1
|
Xu Z, Liu R, Ke H, Xu F, Yang P, Zhang W, Zhan Y, Zhao Z, Xiao F. ATP6V1D drives hepatocellular carcinoma stemness and progression via both lysosome acidification-dependent and -independent mechanisms. Autophagy 2025; 21:513-529. [PMID: 39316516 DOI: 10.1080/15548627.2024.2406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Metabolic reprogramming is pivotal in cancer stem cell (CSC) self-renewal. However, the intricate regulatory mechanisms governing the crosstalk between metabolic reprogramming and liver CSCs remain elusive. Here, using a metabolic CRISPR-Cas9 knockout screen, we identify ATP6V1D, a subunit of the vacuolar-type H+-translocating ATPase (V-ATPase), as a key metabolic regulator of hepatocellular carcinoma (HCC) stemness. Elevated ATP6V1D expression correlates with poor clinical outcomes in HCC patients. ATP6V1D knockdown inhibits HCC stemness and malignant progression both in vitro and in vivo. Mechanistically, ATP6V1D enhances HCC stemness and progression by maintaining macroautophagic/autophagic flux. Specifically, ATP6V1D not only promotes lysosomal acidification, but also enhances the interaction between CHMP4B and IST1 to foster ESCRT-III complex assembly, thereby facilitating autophagosome-lysosome fusion to maintain autophagic flux. Moreover, silencing CHMP4B or IST1 attenuates HCC stemness and progression. Notably, low-dose bafilomycin A1 targeting the V-ATPase complex shows promise as a potential therapeutic strategy for HCC. In conclusion, our study highlights the critical role of ATP6V1D in driving HCC stemness and progression via the autophagy-lysosomal pathway, providing novel therapeutic targets and approaches for HCC treatment.Abbreviations: 3-MA: 3-methyladenine; ANT: adjacent normal liver tissues; ATP6V1D: ATPase H+ transporting V1 subunit D; BafA1: bafilomycin A1; CHMP: charged multivesicular body protein; co-IP: co-immunoprecipitation; CSC: cancer stem cell; ESCRT: endosomal sorting complex required for transport; HCC: hepatocellular carcinoma; IF: immunofluorescence; IHC: immunohistochemical; LCSCs: liver cancer stem cells; qRT-PCR: quantitative real time PCR; V-ATPase: vacuolar-type H+- translocating ATPase; WB: western blot.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Ruiyang Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Haoying Ke
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Fuyuan Xu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Pengfei Yang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Weiyu Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yi Zhan
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
| | - Zhiju Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fei Xiao
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- The Fifth Affiliated Hospital, Guangdong-Hong Kong-Macao University Joint of Interventional Medicine, Zhuhai, Guangdong Province, China
- State Key Laboratory of Anti-Infective Drug Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Kashi Guangdong Institute of Science and Technology, The First People's Hospital of Kashi, Kashi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
2
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Li S, Gao S, Qin L, Ding C, Qu J, Cui Y, Qiang L, Yin S, Zheng X, Meng H. Micropapillary structure: A natural tumor collective invasion model with enhanced stem-like properties. Cancer Sci 2025; 116:308-321. [PMID: 39568148 PMCID: PMC11786311 DOI: 10.1111/cas.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Cancer stem cells aggregate to form clusters, which have enhanced stem-like properties and metastasis potential. However, the molecular mechanisms underlying the formation of cancer stem cell cluster-like structures with acquisition of stronger invasion and metastasis abilities remain unclear. Micropapillary carcinoma (MPC) is a subpopulation of small, merulioid, inverted, nonfibrous vascular clusters floating in the stroma present in a range of solid malignant tumors and characterized by frequent vascular/lymphatic vessel invasion and lymph node metastasis. Our results showed that these cell clusters exhibit a stem cell phenotype, supporting the premise that MPC may serve as a promising solid tumor model for studying invasion and metastasis of cancer stem cell clusters. In this review, we discuss the latest advances in MPC research and targeted therapy, focusing on analysis of their stem-like characteristics, mapping their multiomics characteristics, and elucidating the vascular and immune microenvironment of MPC. The existing MPC organoid model was employed to explore potential breakthroughs in targeted therapy and immunotherapy for cancer stem cell clusters.
Collapse
Affiliation(s)
- Sisi Li
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shuangshu Gao
- Department of PathologyHarbin Medical UniversityHarbinChina
| | - Ling Qin
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Caixia Ding
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Jinghui Qu
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yifei Cui
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| | - Lixia Qiang
- Department of Respiratory MedicineThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shengjie Yin
- Department of Medical OncologyMunicipal Hospital of ChifengChifengChina
| | - Xiaoyu Zheng
- Department of AnesthesiologyHarbin Medical University Cancer HospitalHarbinChina
| | - Hongxue Meng
- Department of PathologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
4
|
Bing J, Zhou B, Chen M, Shen Y, Zhou M, Lin H, Wu W, Shi J. Nanomedicine-enabled concurrent regulations of ROS generation and copper metabolism for sonodynamic-amplified tumor therapy. Biomaterials 2025; 318:123137. [PMID: 39884132 DOI: 10.1016/j.biomaterials.2025.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Sonodynamic therapy (SDT) shows substantial potentials in cancer treatment thanks to the deep tissue penetration of ultrasound. However, its clinical translation suffers from the potential damages to healthy tissues and the resistance of tumors, particularly from cancer stem-like cells (CSCs), to the ultrasound. To address these challenges, we designed a novel glutathione (GSH)-activated nanomedicine to simultaneously enhance the safety and efficacy of SDT by in situ regulating the generation of reactive oxygen species (ROS) and copper metabolism. This nanomedicine, Es@CuTCPP, was created by loading elesclomol (Es) onto CuTCPP nanosheets. By accumulating this nanomedicine in tumors, the Cu(II)-TCPP is reduced to the highly sonosensitive Cu(I)-TCPP by the intra-tumoral-overexpressed GSH, leading to the production of abundant ROS upon ultrasound exposure, which effectively kills large amounts of tumor cells. Concurrently, the released copper ions react with co-released Es to form a CuEs complex, which induces cuproptosis of CSCs surviving the ROS attack by disrupting cellular copper metabolism, evidently amplifying the effectiveness of SDT. This work presents the first paradigm of a GSH-activated and cuproptosis-enhanced SDT approach, offering a promising novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Jinhong Bing
- State Key Laboratory of High-performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, PR China
| | - Bangguo Zhou
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Minqi Chen
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, PR China
| | - Yucui Shen
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, PR China
| | - Min Zhou
- Digestive Endoscopy Center, Shanghai Fourth People's Hospital to Tongji University, Shanghai, 200081, PR China
| | - Han Lin
- State Key Laboratory of High-performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, PR China
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, PR China.
| | - Jianlin Shi
- State Key Laboratory of High-performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, PR China.
| |
Collapse
|
5
|
Gong Q, Song X, Tong Y, Huo L, Zhao X, Han Y, Shen W, Ru J, Shen X, Liang C. Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification. J Nanobiotechnology 2025; 23:42. [PMID: 39849540 PMCID: PMC11761731 DOI: 10.1186/s12951-025-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025] Open
Abstract
The acidic tumor microenvironment, a hallmark of many solid tumors, is primarily induced by the high glycolytic rate of tumor cells. To avoid acidosis, tumor cells ingeniously maintain an acidic extracellular pH while keeping a relatively alkaline intracellular pH. Overturning the unique pH gradient of tumor cells has exhibited to be a viable approach for cancer therapy. In this review, the formation and regulatory mechanisms of the acidic microenvironment in solid tumors will be firstly outlined. Subsequently, we will comprehensively summarize the latest advancements in anti-tumor therapy via using nanomedicines to manipulate the tumor pH gradient, including acidifying intracellular environment and alkalizing extracellular environment. Following this, we will discuss the future potential of strategies employing nanomedicines to reverse tumor pH gradient. This review aims to foster research on therapeutic approaches targeting the pH regulation of solid tumors and holds an optimistic outlook for the future development of this field.
