1
|
Wu NC, Quevedo R, Nurse M, Hezaveh K, Liu H, Sun F, Muffat J, Sun Y, Simmons CA, McGaha TL, Prinos P, Arrowsmith CH, Ailles L, D'Arcangelo E, McGuigan AP. The use of a multi-metric readout screen to identify EHMT2/G9a-inhibition as a modulator of cancer-associated fibroblast activation state. Biomaterials 2025; 314:122879. [PMID: 39395244 DOI: 10.1016/j.biomaterials.2024.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression, including mediating tumour cell invasion via their pro-invasive secretory profile and ability to remodel the extracellular matrix (ECM). Given that reduced CAF abundance in tumours correlates with improved outcomes in various cancers, we set out to identify epigenetic targets involved in CAF activation in regions of tumour-stromal mixing with the goal of reducing tumour aggressiveness. Using the GLAnCE (Gels for Live Analysis of Compartmentalized Environments) platform, we performed an image-based, phenotypic screen that enabled us to identify modulators of CAF abundance and the capacity of CAFs to induce tumour cell invasion. We identified EHMT2 (also known as G9a), an enzyme that targets the methylation of histone 3 lysine 9 (H3K9), as a potent modulator of CAF abundance and CAF-mediated tumour cell invasion. Transcriptomic and functional analysis of EHMT2-inhibited CAFs revealed EHMT2 participated in driving CAFs towards a pro-invasive phenotype and mediated CAF hyperproliferation, a feature typically associated with activated fibroblasts in tumours. Our study suggests that EHMT2 regulates CAF state within the tumour microenvironment by impacting CAF activation, as well as by magnifying the pro-invasive effects of these activated CAFs on tumour cell invasion through promoting CAF hyperproliferation.
Collapse
Affiliation(s)
- Nila C Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michelle Nurse
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Haijiao Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Fumao Sun
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu Sun
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Elisa D'Arcangelo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
3
|
Pan Y, Ma T, Chen D, Wang Y, Peng Y, Lu T, Yin X, Li H, Zhang G, Wang X. Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang inhibits the progression of triple negative breast cancer though the activation inhibition of NF-κB triggered by CAFs-derived IL6. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118656. [PMID: 39121924 DOI: 10.1016/j.jep.2024.118656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The treatment options for triple-negative breast cancer (TNBC) are limited. Traditional Chinese Medicine (TCM) plays an important role in the treatment of TNBC. The herb pair Scutellaria barbata D.Don and Scleromitrion diffusum (Willd.) R.J.Wang (SH) is commonly used in clinical practice for its anti-tumor properties. It has been proven to have good therapeutic effects on tumor-related diseases, but the underlying molecular mechanisms are not yet fully explained. AIM OF STUDY Through bioinformatics, it was validated that IL6, primarily derived from cancer-associated fibroblasts (CAFs), is associated with poor prognosis. Additionally, cell and animal experiments confirmed that SH inhibits tumor proliferation, migration, and growth in an orthotopic tumor model by suppressing the IL6/NF-κB pathway. MATERIALS AND METHODS GEO, TCGA and HPA databases were used to analyze the prognostic value of CAFs and IL6, then IL6 resource was detected. After the bioinformatics, the influence of CAFs and CAFs-derived IL6 on TNBC was verified by experiments both in vitro and in vivo. Cell clone formation assay, wound-Healing assay, and Transwell assay were used to detect the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vitro. TNBC model in mice was used to prove the promotion of CAFs and CAFs-derived IL6 and the inhibition of SH in vivo. The biological pathway of NF-κB was explored by western blotting through detecting unique molecules. RESULTS Bioinformatics analysis revealed that higher proportion of CAFs and elevated level of IL6 were significantly associated with poor prognosis in TNBC. At the same time, IL6 was proved predominantly derived from CAFs. After the indication of bioinformatics, experiments in vitro demonstrated that both CAFs and IL6 could enhance the clone formation and migration ability of MDA-MD-231 cells (231), furthermore, the promotion of CAFs was related with the level of IL6. Based on these data, mechanism was detected that CAFs-derived IL6 enhancement was closely related to the activation of NF-κB signaling pathway, while the activation can be reduced by SH. In the end, the promotion of CAFs/CAFs-derived IL6/NF-κB and the efficacy of SH inhibition were both confirmed by experiments in vivo. CONCLUSIONS Bioinformatics data indicates that higher proportion of CAFs and higher level of CAFs-derived IL6 are significantly related to poorer survival of TNBC. CAFs and CAFs-derived IL6 were proved to promote the progression of TNBC both in vitro and in vivo, and the process of which was significantly related to the activation of NF-κB. SH inhibited the progress of TNBC, which was proved to be closely related to CAFs/CAFs-derived IL6/NF-κB.
Collapse
Affiliation(s)
- Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Tingting Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yue Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Peng
- Shandong University of Traditional Chinese Medicine, Shandong, 250355, China
| | - Taicheng Lu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaohui Yin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Haiming Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
4
|
Yin QZ, Liu YJ, Zhang Q, Xi SY, Yang TB, Li JP, Gao J. Overexpression of Basonuclin Zinc Finger Protein 2 in stromal cell is related to mesenchymal phenotype and immunosuppression of mucinous colorectal adenocarcinoma. Int Immunopharmacol 2024; 142:113184. [PMID: 39306894 DOI: 10.1016/j.intimp.2024.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Mucinous carcinoma (MC) is a distinct histologic subtype of colorectal cancer (CRC) that is less studied and associated with poor prognosis. This study aimed to identify MC-specific therapeutic targets and biomarkers to improve the prognosis of this aggressive disease. METHODS CRC samples from The Cancer Genome Atlas (TCGA) were categorized into MC and non-MC (NMC) groups based on histologic type. A multi-scale embedded gene co-expression network analysis (MEGENA) was constructed to identify gene modules associated with the MC group. The potential functions of Basonuclin Zinc Finger Protein 2 (BNC2) were further analyzed using the Biomarker Exploration for Solid Tumors (BEST) database. In vivo and in vitro experiments were conducted to validate the predicted results. RESULTS We identified the stromal component-related gene, BNC2, in the MC population. This gene is associated with a shorter progression-free interval (PFI) in CRC patients. BNC2 promotes FAP (encoding Fibroblast Activation Protein Alpha) transcription in cancer-associated fibroblasts (CAFs) and is involved in angiogenesis through two pathways. Additionally, BNC2 enhances tumor cell invasiveness in a CAF-dependent manner. Patients with high BNC2 expression benefited less from immunotherapy compared to those with low BNC2 expression. CONCLUSIONS Our study highlights the clinical importance of BNC2 in MC, and targeting BNC2 on stromal cells (fibroblasts and endothelial cells) may be an effective strategy for treating MC.
