded protein promoted OSCC cell proliferation and viability by maintaining c-Myc mRNA stability by directly binding to IGF2BP2.
Collapse
Affiliation(s)
- Fei Leng
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Yan-Yu Miu
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Zhang
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Luo
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Li Lu
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Cheng
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Guo Zheng
- The Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
43
|
A Comprehensive Evaluation of miR-144-3p Expression and Its Targets in Laryngeal Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6684186. [PMID: 34326893 PMCID: PMC8302387 DOI: 10.1155/2021/6684186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive type of head and neck squamous cell carcinoma (HNSCC) with a relatively high rate of morbidity and mortality. An altered miR-144-3p level in LSCC with a small number of patients has been previously reported. However, the clinical implication of miR-144-3p and its involved mechanism underlying this disease is not clearly elucidated. In this work, we aimed to confirm the expression of miR-144-3p with larger samples and also to identify target genes for the investigation of the underlying mechanism of miR-144-3p in LSCC. The levels of miR-144-3p were downregulated in 155 samples of LSCC tissues as compared to 26 non-LSCC samples (SMD: -0.78; 95% confidence interval (CI): -1.23, -0.32). The AUC of 0.90 in the summarized ROC curve also indicated a potential ability to differentiate LSCC from non-LSCC tissues, with a sensitivity of 0.78 and a specificity of 0.88. With respect to the molecular mechanism, we predicted the potential targets from online-based prediction, peer-reviewed publications, and RNA-seq and microarray data. In particular, the genes influenced by transfection with miR-144-3p in the LSCC FaDu cell line were collected from the microarray GSE56243. Lastly, 12 novel targets for miR-144-3p in LSCC were obtained by different algorithms. In conclusion, our study confirmed the loss or downregulation of miR-144-3p in LSCC, which might contribute to the LSCC tumorigenesis and progression via regulation of the 12 novel targets, such as IL24, ITGA6, and CEP55. In the future, further investigations are required to validate the present results.
Collapse
|
44
|
Meng Z, Zhang H, Li L, Wang K. Clinical significance of miR-142-3p in oral lichen planus and its regulatory role in keratinocyte proliferation. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:441-447. [PMID: 34366268 DOI: 10.1016/j.oooo.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Accumulating microRNAs (miRNAs) have been identified as aberrantly expressed in patients with oral lichen planus (OLP). This study aimed to investigate the role and underlying mechanism of miR-142-3p in OLP. STUDY DESIGN Fifty-six patients with OLP and 44 control participants without OLP were recruited, and real-time quantitative reverse transcription polymerase chain reaction was used for the measurement of miR-142-3p. A receiver operating characteristic (ROC) was counted to assess the diagnostic value. Cell Counting Kit‑8 was used to assess cell proliferation. The luciferase reporter assay was performed to confirm the target gene. RESULTS Compared with the control group, an elevated expression of miR-142-3p was detected in the serum, saliva, and tissues samples from patients with OLP. ROC curve analysis suggested that miR-142-3p could distinguish patients with OLP from those in the control group, and the expression of miR-142-3p was closely associated with the disease severity. Downregulation of miR-142-3p inhibited keratinocyte proliferation. Glucocorticoid receptor α (GRα) was a target gene of miR-142-3p. CONCLUSIONS MiR-142-3p might be a candidate diagnostic biomarker for OLP. Downregulation of miR-142-3p inhibits keratinocyte proliferation, and GRα might be involved in its regulatory role.
Collapse
Affiliation(s)
- Zhichao Meng
- Department of Dermatology, Guangrao People's Hospital, Shandong, China
| | - Hong Zhang
- Department of Dermatology, Linyi City Lanshan District People's Hospital, Linyi, Shandong, China
| | - Leilei Li
- Department of Stomatology, Dongying People's Hospital, Shandong, China
| | - Kuimei Wang
- Department of Dermatology, Mengyin People's Hospital, Shandong, China.