Collapse
Affiliation(s)
- Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| | - Yao Tong
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lixuan Huo
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuefen Zhao
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingying Han
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Fujiwara-Tani R, Luo Y, Ogata R, Fujii K, Sasaki T, Sasaki R, Nishiguchi Y, Mori S, Ohmori H, Kuniyasu H. Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells. Int J Mol Sci 2025; 26:664. [PMID: 39859378 PMCID: PMC11766121 DOI: 10.3390/ijms26020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
While 5-fluorouracil (5FU) plays a central role in chemotherapy for colorectal cancer (CRC), resistance to 5FU remains a major challenge in CRC treatment, and its underlying mechanisms remain unclear. In this study, we investigated the relationship between 5FU resistance acquisition, stemness, and energy metabolism. Among the two CRC cell lines, HT29 cells exhibited glycolytic and quiescent properties, while CT26 cells relied on oxidative phosphorylation (OXPHOS) for energy. In contrast, the 5FU-resistant sublines (HT29R and CT26R), developed through continuous exposure to low concentrations of 5FU, demonstrated enhanced stemness. This was associated with glycolytic dominance, low proliferation, and reduced reactive oxygen species (ROS) production. However, treatment with the medium-chain fatty acid lauric acid shifted the cells to OXPHOS, reducing stemness, increasing ROS levels, and inducing cell death, therefore reversing 5FU resistance. These findings suggest that an enhancement in stemness and the reprogramming of energy metabolism play key roles in acquiring 5FU resistance in CRC. While lauric acid reversed 5FU resistance, further clinical studies are required.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| |
Collapse
|
7
|
Chen S, Zhang C, Huang H, Wang Y, Lian M, Hong G. Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process. J Mol Histol 2025; 56:68. [PMID: 39779500 DOI: 10.1007/s10735-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions. METHODS PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively. Cellular activity and apoptosis-related protein expression levels were evaluated using MTT assays and western blotting. Transcriptome sequencing elucidates the regulatory pathways impacted by PDK1 silencing, and rescue experiments confirmed the underlying mechanisms. Xenograft models with nude mice were used to validate the effects of PDK1 silencing on CC progression. RESULTS PDK1 silencing reduced migration, invasion, and cellular activity under hypoxic conditions while promoting apoptosis. Transcriptomic analysis revealed that PDK1 suppression downregulated the WNT4/β-catenin/FOXO1 pathway, decreasing EMT-related protein expression. Mechanistically, PDK1 enhanced β-catenin stability by inhibiting its phosphorylation through AKT-mediated GSK3β inactivation, promoting EMT and anti-apoptotic gene transcription. CONCLUSIONS Targeting PDK1 may provide novel therapeutic strategies specifically for CC by modulating the WNT4/β-catenin/FOXO1 pathway and associated EMT and apoptotic processes.
Collapse
Affiliation(s)
- Shidong Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Cuixia Zhang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Wang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
8
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
9
|
Sun N, Wang Z, Jiang H, Wang B, Du K, Huang C, Wang C, Yang T, Wang Y, Liu Y, Wang L. Angelica sinensis polysaccharides promote extramedullary stress erythropoiesis via ameliorating splenic glycolysis and EPO/STAT5 signaling-regulated macrophages. J Mol Histol 2024; 55:661-673. [PMID: 38969952 DOI: 10.1007/s10735-024-10219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Conventional treatments exhibit various side effects on chronic stress anemia. Extramedullary stress erythropoiesis is a compensatory mechanism, which may effectively counteract anemia. Angelica sinensis polysaccharides (ASP) are the main active ingredient found in Angelica sinensis and exhibit antioxidant and hematopoietic effects. However, the effects of ASP on extramedullary stress erythropoiesis remain to be unclear. Here, we demonstrated the protective effects of ASP on chemotherapeutic drug 5-fluorouracil (5-FU)-induced decline in peripheral blood parameters such as RBC counts, HGB, HCT, and MCH, and the decline of BFU-E colony enumeration in the bone marrow. Meanwhile, ASP promoted extramedullary erythropoiesis, increasing cellular proliferation in the splenic red pulp and cyclin D1 protein expression, abrogating phase G0/G1 arrest of c-kit+ cells in mouse spleen. RT-qPCR and immunohistochemistry further revealed that ASP increased macrophage chemokine Ccl2 genetic expression and the number of F4/80+ macrophages in the spleen. The colony-forming assay showed that ASP significantly increased splenic BFU-E. Furthermore, we found that ASP facilitated glycolytic genes including Hk2, Pgk1, Pkm, Pdk1, and Ldha via PI3K/Akt/HIF2α signaling in the spleen. Subsequently, ASP declined pro-proinflammatory factor IL-1β, whereas upregulating erythroid proliferation-associated genes Gdf15, Bmp4, Wnt2b, and Wnt8a. Moreover, ASP facilitated EPO/STAT5 signaling in splenic macrophages, thus enhancing erythroid lineage Gata2 genetic expression. Our study indicated that ASP may improve glycolysis, promoting the activity of splenic macrophages, subsequently promoting erythroid progenitor cell expansion. Additionally, ASP facilitates erythroid differentiation via macrophage-mediated EpoR/STAT5 signaling; suggesting it might be a promising strategy for stress anemia treatment.
Collapse
Affiliation(s)
- Nianci Sun
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kunhang Du
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Caihong Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Yang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yafei Liu
- Chongqing University Jiangjin Hospital, Chongqing, China.
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China.
- Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Sun J, Zhang S, Wang M, Cheng H, Wang Y, He S, Zuo Q, Wang N, Li Q, Wang M. Cinobufacini enhances the therapeutic response of 5-Fluorouracil against gastric cancer by targeting cancer stem cells via AKT/GSK-3β/β-catenin signaling axis. Transl Oncol 2024; 47:102054. [PMID: 38970916 PMCID: PMC11282984 DOI: 10.1016/j.tranon.2024.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Gastric cancer stem cells (GCSCs) play crucial role in the development, recurrence, and resistance of gastric cancer (GC). Cinobufacini, a traditional Chinese medicine, offers significant advantages in improving tumor therapy. However, pre-clinical investigation into the antitumor effect and mechanism of Cinobufacini on GC is still lacking. Additionally, it has not been reported whether Cinobufacini is related to cancer stem cells (CSCs). METHODS The CCK-8, clone formation, EdU staining, transwell and wound healing experiments were performed to assess the cell toxicity of Cinobufacini and demonstrate the preventive effects of Cinobufacini on proliferation, invasion, and migration of GC cells. Elucidating the underlying mechanism of Cinobufacini in GC based on the transcriptome sequencing. Flow cytometry assays, sphere formation assays, subcutaneous xenograft model in nude mice, and immunofluorescent staining have been used to investigate whether the anti-GC effect of Cinobufacini is associated with GCSCs and enhancing therapeutic response to 5-Fluorouracil (5-FU). RESULTS Cinobufacini exerts minimal impact on normal human gastric epithelium cell GES-1, while significantly suppressing the proliferation, invasion, and migration of GC cell lines. Additionally, Cinobufacini attenuates the stemness of GCSCs by disrupting the AKT/GSK-3β/β-catenin signaling cascade. Moreover, Cinobufacin enhances the anti-tumor effects of 5-FU against GCSCs by reducing in vitro sphere formation and inhibiting subcutaneous graft tumor growth in vivo. CONCLUSIONS Cinobufacini enhances the therapeutic response of 5-FU against GC by targeting CSCs via AKT/GSK-3β/β-catenin signaling axis. Our findings offer a crucial insight into the molecular mechanism of Cinobufacini's anticancer activity in GC.
