1
|
Tang B, Liu B, Zeng Z. A new TGF-β risk score predicts clinical and immune landscape in colorectal cancer patients. Ann Gastroenterol Surg 2024; 8:927-941. [PMID: 39229560 PMCID: PMC11368510 DOI: 10.1002/ags3.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 09/05/2024] Open
Abstract
Background Aberrant TGF-β signaling pathway can lead to invasive phenotype of colorectal cancer (CRC), resulting in poor prognosis. It is pivotal to develop an effective prognostic factor on the basis of TGF-β-related genes to accurately identify risk of CRC patients. Methods We performed differential analysis of TGF-β-related genes in CRC patients from databases and previous literature to obtain TGF-β-related differentially expressed genes (TRDEGs). LASSO-Cox regression was utilized to build a CRC prognostic feature model based on TRDEGs. The model was validated using two GEO validation sets. Wilcoxon rank-sum test was utilized to test correlation of model with clinical factors. ESTIMATE algorithm and ssGSEA and tumor mutation burden (TMB) analysis were used to analyze immune landscape and mutation burden of high-risk (HR) and low-risk (LR) groups. CellMiner database was utilized to identify therapeutic drugs with high sensitivity to the feature genes. Results We established a six-gene risk prognostic model with good predictive accuracy, which independently predicted CRC patients' prognoses. The HR group was more likely to experience immunotherapy benefits due to higher immune infiltration and TMB. The feature gene TGFB2 could inhibit the efficacy of drugs such as XAV-939, Staurosporine, and Dasatinib, but promote the efficacy of drugs such as CUDC-305 and by-product of CUDC-305. Similarly, RBL1 could inhibit the drug action of Fluphenazine and Imiquimod but promote that of Irofulven. Conclusion A CRC risk prognostic signature was developed on basis of TGF-β-related genes, which provides a reference for risk and further therapeutic selection of CRC patients.
Collapse
Affiliation(s)
- Bing Tang
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Binggang Liu
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| | - Zhiyao Zeng
- Department of Gastrointestinal SurgeryCentral Hospital of YongzhouYongzhouHunanChina
| |
Collapse
|
2
|
Dupuy J, Cogo E, Fouché E, Guéraud F, Pierre F, Plaisancié P. Epithelial-mesenchymal interaction protects normal colonocytes from 4-HNE-induced phenotypic transformation. PLoS One 2024; 19:e0302932. [PMID: 38669265 PMCID: PMC11051638 DOI: 10.1371/journal.pone.0302932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 μM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.
Collapse
Affiliation(s)
- Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Emma Cogo
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Edwin Fouché
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Françoise Guéraud
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pascale Plaisancié
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
3
|
Gao L, Tian Y, Chen E. The Construction of a Multi-Gene Risk Model for Colon Cancer Prognosis and Drug Treatments Prediction. Int J Mol Sci 2024; 25:3954. [PMID: 38612764 PMCID: PMC11011764 DOI: 10.3390/ijms25073954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In clinical practice, colon cancer is a prevalent malignant tumor of the digestive system, characterized by a complex and progressive process involving multiple genes and molecular pathways. Historically, research efforts have primarily focused on investigating individual genes; however, our current study aims to explore the collective impact of multiple genes on colon cancer and to identify potential therapeutic targets associated with these genes. For this research, we acquired the gene expression profiles and RNA sequencing data of colon cancer from TCGA. Subsequently, we conducted differential gene expression analysis using R, followed by GO and KEGG pathway enrichment analyses. To construct a protein-protein interaction (PPI) network, we selected survival-related genes using the log-rank test and single-factor Cox regression analysis. Additionally, we performed LASSO regression analysis, immune infiltration analysis, mutation analysis, and cMAP analysis, as well as an investigation into ferroptosis. Our differential expression and survival analyses identified 47 hub genes, and subsequent LASSO regression analysis refined the focus to 23 key genes. These genes are closely linked to cancer metastasis, proliferation, apoptosis, cell cycle regulation, signal transduction, cancer microenvironment, immunotherapy, and neurodevelopment. Overall, the hub genes discovered in our study are pivotal in colon cancer and are anticipated to serve as important biological markers for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Liyang Gao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ye Tian
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
4
|
Yan B, Cao L, Gao L, Wei S, Wang M, Tian Y, Yang J, Chen E. PEX26 Functions as a Metastasis Suppressor in Colorectal Cancer. Dig Dis Sci 2024; 69:112-122. [PMID: 37957408 DOI: 10.1007/s10620-023-08168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND/AIMS Aberrant Peroxisomal Biogenesis Factor 26 (PEX26) occurs in multiple cell process. However, the role of PEX26 in colorectal cancer (CRC) development remains unknown. We aimed to study PEX26 expression, regulation, and function in CRC cells. METHODS Using the bioinformatic analysis, real-time quantitative PCR, and immunohistochemistry staining, we detected the expression of PEX26 in CRC and normal tissues. We performed functional experiments in vitro to elucidate the effect of PEX26 on CRC cells. We analyzed the RNA-seq data to reveal the downstream regulating network of PEX26. RESULTS PEX26 is significantly down-regulated in CRC and its low expression correlates with the poor overall survival of CRC patients. We further demonstrated that PEX26 over-expression inhibits the ability of CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT), while PEX26 knockdown promotes the malignant phenotypes of migration, invasion, and EMT via activating the Wnt pathway. CONCLUSION Overall, our results showed that the loss of PEX26 contributes to the malignant phenotype of CRC. PEX26 may serve as a novel metastasis repressor for CRC.
Collapse
Affiliation(s)
- Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Liyang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Shangqing Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Mengwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Zhang J, Pan Y, Jin L, Yang H, Cao P. Exosomal-miR-522-3p derived from cancer-associated fibroblasts accelerates tumor metastasis and angiogenesis via repression bone morphogenetic protein 5 in colorectal cancer. J Gastroenterol Hepatol 2024; 39:107-120. [PMID: 37984826 DOI: 10.1111/jgh.16345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a gastrointestinal tract malignancy. Exosomes secreted by cancer-associated fibroblasts (CAFs) are reported to participate in tumor progression by delivering noncoding RNA or small proteins. However, the function of exosomal miR-522-3p in CRC remains unclear. METHODS CAFs were derived from tumor tissues, and exosomes were identified by western blot or TEM/NTA and originated from CAFs/NFs. The viability, invasion, and migration of HUVECs and CRC cells was examined using MTT, Transwell, and wound healing assays, respectively. The molecular interactions were validated using dual luciferase reporter assay and RIP. Xenograft and lung metastasis mouse models were generated to assess tumor growth and metastasis. RESULTS Exosomes extracted from CAFs/NFs showed high expression of CD63, CD81, and TSG101. CAF-derived exosomes significantly increased the viability, angiogenesis, invasion, and migration of HUVECs and CRC cells, thereby aggravating tumor growth, invasion, and angiogenesis in vivo. miR-522-3p was upregulated in CAF-derived exosomes and CRC tissues. Depletion of miR-522-3p reversed the effect of exosomes derived from CAFs in migration, angiogenesis, and invasion of HUVECs and CRC cells. Furthermore, bone morphogenetic protein 5 (BMP5) was identified as a target gene of miR-522-3p, and upregulation of BMP5 reversed the promoting effect of miR-522-3p mimics or CAF-derived exosomes on cell invasion, migration, and angiogenesis of HUVECs and CRC cells. CONCLUSION Exosomal miR-522-3p from CAFs promoted the growth and metastasis of CRC through downregulating BMP5, which might provide new strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Huiyun Yang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