Collapse
Affiliation(s)
- Qing-Zhong Yin
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qian Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Song-Yang Xi
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu 212000, China
| | - Tian-Bao Yang
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ju Gao
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, Jiangsu 225009, China; Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
5
|
Choromańska A, Szwedowicz U, Szewczyk A, Daczewska M, Saczko J, Kruszakin R, Pawlik KJ, Baczyńska D, Kulbacka J. Electroporation-derived melanoma extracellular particles activate fibroblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130723. [PMID: 39426760 DOI: 10.1016/j.bbagen.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Although the pulse electric field (PEF) has been used in electrochemotherapy (ECT) for many years, the kinetics and profile of extracellular particles (EPs) released as a result of reversible electroporation have yet to be studied. It also needs to be clarified whether and how the profile of released EPs depends on the parameters of the applied PEF. The presented studies investigated the effect of EPs released from human melanoma cells after various parameters of reversible electroporation on markers indicating EP-mediated transformation of normal fibroblasts into tumor-associated fibroblasts. The expression levels of the vascular cell adhesion molecule-1 (VCAM-1) and changes in the expression of phosphor-histone H3 (pHH3), a biomarker specific for cells in mitosis, cell viability, and the migration capacity of the studied fibroblast cells, were analyzed. EPs were isolated from two commercial malignant melanoma cell lines previously subjected to reversible electroporation. Human primary fibroblasts (HPFs) were selected for EPs exposure. It was observed that after incubation with melanoma-derived EPs, HPFs showed differences in cell viability, migration capacity, VCAM-1, pHH3, and N-cadherin expression, depending on PEF parameters and the grade of melanoma cells. This study highlights that small extracellular particles (sEPs) from cancer cells can promote metastasis by carrying specific signals that lead to the upregulation of molecules like FAK, MMP-9, and N-cadherin in recipient cells.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Urszula Szwedowicz
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Roksana Kruszakin
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
6
|
Wan X, Deng Q, Chen A, Zhang X, Yang W. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. 3 Biotech 2024; 14:290. [PMID: 39507058 PMCID: PMC11534945 DOI: 10.1007/s13205-024-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The intricate expression patterns and oncogenic attributes of COL11A1 across different cancer types remain largely elusive. This study used several public databases (TCGA, GTEx, and CCLE) to investigate the pan-cancer landscape of COL11A1 expression, its prognostic implications, interplay with the immune microenvironment, and enriched signaling cascades. Concurrently, western blot analyses were performed to verify COL11A1 expression in lung adenocarcinoma (LUAD) cell lines and clinical samples. In addition, COL11A1 knockout cell lines were generated to scrutinize the functional consequences of COL11AI expression on cancer cell behavior by use MTT, colony formation, and scratch wound healing assays. A comprehensive database investigation revealed that COL11A1 was upregulated in a majority of tumor tissues and its expression was highly correlated with a patient's prognosis. Notably, genetic alterations in COL11A1 predominantly occurred as mutations, while its DNA methylation status inversely mirrored gene expression levels across multiple promoter regions. Our findings suggest that COL11A1 helps to modulate the tumor immune landscape and potentially acts through the epithelial-mesenchymal transition (EMT) pathway to exert its oncogenic function. Western blot analyses further substantiated the specific upregulation of COL11A1 in LUAD cell lines and tissues, suggesting a close association with the EMT process. Ablation of COL11A1 in cancer cells significantly reduced their proliferative, clonogenic, and migratory abilities, underscoring the functional significance of COL11A1 in tumor cell behavior. Collectively, this research revealed the prevalent overexpression of COL11A1 in pan-cancer tissues, its profound prognostic and microenvironmental correlations, and the mechanistic underpinnings of its tumor-promoting effects as mediated via EMT signaling. Our findings suggest that COL11A1 could serve as a prognostic and diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Qingmei Deng
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Anling Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xinhui Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wulin Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
7
|
Gao B, Gou X, Feng C, Zhang Y, Gu H, Chai F, Wang Y, Ye Y, Hong N, Hu G, Sun B, Cheng J, Yang H. Identification of cancer-associated fibrolast subtypes and distinctive role of MFAP5 in CT-detected extramural venous invasion in gastric cancer. Transl Oncol 2024; 51:102188. [PMID: 39531783 DOI: 10.1016/j.tranon.2024.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Extramural venous invasion (EMVI) detected by computed tomography has been identified as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). Cancer-associated fibroblasts (CAFs) are critical for remodeling the tumor microenvironment in GCs. Here, we report that MFAP5+ CAFs promote the formation of EMVI imaging in GC. We detected gene expression in pathological samples from 13 advanced GC patients with EMVI. Radiogenomics results showed the degree of CAFs infiltration was directly proportional to the EMVI score and EMT pathway in GC patients. Single-cell sequencing data analysis results showed that MFAP5+CAFs subtypes in GC were negatively correlated with patient prognosis and were enriched in tumor lactylation modification and EMT pathways. Immunohistochemistry results showed that the expression of MFAP5, L-lactyl and EMT markers in GC tissues was proportional to the EMVI score. CAF from gastric cancer tissue was extracted using collagenase method and co-cultured with GC cell line in vitro. After lentivirus knockdown of MFAP5 in CAFs, the levels of L-lactoyl and histone lactylation modifications were significantly reduced, and the sphere-forming and vascularization abilities of CAFs were significantly inhibited. Cell function experiments showed that MFAP5+ CAFs can affect the EMT, metastasis and invasion capabilities of GC cells. In vivo experimental results of the nude mouse in situ EMVI model suggest that MFAP5+ CAF may promote the formation of EMVI imaging features in GC by regulating lactylation modification. This innovative work may provide important new references for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Xinyi Gou
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yinli Zhang
- Department of Pathology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Huining Gu
- Department of Immunology, School of Basic Medical Sciences, Peking University and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall Surgery, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China.
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
8
|
Chen X, Li Y, Huang J, Zhang Q, Tan C, Liu Y, Du Z. Prognosis and immunotherapy significances of a cancer-associated fibroblasts-related gene signature in bladder urothelial carcinoma. Discov Oncol 2024; 15:622. [PMID: 39503984 PMCID: PMC11541995 DOI: 10.1007/s12672-024-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/01/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND The biological significance of cancer-associated fibroblasts (CAFs) in bladder urothelial carcinoma (BUC) warrants further investigation. There is an urgent need to explore the predictive utility of CAF-related genes for prognosis in BUC. METHODS The transcriptome and clinical data of 407 BUC patients in The Cancer Genome Atlas (TCGA) database were analyzed and a prognostic model was established. A total of 476 BUC cases from the E-MTAB-4321 database were used for validation. A risk model was constructed utilizing CAF-related genes through LASSO Cox regression, investigating its association with prognosis, gene mutations, immune cell infiltration, and drug sensitivity in BUC. RESULTS We identified five CAF-related genes (EGFL6, NRSN2, SEMA3D, TM4SF1 and TPST1) in both the TCGA and E-MTAB-4321 datasets, and established a prognostic model using LASSO Cox regression. The high-risk group showed a significant correlation with poor survival. Furthermore, the low-risk group exhibited higher tumor mutational burden and lower levels of immune cell infiltration, and this model holds promise for guiding drug selection in BUC patients. CONCLUSIONS These findings underscore the pivotal role of CAF-related genes in prognostic prediction for BUC patients. Clinical decision-making and tailored therapeutics stand to benefit from these results, providing a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Xiaobin Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yugen Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qiang Zhang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chunlin Tan
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
9
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Park JG, Roh PR, Kang MW, Cho SW, Hwangbo S, Jung HD, Kim HU, Kim JH, Yoo JS, Han JW, Jang JW, Choi JY, Yoon SK, You YK, Choi HJ, Ryu JY, Sung PS. Intrahepatic IgA complex induces polarization of cancer-associated fibroblasts to matrix phenotypes in the tumor microenvironment of HCC. Hepatology 2024; 80:1074-1086. [PMID: 38466639 DOI: 10.1097/hep.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/13/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Cancer-associated fibroblasts (CAFs) play key roles in the tumor microenvironment. IgA contributes to inflammation and dismantling antitumor immunity in the human liver. In this study, we aimed to elucidate the effects of the IgA complex on CAFs in Pil Soo Sung the tumor microenvironment of HCC. APPROACH AND RESULTS CAF dynamics in HCC tumor microenvironment were analyzed through single-cell RNA sequencing of HCC samples. CAFs isolated from 50 HCC samples were treated with mock or serum-derived IgA dimers in vitro. Progression-free survival of patients with advanced HCC treated with atezolizumab and bevacizumab was significantly longer in those with low serum IgA levels ( p <0.05). Single-cell analysis showed that subcluster proportions in the CAF-fibroblast activation protein-α matrix were significantly increased in patients with high serum IgA levels. Flow cytometry revealed a significant increase in the mean fluorescence intensity of fibroblast activation protein in the CD68 + cells from patients with high serum IgA levels ( p <0.001). We confirmed CD71 (IgA receptor) expression in CAFs, and IgA-treated CAFs exhibited higher programmed death-ligand 1 expression levels than those in mock-treated CAFs ( p <0.05). Coculture with CAFs attenuated the cytotoxic function of activated CD8 + T cells. Interestingly, activated CD8 + T cells cocultured with IgA-treated CAFs exhibited increased programmed death-1 expression levels than those cocultured with mock-treated CAFs ( p <0.05). CONCLUSIONS Intrahepatic IgA induced polarization of HCC-CAFs into more malignant matrix phenotypes and attenuates cytotoxic T-cell function. Our study highlighted their potential roles in tumor progression and immune suppression.