Collapse
Affiliation(s)
- Jiejie Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Sufeng Zhang
- College of Integrative Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Yuqing Wang
- College of Integrative Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shiming He
- College of Integrative Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qiang Zuo
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Manman Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
11
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
12
|
Han H, He T, Wu Y, He T, Zhou W. Multidimensional analysis of tumor stem cells: from biological properties, metabolic adaptations to immune escape mechanisms. Front Cell Dev Biol 2024; 12:1441081. [PMID: 39184916 PMCID: PMC11341543 DOI: 10.3389/fcell.2024.1441081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
As a key factor in tumorigenesis, progression, recurrence and metastasis, the biological properties, metabolic adaptations and immune escape mechanisms of CSCs are the focus of current oncological research. CSCs possess self-renewal, multidirectional differentiation and tumorigenicity, and their mechanisms of action can be elucidated by the clonal evolution, hierarchical model and the dynamic CSCs model, of which the dynamic model is widely recognized due to its better explanation of the function and origin of CSCs. The origin hypothesis of CSCs involves cell-cell fusion, horizontal gene transfer, genomic instability and microenvironmental regulation, which together shape the diversity of CSCs. In terms of classification, CSCs include primary CSCs (pri-CSCs), precancerous stem cells (pre-CSCs), migratory CSCs (mig-CSCs), and chemo-radiotherapy-resistant CSCs (cr-CSCs and rr-CSCs), with each type playing a specific role in tumor progression. Surface markers of CSCs, such as CD24, CD34, CD44, CD90, CD133, CD166, EpCAM, and LGR5, offer the possibility of identifying, isolating, and targeting CSCs, but the instability and heterogeneity of their expression increase the difficulty of treatment. CSCs have adapted to their survival needs through metabolic reprogramming, showing the ability to flexibly switch between glycolysis and oxidative phosphorylation (OXPHOS), as well as adjustments to amino acid and lipid metabolism. The Warburg effect typifies their metabolic profiles, and altered glutamine and fatty acid metabolism further contributes to the rapid proliferation and survival of CSCs. CSCs are able to maintain their stemness by regulating the metabolic networks to maintain their stemness characteristics, enhance antioxidant defences, and adapt to therapeutic stress. Immune escape is another strategy for CSCs to maintain their survival, and CSCs can effectively evade immune surveillance through mechanisms such as up-regulating PD-L1 expression and promoting the formation of an immunosuppressive microenvironment. Together, these properties reveal the multidimensional complexity of CSCs, underscoring the importance of a deeper understanding of the biology of CSCs for the development of more effective tumor therapeutic strategies. In the future, therapies targeting CSCs will focus on precise identification of surface markers, intervention of metabolic pathways, and overcoming immune escape, with the aim of improving the relevance and efficacy of cancer treatments, and ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| |
Collapse
|
13
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Manjunath M, Ravindran F, Sharma S, Siddiqua H, Raghavan SC, Choudhary B. Disarib, a Specific BCL2 Inhibitor, Induces Apoptosis in Triple-Negative Breast Cancer Cells and Impedes Tumour Progression in Xenografts by Altering Mitochondria-Associated Processes. Int J Mol Sci 2024; 25:6485. [PMID: 38928195 PMCID: PMC11203414 DOI: 10.3390/ijms25126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Targeted cancer therapy aims to disrupt the functions of proteins that regulate cancer progression, mainly by using small molecule inhibitors (SMIs). SMIs exert their effect by modulating signalling pathways, organelle integrity, chromatin components, and several biosynthetic processes essential for cell division and survival. Antiapoptotic protein BCL2 is highly upregulated in many cancers compared with normal cells, making it an ideal target for cancer therapy. Around 75% of primary breast cancers overexpress BCL2, providing an opportunity to explore BCL2 inhibitors as a therapeutic option. Disarib is an SMI that has been developed as a selective BCL2 inhibitor. Disarib works by disrupting BCL2-BAK interaction and activating intrinsic apoptotic pathways in leukemic cells while sparing normal cells. We investigated the effects of Disarib, a BCL2 specific inhibitor, on breast cancer cells and xenografts. Cytotoxicity and fluorometric assays revealed that Disarib induced cell death by increasing reactive oxygen species and activating intrinsic apoptotic pathways in Triple-Negative Breast Cancer cells (MDA-MB-231 and MDA-MB-468). Disarib also affected the colony-forming properties of these cells. MDA-MB-231- and MDA-MB-468-derived xenografts showed a significant reduction in tumours upon Disarib treatment. Through the transcriptomics approach, we also explored the influence of BCL2 inhibitors on energy metabolism, mitochondrial dynamics, and epithelial-to-mesenchymal transition (EMT). Mitochondrial dynamics and glucose metabolism mainly regulate energy metabolism. The change in energetics regulates tumour growth through epithelial-mesenchymal transition, and angiogenesis. RNA sequencing (RNAseq) analysis revealed that BCL2 inhibitors ABT-199 and Disarib maintain Oxphos levels in MDA-MB-231. However, key glycolytic genes were significantly downregulated. Mitochondrial fission genes were seen to be downregulated both in RNAseq data and semi quantitative real time polymerase chain reaction (qRTPCR) in Disarib-treated TNBC cells and xenografts. Lastly, Disarib inhibited wound healing and epithelial-to-mesenchymal transition. This study showed that Disarib disrupts mitochondrial function, activates the intrinsic apoptotic pathway in breast cancer, and inhibits epithelial-to-mesenchymal transition both in vitro and in vivo. These findings highlight Disarib's potential as a multifaceted therapeutic strategy for patients with Triple-Negative Breast Cancer.
Collapse
Affiliation(s)
- Meghana Manjunath
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Febina Ravindran
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Shivangi Sharma
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | - Humaira Siddiqua
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | | | - Bibha Choudhary
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| |
Collapse
|
15
|
ALEMZADEH EFFAT, ALLAHQOLI LEILA, MAZIDIMORADI AFROOZ, ALEMZADEH ESMAT, GHASEMI FAHIMEH, SALEHINIYA HAMID, ALKATOUT IBRAHIM. Deciphering resistance mechanisms and novel strategies to overcome drug resistance in ovarian cancer: a comprehensive review. Oncol Res 2024; 32:831-847. [PMID: 38686048 PMCID: PMC11055988 DOI: 10.32604/or.2024.031006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.
Collapse
Affiliation(s)
- EFFAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - LEILA ALLAHQOLI
- Department of Midwifery, Ministry of Health and Medical Education, Tehran, Iran
| | - AFROOZ MAZIDIMORADI
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - ESMAT ALEMZADEH
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - FAHIMEH GHASEMI
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - HAMID SALEHINIYA
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - IBRAHIM ALKATOUT
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
17
|
Ren H, Zhang Y, Huang W, Xu H, He W, Hao N, Zhang C. Tumor-targeted nanodrug FSGG/siGal-9 for transdermal photothermal immunotherapy of melanoma. Commun Biol 2024; 7:188. [PMID: 38366083 PMCID: PMC10873409 DOI: 10.1038/s42003-024-05891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Photothermal therapy (PTT) is a cancer-targeted treatment approach.The occurrence of tumors may be related to microbial infections (Viruses, bacteria, fungi, etc.), which probably provokes anti-tumor immunity. However, T cells in the context of cancer become exhausted and dysfunctional. Galectin-9 (Gal-9) is highly expressed in normal tissues and associates with body immune tolerance, and was firstly evidenced with much higher expression on the primary solid tumors than CD80/86 (B7) and CD274 (PD-L1) here, which suggests that Gal-9 may be a key factor in inhibiting the anti-tumor immunity, and its receptor T cell immunoglobulin and mucin domain 3 (TIM-3) was discovered on the cytotoxic T lymphocytes (CTL) with high expression as well based on the single cell analysis. The immune checkpoint communications showed that the Gal-9/TIM-3 axis played the most vital role on negatively regulating the anti-tumor immunity of CTL for melanoma. Then, we used a novel transdermal photothermal nanosensitizer (FSGG) loading Gal-9 siRNA (FSGG/siGal-9) for knocking the tumor cells down Gal-9 to block the Gal-9/TIM-3 axis and prohibit CTL exhaustion synergizing PTT against melanoma, which evidenced good effects on inhibiting tumor growth and enhancing anti-tumor immunity, named "photothermal immunotherapy". This paper provides a new perspective for tumor prevention and treatment.