6
|
Wang H, Ding XH, Liu CL, Xiao Y, Shui RH, Li YP, Chen C, Yang WT, Liu S, Chen CS, Shao ZM, Jiang YZ. Genomic alterations affecting tumor-infiltrating lymphocytes and PD-L1 expression patterns in triple-negative breast cancer. J Natl Cancer Inst 2023; 115:1586-1596. [PMID: 37549066 DOI: 10.1093/jnci/djad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) and programmed cell death 1 ligand 1 (PD-L1) remain imperfect in predicting clinical outcomes of triple-negative breast cancer because outcomes do not always correlate with the expression of these biomarkers. Genomic and transcriptomic alterations that may contribute to the expression of these biomarkers remain incompletely uncovered. METHODS We evaluated PD-L1 immunohistochemistry scores (SP142 and 28-8 assays) and TILs in our triple-negative breast cancer multiomics dataset and 2 immunotherapy clinical trial cohorts. Then, we analyzed genomic and transcriptomic alterations correlated with TILs, PD-L1 expression, and patient outcomes. RESULTS Despite TILs serving as a decent predictor for triple-negative breast cancer clinical outcomes, exceptions remained. Our study revealed that several genomic alterations were correlated with unexpected events. In particular, PD-L1 expression may cause a paradoxical relationship between TILs and prognosis in certain patients. Consequently, we classified triple-negative breast cancers into 4 groups based on PD-L1 and TIL levels. The TIL-negative PD-L1-positive and TIL-positive PD-L1-negative groups were not typical "hot" tumors; both were associated with worse prognoses and lower immunotherapy efficacy than TIL-positive PD-L1-positive tumors. Copy number variation of PD-L1 and oncogenic signaling activation were correlated with PD-L1 expression in the TIL-negative PD-L1-positive group, whereas GSK3B-induced degradation may cause undetectable PD-L1 expression in the TIL-positive PD-L1-negative group. These factors have the potential to affect the predictive function of both PD-L1 and TILs. CONCLUSIONS Several genomic and transcriptomic alterations may cause paradoxical effects among TILs, PD-L1 expression, and prognosis in triple-negative breast cancer. Investigating and targeting these factors will advance precision immunotherapy for patients with this disease.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruo-Hong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan-Ping Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chen Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suling Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Institutes of Biomedical Sciences, Cancer Institutes, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ce-Shi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Dou X, Ma X, Meng W, Zhang W, Yang S, Niu F, Xiong Y, Jin T. HEATR3 involved in the cell proliferation, metastasis and cell cycle development of bladder cancer acts as a tumor suppressor. Mol Genet Genomics 2023; 298:1353-1364. [PMID: 37518364 DOI: 10.1007/s00438-023-02046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/04/2023] [Indexed: 08/01/2023]
Abstract
The study was designed to detect the expression and clinical significance of the HEATR3 gene in bladder cancer (BCa) and to preliminarily explore whether this gene can affect the occurrence and development of BCa through the AKT/ERK signaling pathway. The expression and prognostic value of HEATR3 were explored based on The Cancer Genome Atlas (TCGA) and Genotypic Tissue Expression (GTEx) databases. Microarray immunohistochemical analysis was performed in 30 BCa cases to investigate the level of HEATR3 protein and to explore the relationship between HEATR3 and the clinicopathological features of BCa. Western Blot and qRT-PCR were used to detect HEATR3 protein and mRNA in BCa cell lines (5637, TCCSUP, SW780) and fallopian tube epithelial cell (SV-HUC-1). CCK8 method was employed to study the proliferation of BCa cells after heat treatment. Transwell assay was conducted to analyze the effect of HEATR3 on cell migration and invasion. And cell cycle and apoptosis were detected by flow cytometry. Furthermore, Western Blot assay was used to probe the effects of down-regulation of HEATR3 expression on the expression and phosphorylation levels of AKT and ERK proteins in BCa cells. Bioinformatics analysis showed that HEATR3 was significantly up-regulated in BCa, and high HEATR3 expression was associated with poor prognosis of BCa patients. In vitro experiments demonstrated that HEATR3 expression was up-regulated in BCa tissues compared with that in adjacent tissues. HEATR3 protein was also up-regulated in malignant cell lines. HEATR3 knockdown in BCa cells could inhibit cell proliferation, invasion and migration, block cell cycle and promote cell apoptosis. At the same time, HEATR3 knockdowns reduced the expression levels of p-AKT and p-ERK proteins. HEATR3 knockdown inhibits the development of BCa cells through the AKT/ERK signaling pathway. and it may become one of the most promising molecular targets for BCa treatment.
Collapse
Affiliation(s)
- Xia Dou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaoya Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenting Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenjie Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Shuangyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shanxi, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
9
|
Loss of Tumor Suppressor C9orf9 Promotes Metastasis in Colorectal Cancer. Biomolecules 2023; 13:biom13020312. [PMID: 36830681 PMCID: PMC9953698 DOI: 10.3390/biom13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The whole genome sequencing of tumor samples identifies thousands of somatic mutations. However, the function of these genes or mutations in regulating cancer progression remains unclear. We previously performed exome sequencing in patients with colorectal cancer, and identified one splicing mutation in C9orf9. The subsequent target sequencing of C9orf9 gene based on a validation cohort of 50 samples also found two function mutations, indicating that the loss of wild-type C9orf9 may participate in the tumorigenesis of colorectal cancer. In this research, we aimed to further confirm the function of C9orf9 in the CRC phenotype. Our Q-PCR analysis of the tumor and matched normal samples found that C9orf9 was downregulated in the CRC samples. Function assays revealed that C9orf9 exerts its tumor suppressor role mainly on cancer cell migration and invasion, and its loss was essential for certain tumor-microenvironment signals to induce EMT and metastasis in vivo. RNA-sequencing showed that stable-expressing C9orf9 can inhibit the expression of several metastasis-related genes and pathways, including vascular endothelial growth factor A (VEGFA), one of the essential endothelial cell mitogens which plays a critical role in normal physiological and tumor angiogenesis. Overall, our results showed that the loss of C9orf9 contributes to the malignant phenotype of CRC. C9orf9 may serve as a novel metastasis repressor for CRC.
Collapse
|
10
|
Lei L, Cao Q, An G, Lv Y, Tang J, Yang J. DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer. Apoptosis 2022; 28:458-470. [PMID: 36520320 DOI: 10.1007/s10495-022-01796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
The normal colorectal mucosa undergoes precancerous lesions that can develop over time into colorectal cancer (CRC). In the stage of precancerous lesions, DNA replication stress may lead to genome instability. We have performed whole-exome sequencing on genomic DNA obtained from three cases of CRC tissues and identified a novel frameshift mutation of DNA damage inducible 1 homolog 2 gene (DDI2, c. 854 del T). To date, there is no direct evidence that DDI2 is involved in the carcinogenesis of CRC. In this study, we demonstrated that DDI2 is upregulated in the early stage of CRC based on clinical samples and public databases. We also found that 5FU, a standard chemotherapeutic agent for CRC treatment, increased DDI2 mRNA levels in a dose-dependent manner. Depression of DDI2 inhibited CRC cell proliferation, migration and invasion both in vitro and in vivo. Transcriptome sequencing revealed that DDI2 was involved in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, DDI2 resists a MAPK kinase (MEK) inhibitor (trametinib) and a PolyADP-ribose polymerase 1 (PARP1) inhibitor (talazoparib) induced apoptosis in CRC cells. Thus, our results indicate that DDI2 may play a vital role in the carcinogenesis of CRC and could serve as a promising therapeutic target for CRC.