Collapse
Affiliation(s)
- Jong Geun Park
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pu Reun Roh
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Woo Kang
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suhyun Hwangbo
- Department of Genomic Medicine, Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Hae Deok Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Hoon Kim
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Sung Yoo
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women's University, Seoul, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
12
|
Tong Y, Han F, Liu M, Xu T, Zhang A, Qin J, Zhang Y, Qian X. Characteristics of Gut Microbiome in the Murine Model of Pancreatic Cancer with Damp-Heat Syndrome. Biomedicines 2024; 12:2360. [PMID: 39457673 PMCID: PMC11504882 DOI: 10.3390/biomedicines12102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE Murine models of pancreatic cancer with damp-heat syndrome were established based on two methods to explore the differences in the composition of intestinal flora and to seek characteristic genera with potential for model evaluation. METHODS In our study, thirty-four C57BL/6J male mice were randomly divided into a control group (Con), a model group (Mod), a classic damp-heat syndrome group (CDHS), and a climate-chamber group (CC). CDHS and CC groups were fed with a high-fat diet and glucose water, while the CDHS group was given 2.4 g/kg alcohol by gavage for 10 days, and the CC group was placed in a climatic chamber with a set temperature of (32 ± 1) °C and humidity of (92 ± 2)% for 10 days. The Mod group, CDHS group, and CC group underwent tumor-building experiments on day 11. Tumorigenicity was then assessed twice a week. After 4 weeks, feces, colon tissue, and tumor tissue were taken from the mice and were tested, and the mice were euthanized afterwards. RESULTS Mice in the CDHS and CC groups showed symptoms similar to the clinical damp-heat syndrome observed in traditional Chinese medicine (TCM), and exhibited a worse general condition and more rapid tumor growth trend than those in the Mod group. The pathological examination indicated that inflammation was prevalent in the CDHS and CC groups. Both groups had a disrupted intestinal barrier and an overgrowth of pathogenic bacteria such as c_Gammaproteobacteria, o_Enterobacteriales, and g_Bacteroides. Their microbiota composition showed greater diversity. CONCLUSIONS Intestinal flora may have a promising future in the discovery of indicators for evaluating a model of damp-heat syndrome in pancreatic cancer.
Collapse
Affiliation(s)
- Yangbo Tong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Fang Han
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Tianyu Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.T.); (M.L.); (T.X.)
| | - Aiqin Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China;
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| | - Xiang Qian
- Zhejiang Cancer Hospital, Hangzhou 310022, China; (F.H.); (A.Z.)
| |
Collapse
|
13
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2024:1-27. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Mo W, Deng L, Cheng Y, Ge S, Wang J. IGFBP7 regulates cell proliferation and migration through JAK/STAT pathway in gastric cancer and is regulated by DNA and RNA methylation. J Cell Mol Med 2024; 28:e70080. [PMID: 39351597 PMCID: PMC11443158 DOI: 10.1111/jcmm.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
New biomarkers for early diagnosis of gastric cancer (GC), the second leading cause of cancer-related death, are urgently needed. IGFBP7, known to play various roles in multiple tumours, is complexly regulated across diverse cancer types, as evidenced by our pancancer analysis. Bioinformatics analysis revealed that IGFBP7 expression was related to patient prognosis, tumour clinicopathological characteristics, tumour stemness, microsatellite instability and immune cell infiltration, as well as the expression of oncogenes and immune checkpoints. GSEA links IGFBP7 to several cancer-related pathways. IGFBP7 deficiency inhibited GC cell proliferation and migration in vitro. Furthermore, an in vivo nude mouse model revealed that IGFBP7 downregulation suppressed the tumorigenesis of GC cells. Western blotting analysis showed that the JAK1/2-specific inhibitor ruxolitinib could rescue alterations induced by IGFBP7 overexpression in GC cells. Additionally, our bioinformatics analysis and in vitro assays suggested that IGFBP7 is regulated by DNA methylation at the genetic level and that the RNA m6A demethylase FTO modulates it at the posttranscriptional level. This study emphasizes the clinical relevance of IGFBP7 in GC and its influence on cell proliferation and migration via the JAK/STAT signalling pathway. This study also highlights the regulation of IGFBP7 in GC by DNA and m6A RNA methylation.
Collapse
Affiliation(s)
- Weilie Mo
- Department of General Surgery, Changzhou No.7 People's Hospital, Changzhou, China
- Department of General Surgery, Changzhou Geriatric Hospital affiliated to Soochow University, Changzhou, China
| | - Lijian Deng
- Department of Oncology, Changzhou No.7 People's Hospital, Changzhou, China
- Department of Oncology, Changzhou Geriatric Hospital affiliated to Soochow University, Changzhou, China
| | - Yun Cheng
- Department of General Surgery, Changzhou No.7 People's Hospital, Changzhou, China
- Department of General Surgery, Changzhou Geriatric Hospital affiliated to Soochow University, Changzhou, China
| | - Sen Ge
- Department of General Surgery, Changzhou No.7 People's Hospital, Changzhou, China
- Department of General Surgery, Changzhou Geriatric Hospital affiliated to Soochow University, Changzhou, China
| | - Jin Wang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Zhang T, Zheng B, Xia C, Wu P, Zheng B, Jiang L, Li J, Lv G, Zhou H, Huang W, Zou M. Hypoxic Upregulation of IER2 Increases Paracrine GMFG Signaling of Endoplasmic Reticulum Stress-CAF to Promote Chordoma Progression via Targeting ITGB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405421. [PMID: 39207055 PMCID: PMC11515918 DOI: 10.1002/advs.202405421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.
Collapse
Affiliation(s)
- Tao‐Lan Zhang
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bo‐Wen Zheng
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- Musculoskeletal Tumor CenterPeking University People's HospitalPeking UniversityBeijing100044China
| | - Chao Xia
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Peng‐Fei Wu
- Department of Genetics and EndocrinologyNational Children's Medical Center for South Central RegionGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623China
| | - Bo‐Yv Zheng
- Department of Orthopedics SurgeryGeneral Hospital of the Central Theater CommandWuhan430061China
| | - Ling‐Xiang Jiang
- Department of Radiation OncologyMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Hong Zhou
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Wei Huang
- The First Affiliated HospitalHealth Management CenterHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
16
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Guo M, Sun Y, Wang X, Wang Z, Yuan X, Chen X, Yuan X, Wang L. The MCIB Model: A Novel Theory for Describing the Spatial Heterogeneity of the Tumor Microenvironment. Int J Mol Sci 2024; 25:10486. [PMID: 39408814 PMCID: PMC11476373 DOI: 10.3390/ijms251910486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment (TME) can be regarded as a complex and dynamic microecosystem generated by the interactions of tumor cells, interstitial cells, the extracellular matrix, and their products and plays an important role in the occurrence, progression and metastasis of tumors. In a previous study, we constructed an IEO model (prI-, prE-, and pOst-metastatic niche) according to the chronological sequence of TME development. In this paper, to fill the theoretical gap in spatial heterogeneity in the TME, we defined an MCIB model (Metabolic, Circulatory, Immune, and microBial microenvironment). The MCIB model divides the TME into four subtypes that interact with each other in terms of mechanism, corresponding to the four major links of metabolic reprogramming, vascular remodeling, immune response, and microbial action, providing a new way to assess the TME. The combination of the MCIB model and IEO model comprehensively depicts the spatiotemporal evolution of the TME and can provide a theoretical basis for the combination of clinical targeted therapy, immunotherapy, and other comprehensive treatment modalities for tumors according to the combination and crosstalk of different subtypes in the MCIB model and provide a powerful research paradigm for tumor drug-resistance mechanisms and tumor biological behavior.
Collapse
Affiliation(s)
- Minghao Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Yinan Sun
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zikun Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.S.)