Collapse
Affiliation(s)
- Huihong Ren
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
- Drug Dispensing Department, Zibo Central Hospital, Zibo, 255000, China
| | - Yujuan Zhang
- Department of Otolaryngology, The First Dongguan Affiliated Hospital, and Nursing College, Guangdong Medical University, Dongguan, 523808, China.
| | - Wei Huang
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Haiyan Xu
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Weixiong He
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Nan Hao
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Cong Zhang
- School of Pharmacy and School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
18
|
Huang FL, Chang YM, Lin CY, Yu SJ, Fu JT, Chou TY, Yeh SW, Liao EC, Li CL. Regulating TKT activity inhibits proliferation of human acute lymphoblastic leukemia cells. Am J Cancer Res 2024; 14:679-695. [PMID: 38455402 PMCID: PMC10915314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Among pediatric blood cancers, acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy. Within ALL, T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10 to 15% of all pediatric cases, and ~25% of adult cases. For T-ALL, its recurrence and relapse after treatment remain problematic. Therefore, it is necessary to develop new therapies for T-ALL. Recent studies suggested regulating energy metabolism is a novel approach to inhibit tumor growth, likely a promising treatment. Transketolase (TKT) is an important enzyme for modulating glucose metabolize in the pentose phosphate pathway (PPP). In this study, we treated T-ALL cells with different doses of niclosamide and primary T-ALL PBMCs were analyzed by RNA sequencing. T-ALL cells treated with niclosamide were analyzed with the Western blotting and TKT activity assay. Metabolism of T-ALL cells was evaluated by ATP assay and seahorse analyses. Lastly, we used a T-ALL xenograft murine model to determine effects of TKT knockdown on T-ALL tumor growth. Tumor samples were analyzed by H&E and IHC stainings. We found that niclosamide reduced T-ALL cell viability, and reduced expressions of TKT, Transketolase-Like Protein 1/2 (TKTL1/2) and transaldolase. In addition, niclosamide inhibited TKT enzyme activity, aerobic metabolism and glycolysis, finally leading to lower production of ATP. TKT knockdown inhibited tumor growth of xenograft T-ALL mice. Findings showed that niclosamide inhibits T-ALL cell growth by inhibiting TKT and energy metabolism.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children’s Medical Center, Taichung Veterans General HospitalTaichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung 402, Taiwan
- Institute of Biomedical Sciences, MacKay Medical CollegeNew Taipei 252, Taiwan
- Department of Physical Therapy, Hungkuang UniversityTaichung 433, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia SinicaTaipei 115, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, MacKay Medical CollegeNew Taipei 252, Taiwan
| | - Sheng-Jie Yu
- Department of Medical Research, Taichung Veterans General HospitalTaichung 407, Taiwan
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing UniversityTaichung 402, Taiwan
- Integrated Care Center of Psoriatic Disease, Taichung Veterans General HospitalTaichung 407, Taiwan
| | - Jing-Tong Fu
- Department of Pathology and Laboratory Medicine, Taichung Veterans General HospitalTaichung 407, Taiwan
| | - Ting-Yu Chou
- Department of Medical Research, Taichung Veterans General HospitalTaichung 407, Taiwan
| | - Sih-Wen Yeh
- Children’s Medical Center, Taichung Veterans General HospitalTaichung 407, Taiwan
| | - En-Chih Liao
- Institute of Biomedical Sciences, MacKay Medical CollegeNew Taipei 252, Taiwan
- Department of Medicine, MacKay Medical CollegeNew Taipei 252, Taiwan
| | - Chia-Ling Li
- Children’s Medical Center, Taichung Veterans General HospitalTaichung 407, Taiwan
| |
Collapse
|
19
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
20
|
Li X, Hu S, Cai Y, Liu X, Luo J, Wu T. Revving the engine: PKB/AKT as a key regulator of cellular glucose metabolism. Front Physiol 2024; 14:1320964. [PMID: 38264327 PMCID: PMC10804622 DOI: 10.3389/fphys.2023.1320964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Glucose metabolism is of critical importance for cell growth and proliferation, the disorders of which have been widely implicated in cancer progression. Glucose uptake is achieved differently by normal cells and cancer cells. Even in an aerobic environment, cancer cells tend to undergo metabolism through glycolysis rather than the oxidative phosphorylation pathway. Disordered metabolic syndrome is characterized by elevated levels of metabolites that can cause changes in the tumor microenvironment, thereby promoting tumor recurrence and metastasis. The activation of glycolysis-related proteins and transcription factors is involved in the regulation of cellular glucose metabolism. Changes in glucose metabolism activity are closely related to activation of protein kinase B (PKB/AKT). This review discusses recent findings on the regulation of glucose metabolism by AKT in tumors. Furthermore, the review summarizes the potential importance of AKT in the regulation of each process throughout glucose metabolism to provide a theoretical basis for AKT as a target for cancers.
Collapse
Affiliation(s)
- Xia Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Hu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoting Cai
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Miao Y, Wang P, Huang J, Qi X, Liang Y, Zhao W, Wang H, Lyu J, Zhu H. Metabolomics, Transcriptome and Single-Cell RNA Sequencing Analysis of the Metabolic Heterogeneity between Oral Cancer Stem Cells and Differentiated Cancer Cells. Cancers (Basel) 2024; 16:237. [PMID: 38254728 PMCID: PMC10813553 DOI: 10.3390/cancers16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Understanding the distinct metabolic characteristics of cancer stem cells (CSC) may allow us to better cope with the clinical challenges associated with them. In this study, OSCC cell lines (CAL27 and HSC3) and multicellular tumor spheroid (MCTS) models were used to generate CSC-like cells. Quasi-targeted metabolomics and RNA sequencing were used to explore altered metabolites and metabolism-related genes. Pathview was used to display the metabolites and transcriptome data in a KEGG pathway. The single-cell RNA sequencing data of six patients with oral cancer were analyzed to characterize in vivo CSC metabolism. The results showed that 19 metabolites (phosphoethanolamine, carbamoylphosphate, etc.) were upregulated and 109 metabolites (2-aminooctanoic acid, 7-ketocholesterol, etc.) were downregulated in both MCTS cells. Integration pathway analysis revealed altered activity in energy production (glycolysis, citric cycle, fatty acid oxidation), macromolecular synthesis (purine/pyrimidine metabolism, glycerophospholipids metabolism) and redox control (glutathione metabolism). Single-cell RNA sequencing analysis confirmed altered glycolysis, glutathione and glycerophospholipid metabolism in in vivo CSC. We concluded that CSCs are metabolically inactive compared with differentiated cancer cells. Thus, oral CSCs may resist current metabolic-related drugs. Our result may be helpful in developing better therapeutic strategies against CSC.
Collapse
Affiliation(s)
- Yuwen Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Pan Wang
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Qi
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Yingjiqiong Liang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenquan Zhao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Jiong Lyu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiyong Zhu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| |
Collapse
|
22
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
23
|
Yao Y, Zhao Z, He J, Ali B, Wang M, Liao F, Zhuang J, Zheng Y, Guo W, Zhang DY. Iridium nanozyme-mediated photoacoustic imaging-guided NIR-II photothermal therapy and tumor microenvironment regulation for targeted eradication of cancer stem cells. Acta Biomater 2023; 172:369-381. [PMID: 37852456 DOI: 10.1016/j.actbio.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.