Collapse
|
11
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
12
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
13
|
Jin Y, Park S, Park SY, Lee CY, Eum DY, Shim JW, Choi SH, Choi YJ, Park SJ, Heo K. G9a Knockdown Suppresses Cancer Aggressiveness by Facilitating Smad Protein Phosphorylation through Increasing BMP5 Expression in Luminal A Type Breast Cancer. Int J Mol Sci 2022; 23:ijms23020589. [PMID: 35054776 PMCID: PMC8776044 DOI: 10.3390/ijms23020589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce. Therefore, we aimed to verify the role of G9a and its presumable downstream regulators during malignant progression of breast cancer. G9a-depleted MCF7 and T47D breast cancer cells exhibited suppressed motility, including migration and invasion, and an improved response to ionizing radiation. To identify the possible key factors underlying these effects, microarray analysis was performed, and a TGF-β superfamily member, BMP5, was selected as a prominent target gene. It was found that BMP5 expression was markedly increased by G9a knockdown. Moreover, reduction in the migration/invasion ability of MCF7 and T47D breast cancer cells was induced by BMP5. Interestingly, a G9a-depletion-mediated increase in BMP5 expression induced the phosphorylation of Smad proteins, which are the intracellular signaling mediators of BMP5. Accordingly, we concluded that the observed antitumor effects may be based on the G9a-depletion-mediated increase in BMP5 expression and the consequent facilitation of Smad protein phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kyu Heo
- Correspondence: (S.-J.P.); (K.H.)
| |
Collapse
|
14
|
Liu D, Liu J, Li Y, Liu H, Hassan HM, He W, Li M, Zhou Y, Fu X, Zhan J, Wang Z, Yang S, Chen P, Xu D, Wang X, DiSanto ME, Zeng G, Zhang X. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Prostate 2021; 81:1435-1449. [PMID: 34553788 DOI: 10.1002/pros.24241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the most common illnesses in aging men. Recent studies found that bone morphogenetic protein 5 (BMP5) is upregulated in BPH tissues, however, the role of BMP5 in the development of BPH has not been examined. The current study aims to elucidate the potential roles of BMP5 and related signaling pathways in BPH. METHODS Human prostate cell lines (BPH-1, WPMY-1) and human/rat hyperplastic prostate tissues were utilized. Western blot, quantitative real-time polymerase chain reaction, immunofluorescent staining, and immunohistochemical staining were performed. BMP5-silenced and -overexpressed cell models were generated and then cell cycle progression, apoptosis, and proliferation were determined. The epithelial-mesenchymal transition (EMT) was also quantitated. And rescue experiments by BMP/Smad signaling pathway agonist or antagonist were accomplished. Moreover, BPH-related tissue microarray analysis was performed and associations between clinical parameters and expression of BMP5 were analyzed. RESULTS Our study demonstrated that BMP5 was upregulated in human and rat hyperplastic tissues and localized both in the epithelial and stromal compartments of the prostate tissues. E-cadherin was downregulated in hyperplastic tissues, while N-cadherin and vimentin were upregulated. Overexpression of BMP5 enhanced cell proliferation and the EMT process via phosphorylation of Smad1/5/8, while knockdown of BMP5 induced cell cycle arrest at G0/G1 phase and blocked the EMT process. Moreover, a BMP/Smad signaling pathway agonist and antagonist reversed the effects of BMP5 silencing and overexpression, respectively. In addition, BMP5 expression positively correlated with prostate volume and total prostate-specific antigen. CONCLUSION Our novel data suggest that BMP5 modulated cell proliferation and the EMT process through the BMP/Smad signaling pathway which could contribute to the development of BPH. However, further studies are required to determine the exact mechanism. Our study also indicated that BMP/Smad signaling may be rediscovered as a promising new therapeutic target for the treatment of BPH.
Collapse
Affiliation(s)
- Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hassan M Hassan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junfeng Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deqiang Xu
- Department of Pediatric Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Meng W, Xiao H, Zhao R, Li D, Li K, Meng Y, Chen J, Wang Y, Liao Y. The Prognostic Value of Bone Morphogenetic Proteins and Their Receptors in Lung Adenocarcinoma. Front Oncol 2021; 11:608239. [PMID: 34745928 PMCID: PMC8569625 DOI: 10.3389/fonc.2021.608239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) regulate tumor progression via binding to their receptors (BMPRs). However, the expression and clinical significance of BMPs/BMPRs in lung adenocarcinoma remain unclear due to a lack of systematic studies. Methods This study screened differentially expressed BMPs/BMPRs (deBMPs/BMPRs) in a training dataset combining TCGA-LUAD and GTEx-LUNG and verified them in four GEO datasets. Their prognostic value was evaluated via univariate and multivariate Cox regression analyses. LASSO was performed to construct an initial risk model. Subsequently, after weighted gene co-expression network analysis (WGCNA), differential expression analysis, and univariate Cox regression analysis, hub genes co-expressed with differentially expressed BMPs/BMPRs were filtered out to improve the risk model and explore potential mechanisms. The improved risk model was re-established via LASSO combining hub genes with differentially expressed BMPs/BMPRs as the core. In the testing cohort including 93 lung adenocarcinoma patients, immunohistochemistry (IHC) was performed to verify BMP5 protein expression and its association with prognosis. Results BMP2, BMP5, BMP6, GDF10, and ACVRL1 were verified as downregulated in lung adenocarcinoma. Survival analysis identified BMP5 as an independent protective prognostic factor. We also found that BMP5 was significantly correlated with EGFR expression and mutations, suggesting that BMP5 may play a role in targeted therapy. The initial risk model containing only BMP5 showed a significant correlation (HR: 1.71, 95% CI: 1.28−2.28, p: 3e-04) but low prognostic accuracy (AUC of 1-year survival: 0.6, 3-year survival: 0.6, 5-year survival: 0.63). Seventy-nine hub genes co-expressed with BMP5 were identified, and their functions were enriched in cell migration and tumor metastasis. The re-established risk model showed greater prognostic correlation (HR: 2.58, 95% CI: 1.92–3.46, p: 0) and value (AUC of 1-year survival: 0.72, 3-year survival: 0.69, and 5-year survival: 0.68). IHC results revealed that BMP5 protein was also downregulated in lung adenocarcinoma and higher expression was markedly associated with better prognosis (HR: 0.44, 95% CI: 0.23–0.85, p: 0.0145). Conclusion BMP5 is a potential crucial target for lung adenocarcinoma treatment based on significant differential expression and superior prognostic value.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Dermatology and Sexology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuo Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunchong Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Collet C, Lopez J, Battail C, Allias F, Devouassoux-Shisheboran M, Patrier S, Lemaitre N, Hajri T, Massardier J, You B, Mallet F, Golfier F, Alfaidy N, Bolze PA. Transcriptomic Characterization of Postmolar Gestational Choriocarcinoma. Biomedicines 2021; 9:biomedicines9101474. [PMID: 34680590 PMCID: PMC8533618 DOI: 10.3390/biomedicines9101474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
The human placenta shares properties with solid tumors, such as rapid growth, tissue invasion, cell migration, angiogenesis, and immune evasion. However, the mechanisms that drive the evolution from premalignant proliferative placental diseases—called hydatidiform moles—to their malignant counterparts, gestational choriocarcinoma, as well as the factors underlying the increased aggressiveness of choriocarcinoma arising after term delivery compared to those developing from hydatidiform moles, are unknown. Using a 730-gene panel covering 13 cancer-associated canonical pathways, we compared the transcriptomic profiles of complete moles to those of postmolar choriocarcinoma samples and those of postmolar to post-term delivery choriocarcinoma. We identified 33 genes differentially expressed between complete moles and postmolar choriocarcinoma, which revealed TGF-β pathway dysregulation. We found the strong expression of SALL4, an upstream regulator of TGF-β, in postmolar choriocarcinoma, compared to moles, in which its expression was almost null. Finally, there were no differentially expressed genes between postmolar and post-term delivery choriocarcinoma samples. To conclude, the TGF-β pathway appears to be a crucial step in the progression of placental malignancies. Further studies should investigate the value of TGF- β family members as biomarkers and new therapeutic targets.
Collapse
Affiliation(s)
- Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Jonathan Lopez
- Department of Biochemistry and Molecular Biology, Plateforme de Recherche de Transfert en Oncologie, University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France;
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Faculté de Médecine Lyon Est, 69008 Lyon, France
| | - Christophe Battail
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Fabienne Allias
- Department of Pathology, University Hospital Lyon, Sud University of Lyon 1, Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (F.A.); (M.D.-S.)
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Mojgan Devouassoux-Shisheboran
- Department of Pathology, University Hospital Lyon, Sud University of Lyon 1, Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (F.A.); (M.D.-S.)