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.G.); (X.Y.); (X.C.)
| |
Collapse
|
18
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
19
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
20
|
Barros da Silva P, Zhao X, Bidarra SJ, Nascimento DS, LaLone V, Lourenço BN, Paredes J, Stevens MM, Barrias CC. Tunable Hybrid Hydrogels of Alginate and Cell-Derived dECM to Study the Impact of Matrix Alterations on Epithelial-to-Mesenchymal Transition. Adv Healthc Mater 2024:e2401032. [PMID: 39246099 DOI: 10.1002/adhm.202401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is crucial for tumor progression, being linked to alterations in the extracellular matrix (ECM). Understanding the ECM's role in EMT can uncover new therapeutic targets, yet replicating these interactions in vitro remains challenging. It is shown that hybrid hydrogels of alginate (ALG) and cell-derived decellularized ECM (dECM), with independently tunable composition and stiffness, are useful 3D-models to explore the impact of the breast tumor matrix on EMT. Soft RGD-ALG hydrogels (200 Pa), used as neutral bulk material, supported mammary epithelial cells morphogenesis without spontaneous EMT, allowing to define the gene, protein, and biochemical profiles of cells at different TGFβ1-induced EMT states. To mimic the breast tumor composition, dECM from TGFβ1-activated fibroblasts (adECM) are generated, which shows upregulation of tumor-associated proteins compared to ndECM from normal fibroblasts. Using hybrid adECM-ALG hydrogels, it is shown that the presence of adECM induces partial EMT in normal epithelial cells, and amplifes TGF-β1 effects compared to ALG and ndECM-ALG. Increasing the hydrogel stiffness to tumor-like levels (2.5 kPa) have a synergistic effect, promoting a more evident EMT. These findings shed light on the complex interplay between matrix composition and stiffness in EMT, underscoring the utility of dECM-ALG hydrogels as a valuable in vitro platform for cancer research.
Collapse
Affiliation(s)
- P Barros da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Xiaoyu Zhao
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Sílvia J Bidarra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| | - Vernon LaLone
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - Bianca N Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- FEUP - Faculdade de Engenharia da Universidade do Porto, Porto, 4200-135, Portugal
| | - Joana Paredes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, 4200-135, Portugal
| | - Molly M Stevens
- Department of Bioengineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
- Department of Materials, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK
| | - C C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
21
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
22
|
Shao M, Gao Y, Xu X, Chan DW, Du J. Exosomes: Key Factors in Ovarian Cancer Peritoneal Metastasis and Drug Resistance. Biomolecules 2024; 14:1099. [PMID: 39334866 PMCID: PMC11430201 DOI: 10.3390/biom14091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer remains a leading cause of death among gynecological cancers, largely due to its propensity for peritoneal metastasis and the development of drug resistance. This review concentrates on the molecular underpinnings of these two critical challenges. We delve into the role of exosomes, the nano-sized vesicles integral to cellular communication, in orchestrating the complex interactions within the tumor microenvironment that facilitate metastatic spread and thwart therapeutic efforts. Specifically, we explore how exosomes drive peritoneal metastasis by promoting epithelial-mesenchymal transition in peritoneal mesothelial cells, altering the extracellular matrix, and supporting angiogenesis, which collectively enable the dissemination of cancer cells across the peritoneal cavity. Furthermore, we dissect the mechanisms by which exosomes contribute to the emergence of drug resistance, including the sequestration and expulsion of chemotherapeutic agents, the horizontal transfer of drug resistance genes, and the modulation of critical DNA repair and apoptotic pathways. By shedding light on these exosome-mediated processes, we underscore the potential of exosomal pathways as novel therapeutic targets, offering hope for more effective interventions against ovarian cancer's relentless progression.
Collapse
Affiliation(s)
- Ming Shao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - David Wai Chan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Du
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
23
|
Zheng M, Zhang S, Zhou J, Lin M, Liao Y. ACAT1 suppresses clear cell renal cell carcinoma progression by AMPK mediated fatty acid metabolism. Transl Oncol 2024; 47:102043. [PMID: 38909457 PMCID: PMC11254840 DOI: 10.1016/j.tranon.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Renal cell carcinoma (RCC) stands as a prevalent malignancy within urological pathology, exhibiting a noteworthy escalation in its incidence. Despite being a mitochondrial enzyme, the precise role of Acetyl-CoA Acetyltransferase 1 (ACAT1) in RCC remains elusive. In this investigation, we employed bioinformatics methodologies to assess the expression patterns and prognostic significance across various RCC subtypes, encompassing clear cell renal cell carcinoma (ccRCC), papillary cell carcinoma, and chromophobe cell carcinoma. Our findings unveil a close correlation between ACAT1 expression and the prognostic implications specifically within ccRCC. Through both in vitro and in vivo overexpression studies, we delineated the functional and mechanistic facets of ACAT1 in impeding the progression of ccRCC. Our results unequivocally demonstrated that ACAT1 overexpression markedly curtailed proliferation, invasion, and metastasis of ccRCC cells in both in vivo models and cell cultures. Mechanistically, ACAT1's inhibitory effect on the AMPK signaling pathway orchestrated a regulatory role in modulating fatty acid metabolism, thereby effectively restraining the advancement of ccRCC. Collectively, our findings underscore ACAT1 as a pivotal tumor suppressor, instrumental in curtailing the proliferation, migration, and invasion of ccRCC by governing fatty acid metabolism through the AMPK signaling pathway. These insights posit ACAT1 as a potential predictive biomarker and therapeutic target warranting further exploration in RCC management.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Shenghu Zhang
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Jiajie Zhou
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China
| | - Ming Lin
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060, China
| | - Yixiang Liao
- Department of Urology, Jingzhou Central hospital affiliated to Yangtze University, 26 Chuyuan Avenue, Jing zhou District, Jingzhou City, 434000, China.
| |
Collapse
|
24
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
25
|
Wang J, Ding HK, Xu HJ, Hu DK, Hankey W, Chen L, Xiao J, Liang CZ, Zhao B, Xu LF. Single-cell analysis revealing the metabolic landscape of prostate cancer. Asian J Androl 2024; 26:451-463. [PMID: 38657119 PMCID: PMC11449408 DOI: 10.4103/aja20243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/29/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - Han-Jiang Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - De-Kai Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - William Hankey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Chen
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| | - Bing Zhao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China
- Institute of Urology, Anhui Medical University, Hefei 230001, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
26
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
27
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
28
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
29
|
Sinha S, Callow BW, Farfel AP, Roy S, Chen S, Rajendran S, Buschhaus JM, Espinoza CR, Luker KE, Ghosh P, Luker GD. Breast Cancers That Disseminate to Bone Marrow Acquire Aggressive Phenotypes through CX43-related Tumor-Stroma Tunnels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.18.533175. [PMID: 36993616 PMCID: PMC10055300 DOI: 10.1101/2023.03.18.533175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network-analyses workflow to identify a comprehensive catalog of contact-induced changes. Conditioned media from MSCs failed to recapitulate genes and proteins, some borrowed and others tumor-intrinsic, induced in cancer cells by direct contact. Protein-protein interaction networks revealed the rich connectome between 'borrowed' and 'intrinsic' components. Bioinformatics prioritized one of the 'borrowed' components, CCDC88A /GIV, a multi-modular metastasis-related protein that has recently been implicated in driving a hallmark of cancer, growth signaling autonomy. MSCs transferred GIV protein to ER+ breast cancer cells (that lack GIV) through tunnelling nanotubes via connexin (Cx)43-facilitated intercellular transport. Reinstating GIV alone in GIV-negative breast cancer cells reproduced ∼20% of both the 'borrowed' and the 'intrinsic' gene induction patterns from contact co-cultures; conferred resistance to anti-estrogen drugs; and enhanced tumor dissemination. Findings provide a multiomic insight into MSC→tumor cell intercellular transport and validate how transport of one such candidate, GIV, from the haves (MSCs) to have-nots (ER+ breast cancer) orchestrates aggressive disease states.
Collapse
|
30
|
Muttiah B, Muhammad Fuad ND, Jaafar F, Abdullah NAH. Extracellular Vesicles in Ovarian Cancer: From Chemoresistance Mediators to Therapeutic Vectors. Biomedicines 2024; 12:1806. [PMID: 39200270 PMCID: PMC11351885 DOI: 10.3390/biomedicines12081806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ovarian cancer (OC) remains the deadliest gynecological malignancy, with alarming projections indicating a 42% increase in new cases and a 51% rise in mortality by 2040. This review explores the challenges in OC treatment, focusing on chemoresistance mechanisms and the potential of extracellular vesicles (EVs) as drug delivery agents. Despite advancements in treatment strategies, including cytoreductive surgery, platinum-based chemotherapy, and targeted therapies, the high recurrence rate underscores the need for innovative approaches. Key resistance mechanisms include drug efflux, apoptosis disruption, enhanced DNA repair, cancer stem cells, immune evasion, and the complex tumor microenvironment. Cancer-associated fibroblasts and extracellular vesicles play crucial roles in modulating the tumor microenvironment and facilitating chemoresistance. EVs, naturally occurring nanovesicles, emerge as promising drug carriers due to their low toxicity, high biocompatibility, and inherent targeting capabilities. They have shown potential in delivering chemotherapeutics like doxorubicin, cisplatin, and paclitaxel, as well as natural compounds such as curcumin and berry anthocyanidins, enhancing therapeutic efficacy while reducing systemic toxicity in OC models. However, challenges such as low production yields, heterogeneity, rapid clearance, and inefficient drug loading methods need to be addressed for clinical application. Ongoing research aims to optimize EV production, loading efficiency, and targeting, paving the way for novel and more effective therapeutic strategies in OC treatment. Overcoming these obstacles is crucial to unlocking the full potential of EV-based therapies and improving outcomes for OC patients.