Collapse
Affiliation(s)
- Yuying Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuangzhuang Zhao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinzhen He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Barkat Ali
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; PARC Pakistan Agricultural Research Council, Islamabad 44000, Pakistan
| | - Mingcheng Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Fangling Liao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yue Zheng
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Weisheng Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
24
|
Han J, Xie C, Liu B, Wang Y, Pang R, Bi W, Sheng R, He G, Kong L, Yu J, Ding Z, Chen L, Jia J, Zhang J, Nie C. Tetraspanin 1 regulates papillary thyroid tumor growth and metastasis through c-Myc-mediated glycolysis. Cancer Sci 2023; 114:4535-4547. [PMID: 37750019 PMCID: PMC10728014 DOI: 10.1111/cas.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common form of thyroid cancer and is characterized by its tendency for lymphatic metastasis, leading to a poor prognosis. Tetraspanin 1 (TSPAN1) is a member of the tetra-transmembrane protein superfamily and has been implicated in tumorigenesis and cancer metastasis in various studies. However, the role of TSPAN1 in PTC tumor development remains unclear. In this study, we aimed to investigate the impact of TSPAN1 on PTC cell behavior. Our results demonstrate that knockdown of TSPAN1 inhibits PTC cell proliferation, migration, and invasion, while overexpression of TSPAN1 has the opposite effect. These findings suggest that TSPAN1 might play a role in the tumorigenesis and invasiveness of PTC. Mechanistically, we found that TSPAN1 activates the ERK pathway by increasing its phosphorylation, subsequently leading to upregulated expression of c-Myc. Additionally, we observed that TSPAN1-ERK-c-Myc axis activation promotes glycolytic activity in PTC cells, as evidenced by the upregulation of glycolytic genes such as LDHA. Taken together, our findings indicate that TSPAN1 acts as an oncogene in PTC by regulating glycolytic metabolism. This discovery highlights the potential of TSPAN1 as a promising therapeutic target for PTC treatment. Further research in this area could provide valuable insights into the development of targeted therapies for PTC patients.
Collapse
Affiliation(s)
- Jihua Han
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Changming Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Bo Liu
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yan Wang
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Rui Pang
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Wen Bi
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Rinan Sheng
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Guoqing He
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Lingyu Kong
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jiawei Yu
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhaoming Ding
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Lili Chen
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jinliang Jia
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jiewu Zhang
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Chunlei Nie
- Department of Head and Neck SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
25
|
Stouras I, Vasileiou M, Kanatas PF, Tziona E, Tsianava C, Theocharis S. Metabolic Profiles of Cancer Stem Cells and Normal Stem Cells and Their Therapeutic Significance. Cells 2023; 12:2686. [PMID: 38067114 PMCID: PMC10705308 DOI: 10.3390/cells12232686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) are a rare cancer cell population, responsible for the facilitation, progression, and resistance of tumors to therapeutic interventions. This subset of cancer cells with stemness and tumorigenic properties is organized in niches within the tumor microenvironment (TME) and presents altered regulation in a variety of metabolic pathways, including glycolysis, oxidative phosphorylation (OXPHOS), as well as lipid, amino acid, and iron metabolism. CSCs exhibit similarities as well as differences when comparedto normal stem cells, but also possess the ability of metabolic plasticity. In this review, we summarize the metabolic characteristics of normal, non-cancerous stem cells and CSCs. We also highlight the significance and implications of interventions targeting CSC metabolism to potentially achieve more robust clinical responses in the future.
Collapse
Affiliation(s)
- Ioannis Stouras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Section of Hematology and Medical Oncology, Department of Clinical Therapeutics, General Hospital Alexandra, 11528 Athens, Greece
| | - Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis F. Kanatas
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Tziona
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
26
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
27
|
Cui B, He B, Huang Y, Wang C, Luo H, Lu J, Su K, Zhang X, Luo Y, Zhao Z, Yang Y, Zhang Y, An F, Wang H, Lam EWF, Kelley KW, Wang L, Liu Q, Peng F. Pyrroline-5-carboxylate reductase 1 reprograms proline metabolism to drive breast cancer stemness under psychological stress. Cell Death Dis 2023; 14:682. [PMID: 37845207 PMCID: PMC10579265 DOI: 10.1038/s41419-023-06200-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to cancer metastasis, drug resistance and tumor relapse, yet how amino acid metabolism promotes CSC maintenance remains exclusive. Here, we identify that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth. Mechanistically, PYCR1-synthesized proline activates cGMP-PKG signaling to enhance cancer stem-like traits. Importantly, cGMP-PKG signaling mediates psychological stress-induced cancer stem-like phenotypes and tumorigenesis. Ablation of PYCR1 markedly reverses psychological stress-induced proline synthesis, cGMP-PKG signaling activation and cancer progression. Clinically, PYCR1 and cGMP-PKG signaling components are highly expressed in breast tumor specimens, conferring poor survival in breast cancer patients. Targeting proline metabolism or cGMP-PKG signaling pathway provides a potential therapeutic strategy for breast patients undergoing psychological stress. Collectively, our findings unveil that PYCR1-enhanced proline synthesis displays a critical role in maintaining breast cancer stemness.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yanping Huang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Luo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hong Wang
- Department of Orthopaedics, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ling Wang
- Department of Oncology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
28
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
29
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Liu Z, Lei J, Wu T, Hu W, Zheng M, Wang Y, Song J, Ruan H, Xu L, Ren T, Xu W, Wen Z. Lipogenesis promotes mitochondrial fusion and maintains cancer stemness in human NSCLC. JCI Insight 2023; 8:158429. [PMID: 36809297 PMCID: PMC10070109 DOI: 10.1172/jci.insight.158429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer stem-like cells (CSCs) are critically involved in cancer metastasis and chemoresistance, acting as one major obstacle in clinical practice. While accumulating studies have implicated the metabolic reprogramming of CSCs, mitochondrial dynamics in such cells remain poorly understood. Here we pinpointed OPA1hi with mitochondrial fusion as a metabolic feature of human lung CSCs, licensing their stem-like properties. Specifically, human lung CSCs exerted enhanced lipogenesis, inducing OPA1 expression via transcription factor SAM Pointed Domain containing ETS transcription Factor (SPDEF). In consequence, OPA1hi promoted mitochondrial fusion and stemness of CSCs. Such lipogenesishi, SPDEFhi, and OPA1hi metabolic adaptions were verified with primary CSCs from lung cancer patients. Accordingly, blocking lipogenesis and mitochondrial fusion efficiently impeded CSC expansion and growth of organoids derived from patients with lung cancer. Together, lipogenesis regulates mitochondrial dynamics via OPA1 for controlling CSCs in human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaxin Lei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tong Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijie Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, Guizhou, China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Farhadi P, Irani S, Gholami M, Mansouri K. A metabolism targeting three-pronged attack significantly attenuates breast cancer stem cell related markers toward therapeutic application. Biomed Pharmacother 2023; 161:114496. [PMID: 36948136 DOI: 10.1016/j.biopha.2023.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Tumor metabolism has provided researchers with a promising window to cancer therapy. The metabolic pathways adopted by cancer cells are different from those of normal cells. Thus, metabolism can be considered a linchpin in targeted cancer therapy. Glycolysis, pentose phosphate pathway, and mitochondria represent three critical metabolic spots with important roles in cancer cell survival and proliferation. In the present study, we aimed to target these pathways using three different inhibitors: 2-deoxyglucose, 6-aminonicotinamide, and doxycycline, separately and in combination. Accordingly, cell viability, lactate production, cell cycle profile, apoptotic profile, and expression of surface and molecular markers of MCF-7 and MDA-MB-231 breast cancer cell lines were investigated under adherent and sphere conditions. Our results from our set conditions indicated various inhibitory effects of these compounds on the breast cancer cell lines. Based on this all-around attack, the combination of drugs demonstrated the most effective inhibitory action compared to separate usage. This study suggests the combined application of these drugs in future investigations and more experimental settings in order to introduce this therapeutic strategy as an efficient anti-cancer treatment.