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Sophie Patrier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Pathology, University Hospital of Rouen, CEDEX, 76031 Rouen, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Touria Hajri
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
| | - Jérôme Massardier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Obstetrics and Gynecology, University Hospital Femme Mere Enfant, University of Lyon 1, 51, Boulevard Pinel, 69500 Bron, France
| | - Benoit You
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Investigational Center for Treatments in Oncology and Hematology of Lyon (CITOHL), Medical Oncology Department, University of Lyon 1, Hospices Civils de Lyon, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France;
- Medical Diagnostic Discovery Department (MD3), bioMérieux S.A., 69280 Marcy l’Etoile, France
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Patho-Physiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, 69437 Lyon, France
| | - François Golfier
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Gynecological Surgery and Oncology, Hospices Civils de Lyon, University Hospital Lyon Sud, University of Lyon 1, Obstetrics, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France; (C.C.); (C.B.); (N.L.); (N.A.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble, CEDEX, 38054 Grenoble, France
- Service Obstétrique, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Pierre-Adrien Bolze
- French Center for Trophoblastic Diseases, University Hospital Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France; (S.P.); (T.H.); (J.M.); (B.Y.); (F.G.)
- Department of Gynecological Surgery and Oncology, Hospices Civils de Lyon, University Hospital Lyon Sud, University of Lyon 1, Obstetrics, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, France
- Correspondence: ; Tel.: +33-(0)4-78-86-66-78
| |
Collapse
|
17
|
Hsa_circ_0069244 acts as the sponge of miR-346 to inhibit non-small cell lung cancer progression by regulating XPC expression. Hum Cell 2021; 34:1490-1503. [PMID: 34228324 DOI: 10.1007/s13577-021-00573-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Circular RNAs (circRNAs) play a significant role in the progression of diverse malignancies. Here, we aimed to probe the function and mechanism of circ_0069244 in non-small cell lung cancer (NSCLC). In the present study, circ_0069244 was selected from the circRNA microarray datasets (GSE112214). Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to examine circ_0069244, miR-346 and XPC complex subunit, DNA damage recognition and repair factor (XPC) expression levels. Kaplan-Meier curve was employed to analyze the association between circ_0069244 expression and overall survival of NSCLC patients. Cell counting kit-8 (CCK-8) and 5-Bromo-2'-deoxyuridine (BrdU) experiments were utilized to examine the proliferation of NSCLC cells. Scratch healing and Transwell experiments were executed to examine the migration of NSCLC cells. Western blot was conducted to detect XPC expression at protein level in NSCLC cells. Bioinformatics analysis, dual-luciferase reporter gene and RNA immunoprecipitation (RIP) experiments predicted and validated the targeting relationships of circ_0069244 and miR-346, as well as miR-346 and 3'untranslated region (UTR) of XPC mRNA, respectively. We reported that circ_0069244 was remarkably down modulated in NSCLC and was linked to shorter survival and poor tumor histological grade in NSCLC patients. Functionally, circ_0069244 repressed NSCLC cell proliferation and migration. Furthermore, miR-346-5p was unveiled to be a downstream target of circ_0069244, and miR-346-5p specifically modulated XPC expression. Rescue experiments indicated that the inhibitory effect of circ_0069244 was abolished by co-expression of miR-346-5p mimics. Taken together, circ_0069244 restrained NSCLC progression by modulating the miR-346-5p/XPC axis.
Collapse
|
18
|
Busuioc C, Ciocan-Cartita CA, Braicu C, Zanoaga O, Raduly L, Trif M, Muresan MS, Ionescu C, Stefan C, Crivii C, Al Hajjar N, Mǎrgǎrit S, Berindan-Neagoe I. Epithelial-Mesenchymal Transition Gene Signature Related to Prognostic in Colon Adenocarcinoma. J Pers Med 2021; 11:jpm11060476. [PMID: 34073426 PMCID: PMC8229043 DOI: 10.3390/jpm11060476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Colon adenocarcinoma (COAD) remains an important cause of cancer-related mortality worldwide. Epithelial–mesenchymal transition (EMT) is a key mechanism, promoting not only the invasive or metastatic phenotype but also resistance to therapy. Using bioinformatics approaches, we studied the alteration on EMT related genes and its implication on COAD prognostic based on public datasets. For the EMT mechanisms, two overexpressed genes were identified (NOX4 and IGF2BP3), as well as five downregulated genes (BMP5, DACT3, EEF1A2, GCNT2 and SFRP1) that were related to prognosis in COAD. A qRT-PCR validation step was conducted in a COAD patient cohort comprising of 29 tumor tissues and 29 normal adjacent tissues, endorsing the expression level for BMP5, as well as for two of the miRNAs targeting key EMT related genes, revealing upregulation of miR-27a-5p and miR-146a-5p. The EMT signature can be used to develop a panel of biomarkers for recurrence prediction in COAD patients, which may contribute to the improvement of risk stratification for the patients.
Collapse
Affiliation(s)
- Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Cristina Alexandra Ciocan-Cartita
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Mihai-Stefan Muresan
- 7th Surgical Department, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Calin Ionescu
- 7th Surgical Department, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (M.-S.M.); (C.I.)
- Surgical Department, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Cristina Stefan
- Sing Duke-NUS Global Health Institute Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Carmen Crivii
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Correspondence: (C.C.); (S.M.)
| | - Nadim Al Hajjar
- Department of Surgery, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania;
- Department of Surgery, University of Medicine and Pharmacy, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
| | - Simona Mǎrgǎrit
- Department of Anesthesia and Intensive Care I, Iuliu Hatieganu University of Medicine and Pharmacy, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Department of Intensive Care Unit, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 19–21 Croitorilor Street, 400162 Cluj-Napoca, Romania
- Correspondence: (C.C.); (S.M.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; (C.B.); (C.A.C.-C.); (C.B.); (O.Z.); (L.R.); (I.B.-N.)
| |
Collapse
|
19
|
Familial Occurrence of Adult Granulosa Cell Tumors: Analysis of Whole-Genome Germline Variants. Cancers (Basel) 2021; 13:cancers13102430. [PMID: 34069790 PMCID: PMC8157239 DOI: 10.3390/cancers13102430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Although granulosa cell tumors can occur in rare syndromes and one familial case of a granulosa cell tumor has been described, a genetic predisposition for granulosa cell tumors has not been identified. Through our collaborations with patients, we identified four families in which two women of each family were diagnosed with an adult granulosa cell tumor. Although predicted deleterious variants in PIK3C2G, BMP5, and LRP2 were found, we could not identify an overlapping genetic variant or affected locus that may explain a genetic predisposition for granulosa cell tumors. The age of onset in the familial patients was significantly lower (median 38 years, range from 17 to 60) than in sporadic patients (median between 50 and 55 years). Furthermore, breast cancer, polycystic ovary syndrome, and subfertility were seen in these families. Abstract Adult granulosa cell tumor (AGCT) is a rare ovarian cancer subtype, with a peak incidence around 50–55 years. Although AGCT can occur in specific syndromes, a genetic predisposition for AGCT has not been identified. The aim of this study is to identify a genetic variant in families with AGCT patients, potentially contributing to tumor evolution. We identified four families, each including two women diagnosed with AGCT. Whole-genome sequencing was performed to identify overlapping germline variants or affected genes. Familial relationship was evaluated using genealogy and genomic analyses. Patient characteristics, medical (family) history, and pedigrees were collected. Findings were compared to a reference group of 33 unrelated AGCT patients. Mean age at diagnosis was 38 years (range from 17 to 60) versus 51 years in the reference group, and seven of eight patients were premenopausal. In two families, three first degree relatives were diagnosed with breast cancer. Furthermore, polycystic ovary syndrome (PCOS) and subfertility was reported in three families. Predicted deleterious variants in PIK3C2G, BMP5, and LRP2 were identified. In conclusion, AGCTs occur in families and could potentially be hereditary. In these families, the age of AGCT diagnosis is lower and cases of breast cancer, PCOS, and subfertility are present. We could not identify an overlapping genetic variant or affected locus that may explain a genetic predisposition for AGCT.
Collapse
|
20
|
Yang F, Wang H, Yan B, Li T, Min L, Chen E, Yang J. Decreased level of miR-1301 promotes colorectal cancer progression via activation of STAT3 pathway. Biol Chem 2021; 402:805-813. [PMID: 33984882 DOI: 10.1515/hsz-2020-0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTAT3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3-knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR-1301/STAT3 axis in CRC metastasis.