Collapse
Affiliation(s)
- Barathan Muttiah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nur Dina Muhammad Fuad
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Monash University, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
31
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
33
|
Buonvino S, Di Giuseppe D, Filippi J, Martinelli E, Seliktar D, Melino S. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems. Adv Healthc Mater 2024; 13:e2400040. [PMID: 38739022 DOI: 10.1002/adhm.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Indexed: 05/14/2024]
Abstract
3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, 00133, Italy
- NAST Center- University of Rome Tor Vergata, via della ricerca scientifica, Rome, 00133, Italy
| |
Collapse
|
34
|
Dai S, Liu Y, Liu Z, Li R, Luo F, Li Y, Dai L, Peng X. Cancer-associated fibroblasts mediate resistance to anti-EGFR therapies in cancer. Pharmacol Res 2024; 206:107304. [PMID: 39002870 DOI: 10.1016/j.phrs.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Over the last decade, epidermal growth factor receptor (EGFR)-targeted therapies have transformed the treatment landscape for patients with advanced solid tumors. Despite these advances, resistance to anti-EGFR therapies is still a significant clinical challenge. While cell-autonomous mechanisms of resistance are well-documented, they do not fully elucidate the complexity of drug resistance. Cancer-associated fibroblasts (CAFs), key mediators within the tumor microenvironment (TME), have emerged as pivotal players in cancer progression and chemoresistance. Recent evidence implicates CAFs in resistance to anti-EGFR therapies, suggesting they may undermine treatment efficacy. This review synthesizes current data, highlighting the critical role of CAFs in resistance pathogenesis and summarizing recent therapeutic strategies targeting CAFs. We underscore the challenges and advocate for the exploration of CAFs as a potential dual-targeted approach.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingtong Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China.
| |
Collapse
|
35
|
Ye QW, Liu YJ, Li JQ, Han M, Bian ZR, Chen TY, Li JP, Liu SL, Zou X. GJA4 expressed on cancer associated fibroblasts (CAFs)-A 'promoter' of the mesenchymal phenotype. Transl Oncol 2024; 46:102009. [PMID: 38833783 PMCID: PMC11190749 DOI: 10.1016/j.tranon.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Mei Han
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ze-Ren Bian
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Tian-Yuan Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; No.1 Clinical Medicial College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Jie-Pin Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shen-Lin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
36
|
Gui Z, Ye Y, Li Y, Ren Z, Wei N, Liu L, Wang H, Zhang M. Construction of a novel cancer-associated fibroblast-related signature to predict clinical outcome and immune response in cervical cancer. Transl Oncol 2024; 46:102001. [PMID: 38850798 PMCID: PMC11214323 DOI: 10.1016/j.tranon.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024] Open
Abstract
This study developed a prognostic signature for cervical cancer using transcriptome profiling and clinical data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and TISCH database, focusing on cancer-associated fibroblasts (CAFs). Through LASSO Cox regression and integrated bioinformatics analyses, we identified 144 differentially expressed genes (DEGs) related to CAFs, from which an 11-gene CAF-related signature (CAFRSig) was constructed. The CAFRSig effectively stratified patients into high- and low-risk categories, demonstrating significant prognostic capability in predicting overall survival. Gene ontology (GO) and gene set variation analysis (GSVA) linked the DEGs to crucial pathways in tumor malignancy, immune response, and fatty acid metabolism. The immune landscape analysis, utilizing the TIMER platform and CIBERSORT algorithm, revealed a positive correlation between immune cell effector functions and CAFRSig scores, highlighting the model's potential to identify patients likely to respond to immune checkpoint blockade (ICB) therapies. Furthermore, neuropilin 1 (NRP1), a key gene in the CAFRSig, was upregulated in cervical cancer tissues and associated with disease progression and differentiation. The downregulation of NRP1 curbed cell proliferation and influenced the epithelial-mesenchymal transition (EMT), implicating the PI3K/AKT pathway and modulating PD-L1 expression. This comprehensive analysis establishes a robust prognostic signature based on CAF-related genes, offering valuable insights for optimizing therapeutic strategies in cervical cancer management.
Collapse
Affiliation(s)
- Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Li
- Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengting Ren
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Nan Wei
- Department of Radiation Oncology, Anhui Second People's Hospital, Hefei, Anhui, PR China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Li Liu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, Anhui, PR China; Graduate School of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
37
|
Yueh PF, Chiang CS, Tsai IJ, Tseng YL, Chen HR, Lan KL, Hsu FT. A multifunctional PEGylated liposomal-encapsulated sunitinib enhancing autophagy, immunomodulation, and safety in renal cell carcinoma. J Nanobiotechnology 2024; 22:459. [PMID: 39085911 PMCID: PMC11293195 DOI: 10.1186/s12951-024-02664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Sunitinib is a multikinase inhibitor used to treat patients with advanced renal cell carcinoma (RCC). However, sunitinib toxicity makes it a double-edged sword. Potent immune modulation by sunitinib extends to nuclear interactions. To address these issues, there is an urgent need for delivery vectors suitable for sunitinib treatment. METHODS We developed PEGylated liposomes as delivery vectors to precisely target sunitinib (lipo-sunitinib) to RCC tumors. Further investigations, including RNA sequencing (RNA-seq), were performed to evaluate transcriptomic changes in these pathways. DiI/DiR-labeled lipo-sunitinib was used for the biodistribution analysis. Flow cytometry and immunofluorescence (IF) were used to examine immune modulation in orthotopic RCC models. RESULTS The evaluation of results indicated that lipo-sunitinib precisely targeted the tumor site to induce autophagy and was readily taken up by RCC tumor cells. In addition, transcriptomic assays revealed that following lipo-sunitinib treatment, autophagy, antigen presentation, cytokine, and chemokine production pathways were upregulated, whereas the epithelial-mesenchymal transition (EMT) pathway was downregulated. In vivo data provided evidence supporting the inhibitory effect of lipo-sunitinib on RCC tumor progression and metastasis. Flow cytometry further demonstrated that liposunitinib increased the infiltration of effector T cells (Teffs) and conventional type 1 dendritic cells (cDC1s) into the tumor. Furthermore, systemic immune organs such as the tumor-draining lymph nodes, spleen, and bone marrow exhibited upregulated anticancer immunity following lipo-sunitinib treatment. CONCLUSION Our findings demonstrated that lipo-sunitinib is distributed at the RCC tumor site, concurrently inducing potent autophagy, elevating antigen presentation, activating cytokine and chemokine production pathways, and downregulating EMT in RCC cells. This comprehensive approach significantly enhanced tumor inhibition and promoted anticancer immune modulation.
Collapse
Affiliation(s)
- Po-Fu Yueh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 6th Floor, Shouren Building, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan, ROC
| | - Chih-Sheng Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | - I-Jung Tsai
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | - He-Ru Chen
- Taiwan Liposome Company, Ltd., Taipei, Taiwan, ROC
| | - Keng-Li Lan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 6th Floor, Shouren Building, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan, ROC.