Collapse
Affiliation(s)
- Pegah Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Gholami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Navas LE, Blanco-Alcaina E, Suarez-Martinez E, Verdugo-Sivianes EM, Espinosa-Sanchez A, Sanchez-Diaz L, Dominguez-Medina E, Fernandez-Rozadilla C, Carracedo A, Wu LE, Carnero A. NAD pool as an antitumor target against cancer stem cells in head and neck cancer. J Exp Clin Cancer Res 2023; 42:55. [PMID: 36864434 PMCID: PMC9983242 DOI: 10.1186/s13046-023-02631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil1. Despite advances in HNSCC treatment, the rate of tumor recurrence and patient mortality remain high. Therefore, the search for new prognostic identifiers and treatments targeting therapy-resistant tumor cells is vital. Our work demonstrates that there are different subgroups with high phenotypic plasticity within the CSC population in HNSCC. CD10, CD184, and CD166 may identify some of these CSC subpopulations with NAMPT as a common metabolic gene for the resilient cells of these subpopulations. We observed that NAMPT reduction causes a decrease in tumorigenic and stemness properties, migration capacity and CSC phenotype through NAD pool depletion. However, NAMPT-inhibited cells can acquire resistance by activating the NAPRT enzyme of the Preiss-Handler pathway. We observed that coadministration of the NAMPT inhibitor with the NAPRT inhibitor cooperated inhibiting tumor growth. The use of an NAPRT inhibitor as an adjuvant improved NAMPT inhibitor efficacy and reduced the dose and toxicity of these inhibitors. Therefore, it seems that the reduction in the NAD pool could have efficacy in tumor therapy. This was confirmed by in vitro assays supplying the cells with products of inhibited enzymes (NA, NMN or NAD) and restoring their tumorigenic and stemness properties. In conclusion, the coinhibition of NAMPT and NAPRT improved the efficacy of antitumor treatment, indicating that the reduction in the NAD pool is important to prevent tumor growth.
Collapse
Affiliation(s)
- Lola E. Navas
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Blanco-Alcaina
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Suarez-Martinez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M. Verdugo-Sivianes
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Asuncion Espinosa-Sanchez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Sanchez-Diaz
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Dominguez-Medina
- grid.11794.3a0000000109410645BioFarma-USEF Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ceres Fernandez-Rozadilla
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lindsay E. Wu
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW Sydney, Sydney, NSW Australia
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013, Seville, Spain. .,CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
34
|
Park KC, Kim JM, Kim SY, Kim SM, Lim JH, Kim MK, Fang S, Kim Y, Mills GB, Noh SH, Cheong JH. PMCA inhibition reverses drug resistance in clinically refractory cancer patient-derived models. BMC Med 2023; 21:38. [PMID: 36726166 PMCID: PMC9893610 DOI: 10.1186/s12916-023-02727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cancer cells have developed molecular strategies to cope with evolutionary stressors in the dynamic tumor microenvironment. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) is a metabolic rheostat that regulates diverse cellular adaptive behaviors, including growth and survival. However, the mechanistic role of PGC1α in regulating cancer cell viability under metabolic and genotoxic stress remains elusive. METHODS We investigated the PGC1α-mediated survival mechanisms in metabolic stress (i.e., glucose deprivation-induced metabolic stress condition)-resistant cancer cells. We established glucose deprivation-induced metabolic stress-resistant cells (selected cells) from parental tumor cells and silenced or overexpressed PGC1α in selected and parental tumor cells. RESULTS Several in vitro and in vivo mouse experiments were conducted to elucidate the contribution of PGC1α to cell viability in metabolic stress conditions. Interestingly, in the mouse xenograft model of patient-derived drug-resistant cancer cells, each group treated with an anti-cancer drug alone showed no drastic effects, whereas a group that was co-administered an anti-cancer drug and a specific PMCA inhibitor (caloxin or candidate 13) showed marked tumor shrinkage. CONCLUSIONS Our results suggest that PGC1α is a key regulator of anti-apoptosis in metabolic and genotoxic stress-resistant cells, inducing PMCA expression and allowing survival in glucose-deprived conditions. We have discovered a novel therapeutic target candidate that could be employed for the treatment of patients with refractory cancers.
Collapse
Affiliation(s)
- Ki Cheong Park
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Min Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Yong Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Mo Kim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Hong Lim
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ki Kim
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungsoon Fang
- Severance Biomedical Science Institute, BK21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS Genome Center, New drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon, 22014, Republic of Korea
| | - Gordon B Mills
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung Hoon Noh
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,YUMC-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Biochemistry & Molecular Biology, Systems Cancer Biology & Biomarker Research Lab, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Zhu M, Li S, Cao X, Rashid K, Liu T. The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin Cancer Biol 2023; 88:18-31. [PMID: 36410636 DOI: 10.1016/j.semcancer.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, OH, USA.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Saito D, Tadokoro R, Nagasaka A, Yoshino D, Teramoto T, Mizumoto K, Funamoto K, Kidokoro H, Miyata T, Tamura K, Takahashi Y. Stiffness of primordial germ cells is required for their extravasation in avian embryos. iScience 2022; 25:105629. [PMID: 36465120 PMCID: PMC9713369 DOI: 10.1016/j.isci.2022.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike mammals, primordial germ cells (PGCs) in avian early embryos exploit blood circulation to translocate to the somatic gonadal primordium, but how circulating PGCs undergo extravasation remains elusive. We demonstrate with single-cell level live-imaging analyses that the PGCs are arrested at a specific site in the capillary plexus, which is predominantly governed by occlusion at a narrow path in the vasculature. The occlusion is enabled by a heightened stiffness of the PGCs mediated by actin polymerization. Following the occlusion, PGCs reset their stiffness to soften in order to squeeze through the endothelial lining as they transmigrate. Our discovery also provides a model for the understanding of metastasizing cancer extravasation occurring mainly by occlusion.
Collapse
Affiliation(s)
- Daisuke Saito
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Ryosuke Tadokoro
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
- Department of Bioscience, Okayama University of Science, Okayama, Okayama 700-0005, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Teramoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Kanta Mizumoto
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Kenichi Funamoto
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hinako Kidokoro
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
37
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
38
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
39
|
Zhang L, She R, Zhu J, Lu J, Gao Y, Song W, Cai S, Wang L. Novel lipometabolism biomarker for chemotherapy and immunotherapy response in breast cancer. BMC Cancer 2022; 22:1030. [PMID: 36182903 PMCID: PMC9526348 DOI: 10.1186/s12885-022-10110-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Emerging proof shows that abnormal lipometabolism affects invasion, metastasis, stemness and tumor microenvironment in carcinoma cells. However, molecular markers related to lipometabolism have not been further established in breast cancer. In addition, numerous studies have been conducted to screen for prognostic features of breast cancer only with RNA sequencing profiles. Currently, there is no comprehensive analysis of multiomics data to extract better biomarkers. Therefore, we have downloaded the transcriptome, single nucleotide mutation and copy number variation dataset for breast cancer from the TCGA database, and constructed a riskScore of twelve genes by LASSO regression analysis. Patients with breast cancer were categorized into high and low risk groups based on the median riskScore. The high-risk group had a worse prognosis than the low-risk group. Next, we have observed the mutated frequencies and the copy number variation frequencies of twelve lipid metabolism related genes LMRGs and analyzed the association of copy number variation and riskScore with OS. Meanwhile, the ESTIMATE and CIBERSORT algorithms assessed tumor immune fraction and degree of immune cell infiltration. In immunotherapy, it is found that high-risk patients have better efficacy in TCIA analysis and the TIDE algorithm. Furthermore, the effectiveness of six common chemotherapy drugs was estimated. At last, high-risk patients were estimated to be sensitive to six chemotherapeutic agents and six small molecule drug candidates. Together, LMRGs could be utilized as a de novo tumor biomarker to anticipate better the prognosis of breast cancer patients and the therapeutic efficacy of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.,Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Department of Oncology Surgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233080, Anhui Province, China
| | - Risheng She
- Department of Emergency, Dongguan People's Hospital, Dongguan, 523000, China
| | - Jianlin Zhu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.,Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jin Lu
- Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, 233030, Anhui Province, China
| | - Yuan Gao
- Department of Medical Ultrasound, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233080, Anhui Province, China
| | - Wenhua Song
- Department of Oncology Surgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233080, Anhui Province, China.