Collapse
Affiliation(s)
- Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Bianbian Yan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Tong Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Lulu Min
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an710069, China
| |
Collapse
|
21
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
22
|
Ma XB, Xu YY, Zhu MX, Wang L. Prognostic Signatures Based on Thirteen Immune-Related Genes in Colorectal Cancer. Front Oncol 2021; 10:591739. [PMID: 33680920 PMCID: PMC7935549 DOI: 10.3389/fonc.2020.591739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background The immunosuppressive microenvironment is closely related to tumorigenesis and cancer development, including colorectal cancer (CRC). The aim of the current study was to identify new immune biomarkers for the diagnosis and treatment of CRC. Materials and Methods CRC data were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Sequences of immune-related genes (IRGs) were obtained from the ImmPort and InnateDB databases. Gene set enrichment analysis (GSEA) and transcription factor regulation analysis were used to explore potential mechanisms. An immune-related classifier for CRC prognosis was conducted using weighted gene co-expression network analysis (WGCNA), Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis. ESTIMATE and CIBERSORT algorithms were used to explore the tumor microenvironment and immune infiltration in the high-risk CRC group and the low-risk CRC group. Results By analyzing the IRGs that were significantly associated with CRC in the module, a set of 13 genes (CXCL1, F2RL1, LTB4R, GPR44, ANGPTL5, BMP5, RETNLB, MC1R, PPARGC1A, PRKDC, CEBPB, SYP, and GAB1) related to the prognosis of CRC were identified. An IRG-based prognostic signature that can be used as an independent potentially prognostic indicator was generated. The ROC curve analysis showed acceptable discrimination with AUCs of 0.68, 0.68, and 0.74 at 1-, 3-, and 5- year follow-up respectively. The predictive performance was validated in the train set. The potential mechanisms and functions of prognostic IRGs were analyzed, i.e., NOD-like receptor signaling, and transforming growth factor beta (TGFβ) signaling. Besides, the stromal score and immune score were significantly different in high-risk group and low-risk group (p=4.6982e-07, p=0.0107). Besides, the proportions of resting memory CD4+ T cells was significantly higher in the high-risk groups. Conclusions The IRG-based classifier exhibited strong predictive capacity with regard to CRC. The survival difference between the high-risk and low-risk groups was associated with tumor microenvironment and immune infiltration of CRC. Innovative biomarkers for the prediction of CRC prognosis and response to immunological therapy were identified in the present study.
Collapse
Affiliation(s)
- Xiao-Bo Ma
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Yuan Xu
- Department of Day Surgery Centre, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Yin YZ, Yao SH, Li CG, Ma YS, Kang ZJ, Zhang JJ, Jia CY, Hou LK, Qin SS, Fan X, Zhang H, Yang MD, Zhang DD, Lu GX, Wang HM, Gu LP, Tian LL, Wang PY, Cao PS, Wu W, Cao ZY, Lv ZW, Shi BW, Wu CY, Jiang GX, Fu D, Yu F. Systematic analysis using a bioinformatics strategy identifies SFTA1P and LINC00519 as potential prognostic biomarkers for lung squamous cell carcinoma. Am J Transl Res 2021; 13:168-182. [PMID: 33527016 PMCID: PMC7847518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Lung cancer has high incidence and mortality rates, in which lung squamous cell carcinoma (LUSC) is a primary type of non-small cell lung carcinoma (NSCLC). The aim of our study was to discover long non-coding RNAs (lncRNAs) associated with diagnose and prognosis for LUSC. RNA sequencing data obtained from LUSC samples were extracted from The Cancer Genome Atlas database (TCGA). Two prognosis-associated lncRNAs (including SFTA1P and LINC00519) were selected from LUSC samples, and the expression levels were also verified to be associated abnormal in LUSC clinical samples. Our findings demonstrate that lncRNAs SFTA1P and LINC00519 exert important functions in human LUSC and may serve as new targets for LUSC diagnosis and therapy.
Collapse
Affiliation(s)
- Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Shanghai Clinical College, Anhui Medical UniversityHefei 230032, China
| | - Shi-Hua Yao
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Pancreatic Cancer Institute, Fudan UniversityShanghai 200032, China
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Zhou-Jun Kang
- Department of Emergency, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Shan-Shan Qin
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Meng-Die Yang
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Zi-Yang Cao
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Bo-Wen Shi
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of MedicineShanghai 200433, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai HospitalShanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
- Shanghai Clinical College, Anhui Medical UniversityHefei 230032, China
| |
Collapse
|
24
|
C8orf48 inhibits the tumorigenesis of colorectal cancer by regulating the MAPK signaling pathway. Life Sci 2020; 266:118872. [PMID: 33309715 DOI: 10.1016/j.lfs.2020.118872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022]
Abstract
AIMS Colorectal cancer (CRC) is a leading cause of cancer-related death globally. Thus, in this study, we aimed to investigate chromosome 8 open reading frame 48 (C8orf48) as a biomarker for early detection of CRC. MAIN METHODS RNA expression and methylation profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Cell proliferation, migration and invasion assays were performed to confirm the function of C8orf48 in CRC cells. Dual-luciferase reporter assay was used to identify that C8orf48 was the direct target of miR-556. Genomics of Drug Sensitivity in Cancer (GDSC) database, gene set enrichment analysis (GSEA) and western blot analysis were performed to explore the mechanism of C8orf48. KEY FINDINGS we found that C8orf48 is down-regulated in clinical samples of CRC tissues. Enrichment analysis showed that C8orf48 is associated with methylation biomarkers in CRC, and TCGA database confirmed that the methylation of C8orf48 is up-regulated in the early stage of CRC. We further revealed that the overexpression of C8orf48 decreased CRC cell proliferation, migration and invasion. Luciferase reporter indicated that C8orf48 was the direct target of the oncogene miR-556. Additionally, we used GDSC database, GSEA database and western blot analysis to demonstrate that C8orf48 plays a suppressor role in CRC by inhibiting MAPK signaling pathway. SIGNIFICANCE C8orf48 was identified as a biomarker for early detection of CRC for the first time, and might provide novel information for CRC prediction and therapy.
Collapse
|
25
|
Li J, Zeng Z, Chen J, Liu X, Jiang X, Sun W, Luo Y, Ren J, Gong Y, Xie C. Pathologic evolution-related Gene Analysis based on both single-cell and bulk transcriptomics in Colorectal Cancer. J Cancer 2020; 11:6861-6873. [PMID: 33123277 PMCID: PMC7591993 DOI: 10.7150/jca.49262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The patients diagnosed with colorectal cancer (CRC) are likely to undergo differential outcomes in clinical survival owing to different pathologic stages. However, signatures in association with pathologic evolution and CRC prognosis are not clearly defined. This study aimed to identify pathologic evolution-related genes in CRC based on both single-cell and bulk transcriptomics. Patients and methods: The CRC single-cell transcriptomic dataset (GSE81861, n=590) with clinical information and tumor microenvironmental tissues was collected to identify the pathologic evolution-related genes. The colonic adenocarcinoma and rectum adenocarcinoma transcriptomics from The Cancer Genome Atlas were obtained as the training dataset (n=363) and 5 other CRC transcriptomics cohorts from Gene Expression Omnibus (n=1031) were acquired as validation data. Graph-based clustering analysis algorithm was applied to identify pathologic evolution-related cell populations. Pseudotime analysis was performed to construct the trajectory plot of pathologic evolution and to define hub genes in the evolution process. Cell-type identification by estimating relative subsets of RNA transcripts was then executed to build a novel cell infiltration classifier. The prediction efficacy of this classifier was validated in bulk transcriptomic datasets. Results: Epithelial and T cells were elucidated to be related to the pathologic stages in CRC tissues. Pseudotime analysis and survival analysis indicated that HOXC5, HOXC8 and BMP5 were the marker genes in pathologic evolution process. Our cell infiltration classifier exhibited excellent forecast efficacy in predicting pathologic stages and prognosis of CRC patients. Conclusion: We identified pathologic evolution-related genes in single-cell transcriptomic and proposed a novel specific cell infiltration classifier to forecast the prognosis of CRC patients based on pathologic stage-related hub genes HOXC6, HOXC8 and BMP5.