- Department of Heavy Ion and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Fei-Ting Hsu
- Department of Biology Science and Technology, China Medical University, 7F, Research Building, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung City, 406, Taiwan, ROC.
| |
Collapse
|
38
|
Zheng X, Wu W, Zhao Z, Zhang X, Yu S. Single-cell transcriptomic insights into chemotherapy-induced remodeling of the osteosarcoma tumor microenvironment. J Cancer Res Clin Oncol 2024; 150:356. [PMID: 39033089 PMCID: PMC11271355 DOI: 10.1007/s00432-024-05787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Neoadjuvant chemotherapy serves as an effective strategy for treating osteosarcoma (OS) not only by targeting cancerous cells but also by influencing the tumor's immune and stromal elements. Gaining insights into how chemotherapy reshapes the tumor's local environment is crucial for advancing OS treatment protocols. METHODS Using single-cell RNA sequencing, this study analyzed tumor samples from patients with advanced osteosarcoma collected both before and after chemotherapy. RESULTS The results revealed that chemotherapy caused the remaining OS cells to express higher levels of genes associated with stemness. Additionally, this process enhances the presence of cancer-associated fibroblasts, increasing their ability to modify the extracellular matrix (ECM). Chemotherapy also increases the number of endothelial cells, albeit with compromised differentiation capabilities. Importantly, the treatment reduced the immune cell population, including myeloid and T/NK cells, particularly impacting the subpopulations with tumor-fighting capabilities. CONCLUSION These findings highlight the complex reaction of the tumor environment to chemotherapy, providing valuable insights into how chemotherapy influences OS cells and the tumor microenvironment (TME). This knowledge is essential for understanding OS resistance mechanisms to treatments, potentially guiding the development of novel therapies for managing advanced OS.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Wence Wu
- Department of Orthopedics, Peking University First Hospital, Beijing, 100021, China
| | - Zhenguo Zhao
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
39
|
Oliveira SM, Carvalho PD, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J, Martins F, Machado AL, Oliveira MJ, Velho S. Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells. Cancers (Basel) 2024; 16:2595. [PMID: 39061234 PMCID: PMC11274566 DOI: 10.3390/cancers16142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) responses to KRAS-targeted inhibition have been limited due to low response rates, the mechanisms of which remain unknown. Herein, we explored the cancer-associated fibroblasts (CAFs) secretome as a mediator of resistance to KRAS silencing. CRC cell lines HCT15, HCT116, and SW480 were cultured either in recommended media or in conditioned media from a normal colon fibroblast cell line (CCD-18Co) activated with rhTGF-β1 to induce a CAF-like phenotype. The expression of membrane stem cell markers was analyzed by flow cytometry. Stem cell potential was evaluated by a sphere formation assay. RNAseq was performed in KRAS-silenced HCT116 colonospheres treated with either control media or conditioned media from CAFs. Our results demonstrated that KRAS-silencing up-regulated CD24 and down-regulated CD49f and CD104 in the three cell lines, leading to a reduction in sphere-forming efficiency. However, CAF-secreted factors restored stem cell marker expression and increased stemness. RNA sequencing showed that CAF-secreted factors up-regulated genes associated with pro-tumorigenic pathways in KRAS-silenced cells, including KRAS, TGFβ, NOTCH, WNT, MYC, cell cycle progression and exit from quiescence, epithelial-mesenchymal transition, and immune regulation. Overall, our results suggest that resistance to KRAS-targeted inhibition might derive not only from cell-intrinsic causes but also from external elements, such as fibroblast-secreted factors.
Collapse
Affiliation(s)
- Susana Mendonça Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Patrícia Dias Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André Serra-Roma
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Patrícia Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Andreia Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Flávia Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Luísa Machado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ESS|P.PORTO—Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Maria José Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- FMUP—Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-177 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (S.M.O.); (P.O.); (J.C.); (F.M.); (A.L.M.); (M.J.O.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
40
|
Kong W, He J, Zhou Q, Zhou X, Wei X, Yang Y, Mei Y, Wang S, Zhang X, Yao B, Yue Y, Xu J, Jiang M, Xu C. Histone lactylation-related genes correlate with the molecular patterns and functions of cancer-associated fibroblasts and have significant clinical implications in clear cell renal cell carcinoma. Heliyon 2024; 10:e33554. [PMID: 39035489 PMCID: PMC11259888 DOI: 10.1016/j.heliyon.2024.e33554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Recent research emphasised the indispensable role of histone lactylation in the activation of hepatic stellate cells. The VHL mutation is extremely common in clear cell renal cell carcinoma, which normally causes a metabolic shift in cancer cells and increases lactate production, eventually creating a lactate-enriched tumour microenvironment. Cancer-associated fibroblasts (CAFs) promote tumour progression, which is also vital in clear cell renal cell carcinoma. Therefore, this study investigated histone lactylation in CAFs and its impact on patient survival. Multiomics technology was employed to determine the role of histone lactylation-related genes in the evolution of CAFs which correlated with the function and molecular signatures of CAFs. The results suggested that TIMP1 was the hub gene of histone lactylation-related genes in clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Weiyu Kong
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiaxin He
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Qinyao Zhou
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xin Zhou
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yonglin Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yiwen Mei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xi Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bing Yao
- National Experimental Teaching Center of Basic Medical Science, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China
| | - Chen Xu
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215000, China
| |
Collapse
|
41
|
Sun Y, Ying K, Sun J, Wang Y, Qiu L, Ji M, Sun L, Chen J. PRRX1-OLR1 axis supports CAFs-mediated lung cancer progression and immune suppression. Cancer Cell Int 2024; 24:247. [PMID: 39010054 PMCID: PMC11251326 DOI: 10.1186/s12935-024-03436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE To investigate the mechanism by which cancer-associated fibroblasts (CAFs) affect the growth and immune evasion of lung cancer cells. METHODS Initially, datasets comparing CAFs with normal fibroblasts were downloaded from the GEO dataset GSE48397. Genes with the most significant differential expression were selected and validated using clinical data. Subsequently, CAFs were isolated, and the selected genes were knocked down in CAFs. Co-culture experiments were conducted with H1299 or A549 cells to analyze changes in lung cancer cell growth, migration, and immune evasion in vitro and in vivo. To further elucidate the upstream regulatory mechanism, relevant ChIP-seq data were downloaded from the GEO database, and the regulatory relationships were validated through ChIP-qPCR and luciferase reporter assays. RESULTS OLR1 was significantly overexpressed in CAFs and strongly correlated with adverse prognosis in lung cancer patients. Knockdown of OLR1 markedly inhibited CAFs' support for the growth and immune evasion of lung cancer cells in vitro and in vivo. ChIP-seq results demonstrated that PRRX1 can promote OLR1 expression by recruiting H3K27ac and H3K4me3, thereby activating CAFs. Knockdown of PRRX1 significantly inhibited CAFs' function, while further overexpression of OLR1 restored CAFs' support for lung cancer cell growth, migration, and immune evasion. CONCLUSION PRRX1 promotes OLR1 expression by recruiting H3K27ac and H3K4me3, activating CAFs, and thereby promoting the growth, migration, and immune evasion of lung cancer cells.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Yao Wang
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Mingming Ji
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lin Sun
- Department of Endocrinology, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jinjin Chen