| |
Collapse
|
45
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
46
|
Manifar S, Koopaie M, Lahiji SS. Assessment of MicroRNA-15a and MicroRNA-16-1 Salivary Level in Oral Squamous Cell Carcinoma Patients. Microrna 2021; 10:74-79. [PMID: 33970852 DOI: 10.2174/2211536610666210506125036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Squamous Cell Carcinoma (SCC) includes more than 90% of malignancies of the oral cavity. Early diagnosis could effectively improve patients' quality of life and treatment outcomes of oral cancers. MicroRNAs as non-encoding genes have great potential to initiate or suppress cancer progression. Recent studies have shown that disruption of micro-RNA regulation is a common occurrence in cancers. OBJECTIVE This study set out to evaluate the expression of microRNA-15a (miR-15a) and microRNA-16-1 (miR-16-1) in the saliva of Oral Squamous Cell Carcinoma (OSCC) patients in comparison with a healthy control group. METHODS This case-control study was performed on fifteen patients with OSCC and fifteen healthy volunteers as the control group. A 5 ml of non-stimulating whole saliva was collected by spitting method from patients and controls and stored at -70oC. The expression of miR-15a and miR-16-1 was investigated using quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR). RESULTS MiR-15a and miR-16-1 were downregulated in OSCC patients compared with the control group (p<0.001). The sensitivity of miR-15a and miR-16-1 in differentiating OSCC patients from healthy individuals was 93.3% and 86.67%, respectively, and their specificity was 86.67% and 92.33%, respectively. The diagnostic accuracy of miR-15a was 90%, and miR-16-1 was 93.3%. CONCLUSION The present study showed a decrease in the relative expression of miR-15a and miR-16-1 in OSCC patients compared with healthy individuals. It is probable to introduce salivary values of miR-15a and miR-16-1 as a non-invasive tool for early detection of OSCC. Decreased expression of miR-15a and miR-16-1 in OSCC indicates the possible effective role of these genes in OSCC etiopathogenesis.
Collapse
Affiliation(s)
- Soheila Manifar
- Department of Oral Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Shokouhi Lahiji
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Fang R, Lu Q, Xu B. hsa‑miR‑5580‑3p inhibits oral cancer cell viability, proliferation and migration by suppressing LAMC2. Mol Med Rep 2021; 23:453. [PMID: 33880581 PMCID: PMC8072311 DOI: 10.3892/mmr.2021.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to explore whether and how microRNA-5580-3p (miR-5580-3p) affected oral cancer (OC) cell phenotypes via regulation of laminin subunit γ2 (LAMC2). Bioinformatics analysis was used to identify miR-5580-3p/LAMC2, a novel interactome that, to the best of our knowledge, has not been studied previously in OC. In the present study, the expression levels of miR-5580-3p and LAMC2 were detected by reverse transcription-quantitative PCR, while the protein expression levels of LAMC2 were identified using western blotting. To determine the effects of miR-5580-3p and LAMC2 in OC, a number of experiments, including Cell Counting Kit-8, 5-bromo-2′-deoxyuridine cell proliferation and wound healing migration assays, were performed using OC SCC-4 and Cal-27 cell lines. Additionally, luciferase reporter assays were employed to examine the interaction between miR-5580-3p and LAMC2 mRNA. The results demonstrated that miR-5580-3p expression was downregulated, while LAMC2 expression was upregulated in OC tissues and cell lines. In addition to the observation that miR-5580-3p promoted the malignant phenotypes of OC, it was also revealed that miR-5580-3p inhibited OC cell viability, proliferation and migration by suppressing LAMC2. Therefore, the present study suggested that miR-5580-3p and LAMC2 may be potential biomarkers and therapeutic targets for OC diagnosis and therapies in the future.