Collapse
Affiliation(s)
- Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
de Oliveira DT, Guerra-Sá R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Mol Biol Rep 2020; 47:9097-9122. [PMID: 33089404 DOI: 10.1007/s11033-020-05916-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Scientific advances in recent decades have revealed an incredible degree of plasticity in gene expression in response to various environmental, nutritional, physiological, pathological, and behavioral conditions. Epigenetics emerges in this sense, as the link between the internal (genetic) and external (environmental) factors underlying the expression of the phenotype. Methylation of DNA and histone post-translationa modifications are canonical epigenetic events. Additionally, noncoding RNAs molecules (microRNAs and lncRNAs) have also been proposed as another layer of epigenetic regulation. Together, these events are responsible for regulating gene expression throughout life, controlling cellular fate in both normal and pathological development. Despite being a relatively recent science, epigenetics has been arousing the interest of researchers from different segments of the life sciences and the general public. This review highlights the recent advances in the characterization of the epigenetic events and points promising use of these brands for the diagnosis, prognosis, and therapy of diseases. We also present several classes of epigenetic modifying compounds with therapeutic applications (so-call epidrugs) and their current status in clinical trials and approved by the FDA. In summary, hopefully, we provide the reader with theoretical bases for a better understanding of the epigenetic mechanisms and of the promising application of these marks and events in the medical clinic.
Collapse
Affiliation(s)
- Daiane Teixeira de Oliveira
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Renata Guerra-Sá
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
27
|
Correia ACP, Calpe S, Mostafavi N, Hoefnagel SJM, Sancho-Serra MDC, de Koning PS, Krishnadath KK. Detection of circulating BMP5 as a risk factor for Barrett's esophagus. Sci Rep 2020; 10:15579. [PMID: 32968094 PMCID: PMC7511298 DOI: 10.1038/s41598-020-70760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Barrett's esophagus (BE) predisposes for the malignant condition of esophageal adenocarcinoma (EAC). Since BE patients have few or no symptoms, most of these patients are not identified and not included in surveillance programs. These BE patients are at risk of developing advanced-stage EAC. At present, non-invasive tests to identify BE patients from the general population are lacking. We and others showed that Bone Morphogenetic Protein 4 (BMP4), and other BMPs are upregulated in BE. We aimed to determine if circulating BMPs can be identified and used as blood biomarkers to identify BE patients at high risk in the general population. In this study, we could detect the different BMPs in the blood of 112 BE patients and 134 age- and sex-matched controls. Concentration levels of BMP2, BMP4, and BMP5 were elevated in BE patients, with BMP2 and BMP5 significantly increased. BMP5 remained significant after multivariate analysis and was associated with an increased risk for BE with an OR of 1.49 (p value 0.01). Per log (pg/mL) of BMP5, the odds of having BE increased by 50%. Future optimization and validation studies might be needed to prove its utility as a non-invasive method for the detection of BE in high-risk populations and screening programs.
Collapse
Affiliation(s)
- Ana C P Correia
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Silvia Calpe
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Nahid Mostafavi
- Department of Gastroenterology and Hepatology, Subdivision Statistics, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Sanne Johanna Maria Hoefnagel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Maria Del Carmen Sancho-Serra
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.,Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Patricia S de Koning
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Zhao X, Liu S, Yan B, Yang J, Chen E. MiR-581/SMAD7 Axis Contributes to Colorectal Cancer Metastasis: A Bioinformatic and Experimental Validation-Based Study. Int J Mol Sci 2020; 21:ijms21186499. [PMID: 32899503 PMCID: PMC7555590 DOI: 10.3390/ijms21186499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a well-known poor prognostic factor and primary cause of mortality in patients with colorectal cancer (CRC). Recently, with the progress of high through-put sequencing, aberrantly expressed non-coding RNAs (ncRNAs) were found to participate in the initiation and development of cancer. However, the mechanisms of ncRNA-mediated regulation of metastasis in CRC remain largely unknown. In this study, we systematically analyzed the expression network of microRNAs (miRNAs) and genes in CRC metastasis using bioinformatics, and discovered that the miR-581/SMAD7 axis could be a potential factor that drives CRC metastasis. A dual luciferase report assay and protein analysis confirmed the binding relationship between miR-581 and SMAD7. Further functional assays revealed that miR-581 inhibition could suppress cell proliferation and induce apoptosis in SW480 cells. Up-regulation or down-regulation of miR-581 could both affect cell invasion capacity and modulate epithelial to mesenchymal transition (EMT) via a SMAD7/TGFβ signaling pathway. In conclusion, our findings elucidated that miR-581/SMAD7 could be essential for CRC metastasis, and may serve as a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China; (X.Z.); (S.L.); (B.Y.); (J.Y.)
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shuzhen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China; (X.Z.); (S.L.); (B.Y.); (J.Y.)
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China; (X.Z.); (S.L.); (B.Y.); (J.Y.)
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China; (X.Z.); (S.L.); (B.Y.); (J.Y.)
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an 710069, China; (X.Z.); (S.L.); (B.Y.); (J.Y.)
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
29
|
Ma YS, Li W, Liu Y, Shi Y, Lin QL, Fu D. Targeting Colorectal Cancer Stem Cells as an Effective Treatment for Colorectal Cancer. Technol Cancer Res Treat 2020; 19:1533033819892261. [PMID: 32748700 PMCID: PMC7785997 DOI: 10.1177/1533033819892261] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the common cancers that threaten human life, the recurrence and metastasis of colorectal cancer seriously affect the prognosis of patients. Although new drugs and comprehensive treatments have been adopted, the current treatment effect on this tumor, especially in advanced colorectal cancer, is still not satisfactory. More and more evidence shows that tumors are likely to be a stem cell disease. In recent years, the rise of cancer stem cell theory has provided a new way for cancer treatment. Studies have found that a small number of special cells in colorectal cancer tissues that induce tumorigenesis, proliferation, and promote tumor migration and metastasis, namely, colorectal cancer stem cells. Colorectal cancer stem cells are defined with a group of cell-surface markers, such as CD44, CD133, CD24, epithelial cell adhesion factor molecule, LGR5, and acetaldehyde dehydrogenase. They are highly tumorigenic, aggressive, and chemoresistant and thus are critical in the metastasis and recurrence of colorectal cancer. Therefore, targeting colorectal cancer stem cells may become an important research direction for the future cure of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yu Liu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Da Fu
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Colorectal Cancer and Bone Tissue: Fantastic Relations and Where to Find Them. Cancers (Basel) 2020; 12:cancers12082029. [PMID: 32722068 PMCID: PMC7464482 DOI: 10.3390/cancers12082029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. There is a need for the early diagnosis of CRC for a better prognostic outcome. It is, therefore, crucial to understand the CRC pathogenesis in all its aspects. In many cases, one of the main causes of cancer-related deaths is the presence of metastases. In this context, an often overlooked aspect is the metastatic tropism, since CRC, like other cancers, is more prone to metastasize some organs rather than others. Beyond the liver and lung, and differently from other types of cancers, a not usual site of CRC metastases is the bone. However, it may assume a crucial role in the development and the outcome of the disease. Therefore, this review aims to discuss the complex relations between bone markers and CRC pathogenesis, suggesting the use of these molecules as potential targets for therapeutic purposes. Different osteogenic molecules, some of whom are growth factors and are implicated in the different osteogenic pathways, have been proved to also be involved in CRC progression. Some of them are oncogenes, while others oncosuppressors, and in a future perspective, some of them may represent new potential CRC biomarkers.