- Department of Oncology, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Xia Y, Wang X, Lin J, Li Y, Dong L, Liang X, Wang HY, Ding X, Wang Q. Gastric cancer fibroblasts affect the effect of immunotherapy and patient prognosis by inducing micro-vascular production. Front Immunol 2024; 15:1375013. [PMID: 39040110 PMCID: PMC11260615 DOI: 10.3389/fimmu.2024.1375013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Immunotherapy is critical for treating many cancers, and its therapeutic success is linked to the tumor microenvironment. Although anti-angiogenic drugs are used to treat gastric cancer (GC), their efficacy remains limited. Cancer-associated fibroblast (CAF)-targeted therapies complement immunotherapy; however, the lack of CAF-specific markers poses a challenge. Therefore, we developed a CAF angiogenesis prognostic score (CAPS) system to evaluate prognosis and immunotherapy response in patients with GC, aiming to improve patient stratification and treatment efficacy. Methods We assessed patient-derived GC CAFs for promoting angiogenesis using EdU, cell cycle, apoptosis, wound healing, and angiogenesis analysis. Results We then identified CAF-angiogenesis-associated differentially-expressed genes, leading to the development of CAPS, which included THBS1, SPARC, EDNRA, and VCAN. We used RT-qPCR to conduct gene-level validation, and eight GEO datasets and the HPA database to validate the CAPS system at the gene and protein levels. Six independent GEO datasets were utilized for validation. Overall survival time was shorter in the high- than the low-CAPS group. Immune microenvironment and immunotherapy response analysis showed that the high-CAPS group had a greater tendency toward immune escape and reduced immunotherapy efficacy than the low-CAPS group. Discussion CAPS is closely associated with GC prognosis and immunotherapy outcomes. It is therefore an independent predictor of GC prognosis and immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Xia
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lidan Dong
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huai-Yu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Shi YX, Dai PH, Chen T, Yan JH. Comprehensive analysis and experimental verification reveal the molecular characteristics of EGLN3 in pan-cancer and its relationship with the proliferation and apoptosis of lung cancer. Heliyon 2024; 10:e33206. [PMID: 39021988 PMCID: PMC11253545 DOI: 10.1016/j.heliyon.2024.e33206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Egl-9 family hypoxia-inducible factor 3 (EGLN3) is involved in the regulation of tumor microenvironment and tumor progression. However, its biological function and clinical significance in various cancers remain unclear. Methods RNA-seq, immunofluorescence, and single-cell sequencing were used to investigate the expression landscape of EGLN3 in pan-cancer. The TISCH2 and CancerSEA databases were used for single-cell function analysis of EGLN3 in tumors. TIMER2.0 database was used to explain the relationship between EGLN3 expression and immune cell infiltration. In addition, the LinkedOmics database was used to perform KEGG enrichment analysis of EGLN3 in pan-cancer. siRNA was used to silence gene expression. CCK8, transwell migration assay, flow cytometry analysis, RT-PCR, and western blotting were used to explore biological function of EGLN3. Results The results showed that EGLN3 was highly expressed in a variety of tumors, and was mainly localized to the cytosol. EGLN3 expression is associated with immunoinfiltration of a variety of immune cells, including macrophages in the tumor immune microenvironment and tumor-associated fibroblasts. Functional experiments revealed that EGLN3 knockdown could inhibit cell proliferation, migration, and promote cell apoptosis. In addition, we found that Bax expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group. Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant process, especially tumor cell apoptosis. Conclusion We comprehensively investigated the expression pattern, single-cell function, immune infiltration level and regulated signaling pathway of EGLN3 in pan-cancer. We found that EGLN3 is an important hypoxia and immune-related gene that may serve as a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tao Chen
- School of Medicine, Hunan Normal University, Changsha, China
| | - Jian-Hua Yan
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
44
|
Zhao X, Luo T, Qiu Y, Yang Z, Wang D, Wang Z, Zeng J, Bi Z. Mechanisms of traditional Chinese medicine overcoming of radiotherapy resistance in breast cancer. Front Oncol 2024; 14:1388750. [PMID: 38993643 PMCID: PMC11237312 DOI: 10.3389/fonc.2024.1388750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy among women, with radiotherapy serving as a primary treatment modality. Despite radiotherapy, a subset of breast cancer patients experiences local recurrence, attributed to the intrinsic resistance of tumors to radiation. Therefore, there is a compelling need to explore novel approaches that can enhance cytotoxic effects through alternative mechanisms. Traditional Chinese Medicine (TCM) and its active constituents exhibit diverse pharmacological actions, including anti-tumor effects, offering extensive possibilities to identify effective components capable of overcoming radiotherapy resistance. This review delineates the mechanisms underlying radiotherapy resistance in breast cancer, along with potential candidate Chinese herbal medicines that may sensitize breast cancer cells to radiotherapy. The exploration of such herbal interventions holds promise for improving therapeutic outcomes in the context of breast cancer radiotherapy resistance.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Luo
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Yuting Qiu
- Department of Oncology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Zhiwei Yang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zairui Wang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiale Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Zhou L, Li Y, Zheng D, Zheng Y, Cui Y, Qin L, Tang Z, Peng D, Wu Q, Long Y, Yao Y, Wong N, Lau J, Li P. Bispecific CAR-T cells targeting FAP and GPC3 have the potential to treat hepatocellular carcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200817. [PMID: 38882528 PMCID: PMC11179089 DOI: 10.1016/j.omton.2024.200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated robust efficacy against hematological malignancies, but there are still some challenges regarding treating solid tumors, including tumor heterogeneity, antigen escape, and an immunosuppressive microenvironment. Here, we found that SNU398, a hepatocellular carcinoma (HCC) cell line, exhibited high expression levels of fibroblast activation protein (FAP) and Glypican 3 (GPC3), which were negatively correlated with patient prognosis. The HepG2 HCC cell line highly expressed GPC3, while the SNU387 cell line exhibited high expression of FAP. Thus, we developed bispecific CAR-T cells to simultaneously target FAP and GPC3 to address tumor heterogeneity in HCC. The anti-FAP-GPC3 bispecific CAR-T cells could recognize and be activated by FAP or GPC3 expressed by tumor cells. Compared with anti-FAP CAR-T cells or anti-GPC3 CAR-T cells, bispecific CAR-T cells achieved more robust activity against tumor cells expressing FAP and GPC3 in vitro. The anti-FAP-GPC3 bispecific CAR-T cells also exhibited superior antitumor efficacy and significantly prolonged the survival of mice compared with single-target CAR-T cells in vivo. Overall, the use of anti-FAP-GPC3 bispecific CAR-T cells is a promising treatment approach to reduce tumor recurrence caused by tumor antigen heterogeneity.
Collapse
Affiliation(s)
- Linfu Zhou
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Le Qin
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Dongdong Peng
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Youguo Long
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, the CUHK-GIBH Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong (CUHK), Hong Kong, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
46
|
Li M, Wang J, Zhao Y, Lin C, Miao J, Ma X, Ye Z, Chen C, Tao K, Zhu P, Hu Q, Sun J, Gu J, Wei S. Identifying and evaluating a disulfidptosis-related gene signature to predict prognosis in colorectal adenocarcinoma patients. Front Immunol 2024; 15:1344637. [PMID: 38962013 PMCID: PMC11220892 DOI: 10.3389/fimmu.2024.1344637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
Disulfidptosis, a regulated form of cell death, has been recently reported in cancers characterized by high SLC7A11 expression, including invasive breast carcinoma, lung adenocarcinoma, and hepatocellular carcinoma. However, its role in colon adenocarcinoma (COAD) has been infrequently discussed. In this study, we developed and validated a prognostic model based on 20 disulfidptosis-related genes (DRGs) using LASSO and Cox regression analyses. The robustness and practicality of this model were assessed via a nomogram. Subsequent correlation and enrichment analysis revealed a relationship between the risk score, several critical cancer-related biological processes, immune cell infiltration, and the expression of oncogenes and cell senescence-related genes. POU4F1, a significant component of our model, might function as an oncogene due to its upregulation in COAD tumors and its positive correlation with oncogene expression. In vitro assays demonstrated that POU4F1 knockdown noticeably decreased cell proliferation and migration but increased cell senescence in COAD cells. We further investigated the regulatory role of the DRG in disulfidptosis by culturing cells in a glucose-deprived medium. In summary, our research revealed and confirmed a DRG-based risk prediction model for COAD patients and verified the role of POU4F1 in promoting cell proliferation, migration, and disulfidptosis.