Collapse
Affiliation(s)
- Rong Fang
- Department of Gastroenterology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Qian Lu
- Department of Stomatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430015, P.R. China
| | - Bo Xu
- Department of Gastroenterology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
48
|
Calixto GMF, Victorelli FD, Franz-Montan M, Baltazar F, Chorilli M. Innovative Mucoadhesive Precursor of Liquid Crystalline System Loading Anti-Gellatinolytic Peptide for Topical Treatment of Oral Cancer. J Biomed Nanotechnol 2021; 17:253-262. [PMID: 33785096 DOI: 10.1166/jbn.2021.3025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current researches report an actual benefit of a treatment for oral cancer via inhibition of proteolytic matrix metallopro-teinases (MPP) with a peptide drug, called CTT1. However, peptides present poor oral bioavailability. Topical administration on oral mucosa avoids its passage through the gastrointestinal tract and the first-pass liver metabolism, but the barrier function of the oral mucosa can impair the permeation and retention of CTT1. The objective of this study is to incorporate CTT1 into a mucoadhesive precursor of liquid crystalline system (PLCS) as an interesting strategy for the topical treatment of oral cancer. PLCS consisting of oleic acid, ethoxylated 20 and propoxylated cetyl alcohol 5, polyethyleneimine (P)-associated chitosan (C) dispersion and CTT1 (FPC-CTT1) was developed and characterized by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). In vitro permeation and retention across esophageal mucosa, In vitro cytotoxicity towards tongue squamous cell carcinoma cells, and in vivo evaluation of vascular changes using the chick embryo chorioallantoic membrane (CAM) model were performed. PLM and SAXS showed that FPC-CTT1acted as PLCS, because it formed a lamellar liquid crystalline system after the addition of artificial saliva. FPC-CTT1increased approximately 2-fold the flux of permeation and 3-fold the retention of CTT1 on the porcine esophageal mucosa. CTT1 does not affect cell viability. CAM tests showed that FPC preserved the blood vessels and it can be a safe formulation. These findings encourage the use of the FPC-CTT1 for topical treatment of oral cancer.
Collapse
Affiliation(s)
| | - Francesca Damiani Victorelli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Michelle Franz-Montan
- UNICAMP, University of Campinas, Piracicaba Dental School Department of Biosciences, Piracicaba, SP, 13414-903, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, 4710-057, Portugal
| | - Marlus Chorilli
- UNESP, São Paulo State University, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
49
|
Rajan C, Roshan VGD, Khan I, Manasa VG, Himal I, Kattoor J, Thomas S, Kondaiah P, Kannan S. MiRNA expression profiling and emergence of new prognostic signature for oral squamous cell carcinoma. Sci Rep 2021; 11:7298. [PMID: 33790326 PMCID: PMC8012614 DOI: 10.1038/s41598-021-86316-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), the most common type of head and neck cancers, is associated with high recurrence, metastasis, low long-term survival rates and poor treatment outcome. As deregulated miRNA expression plays a crucial role in malignant transformation and cancer progression, the present study is aimed at profiling the miRNA expression pattern in OSCC and developing a new miRNA prognostic signature for oral cancer. MiRNA expression profiling was performed using MiRNA microarray in 30 tumor and 18 normal samples. MiRNA signature obtained was validated with quantitative real time PCR (qRT-PCR) in 144 tumor and 36 normal samples. The potential targets, clinical implications and prognostic value of the miRNA signature were elucidated by various bioinformatics and statistical analyses. Microarray profiling identified a set of 105 miRNAs to be differentially expressed in OSCC, out of which a subset of 19 most dysregulated miRNAs were validated by qRT-PCR. In silico analysis revealed the signature miRNAs to be involved in various cancer associated pathways. Up-regulation of miR-196a, miR-21, miR-1237 and downregulation of miR-204, miR-144 was associated with poor prognosis of OSCC patients. The mir-196a/miR-204 expression ratio emerged as best predictor for disease recurrence and patient survival. Altogether, our study identified a miRNA signature for OSCC with prognostic significance.
Collapse
Affiliation(s)
- Christo Rajan
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India.,Department of Zoology, MarThoma College, Thiruvalla, Kerala, 689111, India
| | - V G Deepak Roshan
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India.,Division of Genetics and Cytogenetics, Malabar Cancer Centre, Kannur, Kerala, 670103, India
| | - Imran Khan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560 012, India.,Women's Malignancies Branch, National Cancer Institute, National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - V G Manasa
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Iris Himal
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Jayasree Kattoor
- Division of Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India
| | - Shaji Thomas
- Division of Surgical Oncology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560 012, India
| | - S Kannan
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
50
|
Withaferin A mitigates metastatic traits in human oral squamous cell carcinoma caused by aberrant claudin-1 expression. Cell Biol Toxicol 2021; 38:147-165. [PMID: 33665778 DOI: 10.1007/s10565-021-09584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/24/2021] [Indexed: 12/27/2022]
Abstract
Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.
Collapse
|