Collapse
|
31
|
Caccamo D, Currò M, Ientile R, Verderio EAM, Scala A, Mazzaglia A, Pennisi R, Musarra-Pizzo M, Zagami R, Neri G, Rosmini C, Potara M, Focsan M, Astilean S, Piperno A, Sciortino MT. Intracellular Fate and Impact on Gene Expression of Doxorubicin/Cyclodextrin-Graphene Nanomaterials at Sub-Toxic Concentration. Int J Mol Sci 2020; 21:ijms21144891. [PMID: 32664456 PMCID: PMC7402311 DOI: 10.3390/ijms21144891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The graphene road in nanomedicine still seems very long and winding because the current knowledge about graphene/cell interactions and the safety issues are not yet sufficiently clarified. Specifically, the impact of graphene exposure on gene expression is a largely unexplored concern. Herein, we investigated the intracellular fate of graphene (G) decorated with cyclodextrins (CD) and loaded with doxorubicin (DOX) and the modulation of genes involved in cancer-associated canonical pathways. Intracellular fate of GCD@DOX, tracked by FLIM, Raman mapping and fluorescence microscopy, evidenced the efficient cellular uptake of GCD@DOX and the presence of DOX in the nucleus, without graphene carrier. The NanoString nCounter™ platform provided evidence for 34 (out of 700) differentially expressed cancer-related genes in HEp-2 cells treated with GCD@DOX (25 µg/mL) compared with untreated cells. Cells treated with GCD alone (25 µg/mL) showed modification for 16 genes. Overall, 14 common genes were differentially expressed in both GCD and GCD@DOX treated cells and 4 of these genes with an opposite trend. The modification of cancer related genes also at sub-cytotoxic G concentration should be taken in consideration for the rational design of safe and effective G-based drug/gene delivery systems. The reliable advantages provided by NanoString® technology, such as sensibility and the direct RNA measurements, could be the cornerstone in this field.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences and Morpho-Functional Imaging, Polyclinic Hospital University, 98125 Messina, Italy; (D.C.); (M.C.); (R.I.)
| | - Elisabetta AM Verderio
- School of Science and Technology, Centre for Health, Ageing and Understanding of Disease, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Department of Innate Immunology, Shenzhen International Institute for Biomedical Research, 140 Jinye Ave, Building A10, Life Science Park, Dapeng New District, Shenzhen 518119, China
| | - Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Roberto Zagami
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.M.); (R.Z.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271 Cluj-Napoca, Romania; (M.P.); (M.F.); (S.A.)
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (R.P.); (M.M.P.); (G.N.); (C.R.)
- Correspondence: (A.P.); (M.T.S.); Tel.: +39-090-6765173 (A.P.); +39-090-6765217 (M.T.S.)
| |
Collapse
|
32
|
Ji Y, Yu C, Zhang H. contamDE-lm: linear model-based differential gene expression analysis using next-generation RNA-seq data from contaminated tumor samples. Bioinformatics 2020; 36:2492-2499. [PMID: 31917401 DOI: 10.1093/bioinformatics/btaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Tumor and adjacent normal RNA samples are commonly used to screen differentially expressed genes between normal and tumor samples or among tumor subtypes. Such paired-sample design could avoid numerous confounders in differential expression (DE) analysis, but the cellular contamination of tumor samples can be an important noise and confounding factor, which can both inflate false-positive rate and deflate true-positive rate. The existing DE tools that use next-generation RNA-seq data either do not account for cellular contamination or are computationally extensive with increasingly large sample size. RESULTS A novel linear model was proposed to avoid the problem that could arise from tumor-normal correlation for paired samples. A statistically robust and computationally very fast DE analysis procedure, contamDE-lm, was developed based on the novel model to account for cellular contamination, boosting DE analysis power through the reduction in individual residual variances using gene-wise information. The desired advantages of contamDE-lm over some state-of-the-art methods (limma and DESeq2) were evaluated through the applications to simulated data, TCGA database and Gene Expression Omnibus (GEO) database. AVAILABILITY AND IMPLEMENTATION The proposed method contamDE-lm was implemented in an updated R package contamDE (version 2.0), which is freely available at https://github.com/zhanghfd/contamDE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yifan Ji
- Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Chang Yu
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
33
|
Utilizing Experimental Mouse Model to Identify Effectors of Hepatocellular Carcinoma Induced by HBx Antigen. Cancers (Basel) 2020; 12:cancers12020409. [PMID: 32050622 PMCID: PMC7072678 DOI: 10.3390/cancers12020409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the ten most commonly diagnosed cancers and the fourth leading cause of cancer-related death. Patients with hepatitis B virus (HBV) infection are prone to developing chronic liver diseases (i.e., fibrosis and cirrhosis), and the HBV X antigen plays an important role in the development of HCC. The difficulty in detecting HCC at the early stages is one of the main reasons that the death rate approximates the incidence rate. The regulators controlling the downstream liver protein expression from HBV infection are unclear. Mass spectrometric techniques and customized programs were used to identify differentially expressed proteins which may be involved in the development of liver fibrosis and HCC progression in hepatitis B virus X protein transgenic mice (HBx mice). FSTL1, CTSB, and TGF-β enhanced the signaling pathway proteins during the pathogenesis of HBx. Missing proteins can be essential in cell growth, differentiation, apoptosis, migration, metastasis or angiogenesis. We found that LHX2, BMP-5 and GDF11 had complex interactions with other missing proteins and BMP-5 had both tumor suppressing and tumorigenic roles. BMP-5 may be involved in fibrosis and tumorigenic processes in the liver. These results provide us an understanding of the mechanism of HBx-induced disorders, and may serve as molecular targets for liver treatment.
Collapse
|
34
|
Zhang Z, Lin E, Zhuang H, Xie L, Feng X, Liu J, Yu Y. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int 2020; 20:27. [PMID: 32002016 PMCID: PMC6986036 DOI: 10.1186/s12935-020-1113-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) comprises the majority of kidney cancer death worldwide, whose incidence and mortality are not promising. Identifying ideal biomarkers to construct a more accurate prognostic model than conventional clinical parameters is crucial. METHODS Raw count of RNA-sequencing data and clinicopathological data were acquired from The Cancer Genome Atlas (TCGA). Tumor samples were divided into two sets. Differentially expressed genes (DEGs) were screened in the whole set and prognosis-related genes were identified from the training set. Their common genes were used in LASSO and best subset regression which were performed to identify the best prognostic 5 genes. The gene-based risk score was developed based on the Cox coefficient of the individual gene. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess its prognostic power. GSE29609 dataset from GEO (Gene Expression Omnibus) database was used to validate the signature. Univariate and multivariate Cox regression were performed to screen independent prognostic parameters to construct a nomogram. The predictive power of the nomogram was revealed by time-dependent ROC curves and the calibration plot and verified in the validation set. Finally, Functional enrichment analysis of DEGs and 5 novel genes were performed to suggest the potential biological pathways. RESULTS PADI1, ATP6V0D2, DPP6, C9orf135 and PLG were screened to be significantly related to the prognosis of ccRCC patients. The risk score effectively stratified the patients into high-risk group with poor overall survival (OS) based on survival analysis. AJCC-stage, age, recurrence and risk score were regarded as independent prognostic parameters by Cox regression analysis and were used to construct a nomogram. Time-dependent ROC curves showed the nomogram performed best in 1-, 3- and 5-year survival predictions compared with AJCC-stage and risk score in validation sets. The calibration plot showed good agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis suggested several enriched biological pathways related to cancer. CONCLUSIONS In our study, we constructed a gene-based model integrating clinical prognostic parameters to predict prognosis of ccRCC well, which might provide a reliable prognosis assessment tool for clinician and aid treatment decision-making in the clinic.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Hongkai Zhuang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqiang Feng
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
35
|
Karim MA, Samad A, Adhikari UK, Kader MA, Kabir MM, Islam MA, Hasan MN. A Multi-Omics Analysis of Bone Morphogenetic Protein 5 ( BMP5) mRNA Expression and Clinical Prognostic Outcomes in Different Cancers Using Bioinformatics Approaches. Biomedicines 2020; 8:E19. [PMID: 31973134 PMCID: PMC7168281 DOI: 10.3390/biomedicines8020019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cumulative studies have provided controversial evidence for the prognostic values of bone morphogenetic protein 5 (BMP5) in different types of cancers such as colon, breast, lung, bladder, and ovarian cancer. To address the inconsistent correlation of BMP5 expression with patient survival and molecular function of BMP5 in relation to cancer progression, we performed a systematic study to determine whether BMP5 could be used as a prognostic marker in human cancers. BMP5 expression and prognostic values were assessed using different bioinformatics tools such as ONCOMINE, GENT, TCGA, GEPIA, UALCAN, PrognoScan, PROGgene V2 server, and Kaplan-Meier Plotter. In addition, we used cBioPortal database for the identification and analysis of BMP5 mutations, copy number alterations, altered expression, and protein-protein interaction (PPI). We found that BMP5 is frequently down-regulated in our queried cancer types. Use of prognostic analysis showed negative association of BMP5 down-regulation with four types of cancer except for ovarian cancer. The highest mutation was found in the R321*/Q amino acid of BMP5 corresponding to colorectal and breast cancer whereas the alteration frequency was higher in lung squamous carcinoma datasets (>4%). In PPI analysis, we found 31 protein partners of BMP5, among which 11 showed significant co-expression (p-value < 0.001, log odds ratio > 1). Pathway analysis of differentially co-expressed genes with BMP5 in breast, lung, colon, bladder and ovarian cancers revealed the BMP5-correlated pathways. Collectively, this data-driven study demonstrates the correlation of BMP5 expression with patient survival and identifies the involvement of BMP5 pathways that may serve as targets of a novel biomarker for various types of cancers in human.