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, P. R. China.
| | - Lu Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China. .,Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Wei Y, Chen Q, Huang S, Liu Y, Li Y, Xing Y, Shi D, Xu W, Liu W, Ji Z, Wu B, Chen X, Jiang J. The Interaction between DNMT1 and High-Mannose CD133 Maintains the Slow-Cycling State and Tumorigenic Potential of Glioma Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202216. [PMID: 35798319 PMCID: PMC9475542 DOI: 10.1002/advs.202202216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 05/24/2023]
Abstract
The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133. Furthermore, the high-mannose type N-glycan of CD133 is necessary for its interaction with DNMT1. Activation of p21 and p27 by the CD133-DNMT1 interaction maintains the slow-cycling state of GSC, and promotes chemotherapy resistance and tumorigenesis of GSCs. Elimination of the CD133-DNMT1 interaction by a cell-penetrating peptide or MAN1A1 overexpression inhibits the tumorigenesis of GSCs and increases the sensitivity of GSCs to temozolomide. Analysis of glioma samples reveals that the levels of high-mannose type N-glycan are correlated with glioma recurrence. Collectively, the high mannose CD133-DNMT1 interaction maintains the slow-cycling state and tumorigenic potential of GSC, providing a potential strategy to eliminate quiescent GSCs.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yingchao Liu
- Department of NeurosurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Yinan Li
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yang Xing
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Danfang Shi
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Weitao Liu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Zhi Ji
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Bingrui Wu
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
41
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
42
|
Singh T, Kaur P, Singh P, Singh S, Munshi A. Differential molecular mechanistic behavior of HDACs in cancer progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:171. [PMID: 35972597 DOI: 10.1007/s12032-022-01770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs' role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
43
|
Huang L, Xu D, Qian Y, Zhang X, Guo H, Sha M, Hu R, Kong X, Xia Q, Zhang Y. A gene signature is critical for intrahepatic cholangiocarcinoma stem cell self-renewal and chemotherapeutic response. Stem Cell Res Ther 2022; 13:292. [PMID: 35841118 PMCID: PMC9284797 DOI: 10.1186/s13287-022-02988-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/23/2022] [Indexed: 01/08/2023] Open
Abstract
Background Improved understanding of the stemness regulation mechanism in intrahepatic cholangiocarcinoma (ICC) could identify targets and guidance for adjuvant transarterial chemoembolization (TACE). Methods TCGA database was excavated to identify the ICC stemness-associated genes. The pro-stemness effect of target genes was further analyzed by sphere formation assay, qRT-PCR, western blot, flow cytometric analysis, IHC, CCK8 assay and metabolomic analysis. Based on multivariate analysis, a nomogram for ICC patients with adjuvant TACE was established and our result was further confirmed by a validation cohort. Finally, the effect of dietary methionine intervention on chemotherapy was estimated by in vivo experiment and clinical data. Results In this study, we identified four ICC stemness-associated genes (SDHAF2, MRPS34, MRPL11, and COX8A) that are significantly upregulated in ICC tissues and negatively associated with clinical outcome. Functional studies indicated that these 4-key-genes are associated with self-renewal ability of ICC and transgenic expression of these 4-key-genes could enhance chemoresistance of cholangiocarcinoma cells. Mechanistically, the 4-key-genes-mediated pro-stemness requires the activation of methionine cycle, and their promotion on ICC stemness characteristic is dependent on MAT2A. Importantly, we established a novel nomogram to evaluate the effectiveness of TACE for ICC patients. Further dietary methionine intervene studies indicated that patients with adjuvant TACE might benefit from dietary methionine restriction if they have a relatively high nomogram score (≥ 135). Conclusions Our results show that four ICC stemness-associated genes could serve as novel biomarkers in predicting ICC patient’s response to adjuvant TACE and their pro-stemness ability may be attributed to the activation of the methionine cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02988-9.
Collapse
Affiliation(s)
- Lifeng Huang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Dongwei Xu
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yawei Qian
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoqiang Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Han Guo
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Meng Sha
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Rui Hu
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Qiang Xia
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210000, China.
| |
Collapse
|
44
|
Wei C, Ding L, Luo Q, Li X, Zeng X, Kong D, Yu X, Feng J, Ye Y, Wang L, Huang H. Development and Validation of an Individualized Metabolism-Related Prognostic Model for Adult Acute Myeloid Leukemia Patients. Front Oncol 2022; 12:829007. [PMID: 35785164 PMCID: PMC9247176 DOI: 10.3389/fonc.2022.829007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesAcute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with widely variable prognosis. For this reason, a more tailored-stratified approach for prognosis is urgently needed to improve the treatment success rates of AML patients.MethodsIn the investigation of metabolic pattern in AML patients, we developed a metabolism-related prognostic model, which was consisted of metabolism-related gene pairs (MRGPs) identified by pairwise comparison. Furthermore, we analyzed the predictive ability and clinical significance of the prognostic model.ResultsGiven the significant differences in metabolic pathways between AML patients and healthy donors, we proposed a metabolism-related prognostic signature index (MRPSI) consisting of three MRGPs, which were remarkedly related with the overall survival of AML patients in the training set. The association of MRPSI with prognosis was also validated in two other independent cohorts, suggesting that high MRPSI score can identify patients with poor prognosis. The MRPSI and age were confirmed to be independent prognostic factors via multivariate Cox regression analysis. Furthermore, we combined MRPSI with age and constructed a composite metabolism-clinical prognostic model index (MCPMI), which demonstrated better prognostic accuracy in all cohorts. Stratification analysis and multivariate Cox regression analysis revealed that the MCPMI was an independent prognostic factor. By estimating the sensitivity of anti-cancer drugs in different AML patients, we selected five drugs that were more sensitive to patients in MCPMI-high group than those in MCPMI-low group.ConclusionOur study provided an individualized metabolism-related prognostic model that identified high-risk patients and revealed new potential therapeutic drugs for AML patients with poor prognosis.
Collapse
Affiliation(s)
- Cong Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Lijuan Ding
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- *Correspondence: He Huang, ; Limengmeng Wang,
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- *Correspondence: He Huang, ; Limengmeng Wang,
| |
Collapse
|
45
|
Duan X, Yang L, Wang L, Liu Q, Zhang K, Liu S, Liu C, Gao Q, Li L, Qin G, Zhang Y. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci 2022; 12:60. [PMID: 35568876 PMCID: PMC9107638 DOI: 10.1186/s13578-022-00798-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/23/2022] [Indexed: 02/08/2023] Open
Abstract
Background Epitranscriptomics studies have contributed greatly to the development of research on human cancers. In recent years, N6-methyladenosine (m6A), an RNA modification on the N-6 position of adenosine, has been found to play a potential role in epigenetic regulation. Therefore, we aimed to evaluate the regulation of cancer progression properties by m6A. Results We found that m6A demethylase fat mass and obesity-associated protein (FTO) was highly expressed in esophageal cancer (EC) stem-like cells, and that its level was also substantially increased in EC tissues, which was closely correlated with a poor prognosis in EC patients. FTO knockdown significantly inhibited the proliferation, invasion, stemness, and tumorigenicity of EC cells, whereas FTO overexpression promoted these characteristics. Furthermore, integrated transcriptome and meRIP-seq analyses revealed that HSD17B11 may be a target gene regulated by FTO. Moreover, FTO promoted the formation of lipid droplets in EC cells by enhancing HSD17B11 expression. Furthermore, depleting YTHDF1 increased the protein level of HSD17B11. Conclusions These data indicate that FTO may rely on the reading protein YTHDF1 to affect the translation pathway of the HSD17B11 gene to regulate the formation of lipid droplets in EC cells, thereby promoting the development of EC. The understanding of the role of epitranscriptomics in the development of EC will lay a theoretical foundation for seeking new anticancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00798-3.