Collapse
Affiliation(s)
- Ming Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Jin Wang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuhao Zhao
- Department of Biliary and Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changjie Lin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianqing Miao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoming Ma
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Pengcheng Zhu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Qi Hu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Jinbing Sun
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, The First People’s Hospital of Changshu, Changshu, Jiangsu, China
| | - Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
47
|
Wang M, Jiang M, Xie A, Zhang N, Xu Y. Identification of CAF-related lncRNAs at the pan-cancer level represents a potential carcinogenic risk. Hum Mol Genet 2024; 33:1064-1073. [PMID: 38507061 DOI: 10.1093/hmg/ddae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are increasingly recognized as playing a crucial role in regulating cancer progression and metastasis. These cells can be activated by long non-coding RNAs (lncRNAs), promoting the malignant biological processes of tumor cells. Therefore, it is essential to understand the regulatory relationship between CAFs and lncRNAs in cancers. Here, we identified CAF-related lncRNAs at the pan-cancer level to systematically predict their potential regulatory functions. The identified lncRNAs were also validated using various external data at both tissue and cellular levels. This study has revealed that these CAF-related lncRNAs exhibit expression perturbations in cancers and are highly correlated with the infiltration of stromal cells, particularly fibroblasts and endothelial cells. By prioritizing a list of CAF-related lncRNAs, we can further distinguish patient subtypes that show survival and molecular differences. In addition, we have developed a web server, CAFLnc (https://46906u5t63.zicp.fun/CAFLnc/), to visualize our results. In conclusion, CAF-related lncRNAs hold great potential as a valuable resource for comprehending lncRNA functions and advancing the identification of biomarkers for cancer progression and therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Minghui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, BaoJian Road, NanGang District, Harbin, HL 150081, China
| |
Collapse
|
48
|
Wu S, Fang R, Rietveld MH, Torremans JRG, Liu Y, Gu Z, Bouwes Bavinck JN, Vermeer MH, El Ghalbzouri A. Identification of Small-Molecule Inhibitors Targeting Different Signaling Pathways in Cancer-Associated Fibroblast Reprogramming under Tumor-Stroma Interaction. J Invest Dermatol 2024:S0022-202X(24)00392-0. [PMID: 38848988 DOI: 10.1016/j.jid.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Cancer-associated fibroblasts (CAFs) interact reciprocally with tumor cells through various signaling pathways in many cancer types, including cutaneous squamous cell carcinoma. Among normal fibroblast subtypes, papillary fibroblasts (PFs) and reticular fibroblasts (RFs) respond distinctly to tumor cell signaling, eventuating the differentiation of RFs rather than PFs into CAFs. The regulation of subtype differentiation in fibroblasts remains poorly explored. In this study, we assessed the differences between PFs, RFs, and CAFs and examined the effects of small-molecule inhibitors targeting the TGFβ, phosphoinositide 3-kinase/protein kinase B/mTOR, and NOTCH pathways on the tumor-promoting property of CAFs and CAF reprogramming in 2-dimensional and 3-dimensional cultures. Blocking TGFβ and phosphoinositide 3-kinase strongly deactivated and concurrently induced a PF phenotype in RFs and CAFs. Three-dimensional coculturing of a cutaneous squamous cell carcinoma cell line MET2 with RFs or CAFs led to enhanced tumor invasion, RF-CAF transition, and cytokine production, which were further repressed by blocking TGFβ and phosphoinositide 3-kinase/mTOR pathways but not NOTCH pathway. In conclusion, the study identified biomarkers for PFs, RFs, and CAFs and displayed different effects of blocking key signaling pathways in CAFs and tumor cell-CAF interplay. These findings prompted a CAF-to-PF therapeutic strategy and provided perspectives of using included inhibitors in CAF-based cancer therapy.
Collapse
Affiliation(s)
- Shidi Wu
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rui Fang
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, Heidelberg, Germany
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen R G Torremans
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Liu
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan N Bouwes Bavinck
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
49
|
Jia Y, Feng G, Chen S, Li W, Jia Z, Wang J, Li H, Hong S, Dai F. Metabolic Heterogeneity of Tumor Cells and its Impact on Colon Cancer Metastasis: Insights from Single-Cell and Bulk Transcriptome Analyses. J Cancer 2024; 15:4175-4196. [PMID: 38947396 PMCID: PMC11212087 DOI: 10.7150/jca.94630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Metabolic reprogramming plays a crucial role in the development of colorectal cancer (CRC), influencing tumor heterogeneity, the tumor microenvironment, and metastasis. While the interaction between metabolism and CRC is critical for developing personalized treatments, gaps remain in understanding how tumor cell metabolism affects prognosis. Our study introduces novel insights by integrating single-cell and bulk transcriptome analyses to explore the metabolic landscape within CRC cells and its mechanisms influencing disease progression. This approach allows us to uncover metabolic heterogeneity and identify specific metabolic genes impacting metastasis, which have not been thoroughly examined in previous studies. Methods: We sourced microarray and single-cell RNA sequencing datasets from the Gene Expression Omnibus (GEO) and bulk sequencing data for CRC from The Cancer Genome Atlas (TCGA). We employed Gene Set Variation Analysis (GSVA) to assess metabolic pathway activity, consensus clustering to identify CRC-specific transcriptome subtypes in bulkseq, and rigorous quality controls, including the exclusion of cells with high mitochondrial gene expression in scRNA seq. Advanced analyses such as AUCcell, infercnvCNV, Non-negative Matrix Factorization (NMF), and CytoTRACE were utilized to dissect the cellular landscape and evaluate pathway activities and tumor cell stemness. The hdWGCNA algorithm helped identify prognosis-related hub genes, integrating these findings using a random forest machine learning model. Results: Kaplan-Meier survival curves identified 21 significant metabolic pathways linked to prognosis, with consensus clustering defining three CRC subtypes (C3, C2, C1) based on metabolic activity, which correlated with distinct clinical outcomes. The metabolic activity of the 13 cell subpopulations, particularly the epithelial cell subpopulation with active metabolic levels, was evaluated using AUCcell in scRNA seq. To further analyze tumor cells using infercnv, NMF disaggregated these cells into 10 cellular subpopulations. Among these, the C2 subpopulation exhibited higher stemness and tended to have a poorer prognosis compared to C6 and C0. Conversely, the C8, C3, and C1 subpopulations demonstrated a higher level of the five metabolic pathways, and the C3 and C8 subpopulations tended to have a more favorable prognosis. hdWGCNA identified 20 modules, from which we selected modules primarily expressed in high metabolic tumor subgroups and highly correlated with clinical information, including blue and cyan. By applying variable downscaling of RF to a total of 50 hub genes, seven gene signatures were obtained. Furthermore, molecules that were validated to be protective in GEO were screened alongside related molecules, resulting in the identification of prognostically relevant molecules such as UQCRFS1 and GRSF1. Additionally, the expression of GRSF1 was examined in colon cancer cell lines using qPCR and phenotypically verified by in vitro experiments. Conclusion: Our findings emphasize that high activity in specific metabolic pathways, including pyruvate metabolism and the tricarboxylic acid cycle, correlates with improved colon cancer outcomes, presenting new avenues for metabolic-based therapies. The identification of hub genes like GRSF1 and UQCRFS1 and their link to favorable metabolic profiles offers novel insights into tumor neovascularization and metastasis, with significant clinical implications for targeting metabolic pathways in CRC therapy.
Collapse
Affiliation(s)
- Yiwen Jia
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, China
| | - Guangming Feng
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, China
| | - Siyuan Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, China
| | - Wenhao Li
- Department of Pulmonology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zeguo Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jian Wang
- Department of Pathology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, 230032, China
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, 230032, China
| | - Shaocheng Hong
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, China
| | - Fu Dai
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people's Hospital), Hefei, China
| |
Collapse
|
50
|
Zhao J, Shen J, Mao L, Yang T, Liu J, Hongbin S. Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene 2024; 43:2104-2114. [PMID: 38769193 DOI: 10.1038/s41388-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) ranks as the sixth most serious male malignant disease globally. While docetaxel (DTX) chemotherapy is the standard treatment for advanced PCa patients with distant metastasis, some individuals exhibit insensitivity or resistance to DTX. Cancer-associated fibroblasts (CAFs) play a pivotal role as stromal cells within the tumor microenvironment, influencing tumor development, progression, and drug resistance through exosomes. Ferroptosis, a novel form of programmed cell death, is characterized by intracellular iron accumulation that triggers lipid peroxidation, ultimately leading to cell demise. To delve into the potential mechanisms of chemotherapy resistance in prostate cancer, our research delved into the impact of CAF-derived exosomes on ferroptosis. Our findings revealed that CAF exosomes hindered the buildup of lipid reactive oxygen species (ROS) in prostate cancer cells induced by erastin, as well as mitigated erastin-induced mitochondrial damage, thereby impeding iron-induced cell death in prostate cancer cells. Furthermore, miR-432-5p was identified to diminish glutathione (GSH) consumption by targeting CHAC1, consequently inhibiting ferroptosis in prostate cancer cells. Our study found that miR-432-5p, originating from cancer-associated fibroblast (CAF) exosomes, suppresses ferroptosis by targeting CHAC1, thereby increasing resistance to docetaxel (DTX) in PCa. This research introduces a novel approach to address resistance to DTX.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jijie Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Liang Mao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Sun Hongbin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|