Collapse
Affiliation(s)
- Md. Adnan Karim
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Md. Ashraful Kader
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Masnoon Kabir
- Laboratory Science & Service Division (LSSD), International Centre for Diarrhoeal Disease Research, Dhaka 1213, Bangladesh
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| |
Collapse
|
36
|
Zhao X, Liu J, Liu S, Yang F, Chen E. Construction and Validation of an Immune-Related Prognostic Model Based on TP53 Status in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11111722. [PMID: 31689990 PMCID: PMC6895875 DOI: 10.3390/cancers11111722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence has indicated that prognostic biomarkers have a pivotal role in tumor and immunity biological processes. TP53 mutation can cause a range of changes in immune response, progression, and prognosis of colorectal cancer (CRC). Thus, we aim to build an immunoscore prognostic model that may enhance the prognosis of CRC from an immunological perspective. We estimated the proportion of immune cells in the GSE39582 public dataset using the CIBERSORT (Cell type identification by estimating relative subset of known RNA transcripts) algorithm. Prognostic genes that were used to establish the immunoscore model were generated by the LASSO (Least absolute shrinkage and selection operator) Cox regression model. We established and validated the immunoscore model in GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) cohorts, respectively; significant differences of overall survival analysis were found between the low and high immunoscore groups or TP53 subgroups. In the multivariable Cox analysis, we observed that the immunoscore was an independent prognostic factor both in the GEO cohort (HR (Hazard ratio) 1.76, 95% CI (confidence intervals): 1.26-2.46) and the TCGA cohort (HR 1.95, 95% CI: 1.20-3.18). Furthermore, we established a nomogram for clinical application, and the results suggest that the nomogram is a better predictive model for prognosis than immunoscore or TNM staging.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Jianzhong Liu
- College of Environmental and Resource Science, Shanxi University, Taiyuan 030000, China.
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
37
|
Wang H, Yan B, Zhang P, Liu S, Li Q, Yang J, Yang F, Chen E. MiR-496 promotes migration and epithelial-mesenchymal transition by targeting RASSF6 in colorectal cancer. J Cell Physiol 2019; 235:1469-1479. [PMID: 31273789 DOI: 10.1002/jcp.29066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Aberrant loss of tumor-suppressor genes plays a crucial role in tumorigenesis and development of colorectal cancer (CRC). Extensive studies have reported tha hypermethylation of Ras association domain family member 6 (RASSF6) is common in various solid tumors. Another important mode of epigenetic regulation, microRNA (miRNA) regulation of RASSF6, is far from clear. The aim of the present work was to screen out novel miRNA regulating RASSF6, and to explore its underlying mechanism in CRC. With the use of bioinformatics, clinical sample data, and luciferase binding assay, we determined that microRNA-496 (miR-496) could be a novel oncomiR that directly binds to RASSF6. Next, a series of miR-496 mimics or inhibitor, or RASSF6 small interfering RNA (siRNA) introduced into CRC cells were applied to examine the effect of miR-496 on CRC cell viability, migration, and epithelial-mesenchymal transition (EMT). The results demonstrated that miR-496/RASSF6 could promote cell migration and EMT via Wnt signaling activation, but had no effect on cell viability. Our results confirmed that the miR-496/RASSF6 axis is involved in Wnt pathway-mediated tumor metastasis, highlighting its potential as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Bianbian Yan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Pan Zhang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Qiqi Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
38
|
Yang F, Chen E, Yang Y, Han F, Han S, Wu G, Zhang M, Zhang J, Han J, Su L, Hu D. The Akt/FoxO/p27 Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars. J Cell Mol Med 2019; 23:6164-6172. [PMID: 31270945 PMCID: PMC6714140 DOI: 10.1111/jcmm.14498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scars (HS) are characterized by the excessive production and deposition of extracellular matrix (ECM) proteins. Pentoxifylline (PTX), a xanthine derived antioxidant, inhibits the proliferation, inflammation and ECM accumulation of HS. In this study, we aimed to explore the effect of PTX on HS and further clarify the mechanism of PTX‐induced anti‐proliferation. We found that PTX could significantly attenuate proliferation of HS fibroblasts and fibrosis in an animal HS model. PTX inhibited the proliferation of HSFs in a dose‐ and time‐dependent manner, and this growth inhibition was mainly mediated by cell cycle arrest. Transcriptome sequencing showed that PTX affects HS formation through the PI3K/Akt/FoxO1 signalling pathway to activate p27Kip1. PTX down‐regulated p‐Akt and up‐regulated p‐FoxO1 in TGF‐β1 stimulated fibroblasts at the protein level, and simultaneously, the expression of p27Kip1 was activated. In a mouse model of HS, PTX treatment resulted in the ordering of collagen fibres. The results revealed that PTX regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation. Therefore, PTX is a promising agent for the treatment of HS formation.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
39
|
He H, Chen E, Lei L, Yan B, Zhao X, Zhu Z, Li Q, Zhang P, Zhang W, Xing J, Du L, Dong J, Yang J. Alteration of the tumor suppressor SARDH in sporadic colorectal cancer: A functional and transcriptome profiling-based study. Mol Carcinog 2019; 58:957-966. [PMID: 30693981 DOI: 10.1002/mc.22984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/05/2023]
Abstract
Sporadic colorectal cancer (sCRC) is one of the leading causes of cancer death worldwide. As a highly heterogeneous complex disease, the currently reported classical genetic markers for sCRC, including APC, KRAS, BRAF, and TP53 gene mutations and epigenetic alterations, can explain only some sCRC patients. Here, we first reported a deleterious c.551C>T mutation in SARDH in sCRC. SARDH was identified as a novel tumor suppressor gene and was abnormally decreased in sCRC at both the transcriptional and the translational level. SARDH mRNA levels were also down-regulated in oesophageal cancer, lung cancer, liver cancer, and pancreatic cancer in the TCGA database. SARDH overexpression inhibited the proliferation, migration, and invasion of CRC cell lines, whereas its depletion improved these processes. SARDH overexpression was down-regulated in multiple pathways, especially in the chemokine pathway. The SARDH transcript level was positively correlated with the methylation states of CXCL1 and CCL20. Therefore, we concluded that SARDH depletion is involved in the development of sCRC.
Collapse
Affiliation(s)
- Hongjuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Xiaojuan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Ziqing Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Qiqi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Pan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Wei Zhang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Centre of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Le Du
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Jing Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,Institute of Preventive Genomic Medicine, Shaanxi, China
| |
Collapse
|