Collapse
Affiliation(s)
- Xiaoran Duan
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China
| | - Liuya Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qinghua Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Kai Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Chaojun Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Qun Gao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, 450052, Henan, P.R. China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, 450052, Henan, P.R. China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, P.R. China.
| |
Collapse
|
46
|
Epigenomic Profiling of Epithelial Ovarian Cancer Stem-Cell Differentiation Reveals GPD1 Associated Immune Suppressive Microenvironment and Poor Prognosis. Int J Mol Sci 2022; 23:ijms23095120. [PMID: 35563509 PMCID: PMC9101898 DOI: 10.3390/ijms23095120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Intraperitoneal metastasis is a challenging clinical scenario in epithelial ovarian cancer (EOC). As they are distinct from hematogenous metastasizing tumors, epithelial ovarian cancer cells primarily disseminate within the peritoneal cavity to form superficially invasive carcinomas. Unfavorable pharmacokinetics for peritoneal tumors and gut toxicity collectively lead to a narrow therapeutic window and therefore limit the opportunities for a favorable clinical outcome. New insights into tumor metastasis in the peritoneal microenvironment are keenly awaited to develop new therapeutic strategies. Epithelial ovarian cancer stem cell (OCSC) seeding is considered to be a critical component of the peritoneal spread. Using a unique and stepwise process of the OCSC differentiation model may provide insight into the intraperitoneal metastasis. The transcriptome and epigenome of OCSC differentiation were characterized by expression array and MethylCap-Seq. The TCGA, AOCS, and KM-Plotter databases were used to evaluate the association between survival outcomes and the methylation/expression levels of candidate genes in the EOC datasets. The STRING database was used to investigate the protein–protein interaction (PPI) for candidates and their associated genes. The infiltration level of immune cells in EOC patients and the association between clinical outcome and OCSCs differentiation genes were estimated using the TIDE and TIME2.0 algorithms. We established an EOC differentiation model using OCSCs. After an integrated transcriptomics and methylomics analysis of OCSCs differentiation, we revealed that the genes associated with earlier OCSC differentiation were better able to reflect the patient’s outcome. The OCSC differentiation genes were involved in regulating metabolism shift and the suppressive immune microenvironment. High GPD1 expression with high pro-tumorigenic immune cells (M2 macrophage, and cancer associated fibroblast) had worst survival. Moreover, we developed a methylation signature, constituted by GNPDA1, GPD1, GRASP, HOXC11, and MSLN, that may be useful for prognostic prediction in EOC. Our results revealed a novel role of epigenetic plasticity OCSC differentiation and suggested metabolic and immune intervention as a new therapeutic strategy.
Collapse
|
47
|
Zhang Q, Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells 2022; 14:267-286. [PMID: 35662861 PMCID: PMC9136564 DOI: 10.4252/wjsc.v14.i4.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which may be related to recurrence, metastasis, and radiochemotherapy resistance during tumor treatment. Understanding the mechanisms via which CSCs maintain self-renewal may reveal new therapeutic targets for attenuating CSC resistance and extending patient life-span. Recent studies have shown that amino acid metabolism plays an important role in maintaining the self-renewal of CSCs and is involved in regulating their tumorigenicity characteristics. This review summarizes the relationship between CSCs and amino acid metabolism, and discusses the possible mechanisms by which amino acid metabolism regulates CSC characteristics particularly self-renewal, survival and stemness. The ultimate goal is to identify new targets and research directions for elimination of CSCs.
Collapse
Affiliation(s)
- Qi Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
48
|
Nguyen YTK, To NB, Truong VNP, Kim HY, Ediriweera MK, Lim Y, Cho SK. Impairment of Glucose Metabolism and Suppression of Stemness in MCF-7/SC Human Breast Cancer Stem Cells by Nootkatone. Pharmaceutics 2022; 14:pharmaceutics14050906. [PMID: 35631492 PMCID: PMC9145028 DOI: 10.3390/pharmaceutics14050906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer stem cell metabolism has emerged as a promising therapeutic strategy for cancer treatment. Breast cancer stem cells (BCSCs) exert distinct metabolism machinery, which plays a major role in radiation and multidrug resistance. Therefore, exploring the mechanisms involved in energy utilization of BCSCs could improve the effectiveness of therapeutic strategies aimed at their elimination. This study was conducted to clarify the glucose metabolism machinery and the function of nootkatone, a bioactive component of grapefruit, in regulating glucose metabolism and stemness characteristics in human breast carcinoma MCF-7 stem cells (MCF-7SCs). In vivo experiments, transcriptomic analysis, seahorse XF analysis, MTT assay, Western blotting, mammosphere formation, wound healing, invasion assay, flow cytometric analysis, reverse transcription-quantitative polymerase chain reaction, and in silico docking experiments were performed. MCF-7SCs showed a greater tumorigenic capacity and distinct gene profile with enrichment of the genes involved in stemness and glycolysis signaling pathways compared to parental MCF-7 cells, indicating that MCF-7SCs use glycolysis rather than oxidative phosphorylation (OXPHOS) for their energy supply. Nootkatone impaired glucose metabolism through AMPK activation and reduced the stemness characteristics of MCF-7SCs. In silico docking analysis demonstrated that nootkatone efficiently bound to the active site of AMPK. Therefore, this study indicates that regulation of glucose metabolism through AMPK activation could be an attractive target for BCSCs.
Collapse
Affiliation(s)
- Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Meran Keshawa Ediriweera
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 00300, Sri Lanka
| | - Yoongho Lim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea;
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
49
|
SETD5 Regulates Glycolysis in Breast Cancer Stem-Like Cells and Fuels Tumor Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:712-721. [PMID: 35063407 DOI: 10.1016/j.ajpath.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Although glycolysis plays a pivotal role in breast cancer stem-like cell (BCSC) reprogramming, the molecular mechanisms that couple glycolysis to cancer stem-like cells remain unclear. SETD5 is a previously uncharacterized member of the histone lysine methyltransferase family. The goal of this study was to explore the mechanisms underlying the promotion of stem-like and glycolysis activation traits by SETD5. Previous studies have shown that overexpression of SETD5 in breast cancer tissues is associated positively with progression. The present study showed that SETD5 expression was enriched in BCSCs. Down-regulation of SETD5 significantly decreased BCSC properties and glycolysis in vitro and in vivo. Interestingly, SETD5 and glycolytic enzymes were accumulated in the central hypoxic regions of subcutaneous tumor tissues. Bioinformatic analysis predicted SETD5 binding to E1A binding protein p300 (EP300), and subsequently to hypoxia-inducible factor 1α (HIF-1α). The mechanistic study found that SETD5 is an upstream effector of EP300/HIF-1α. SETD5 knockdown reduced the expression of HIF-1α, hexokinase-2, and 6-phosphofructo-2-kinase in the nucleus after treatment with cobalt chloride, a chemical hypoxia mimetic agent that activates HIF-1α to accumulate in the nucleus. Therefore, SETD5 is required for glycolysis in BCSCs through binding to EP300/HIF-1α and could be a potential therapeutic target for breast cancer patients.
Collapse
|
50
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|