1
|
Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16:97163. [DOI: 10.5306/wjco.v16.i1.97163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
2
|
Shao Z, Liu S, Sun W, Zhuang X, Yin S, Cheng J, Xia X, Liao Y, Liu J, Huang H. SENP3 mediates deSUMOylation of SIX1 to promote prostate cancer proliferation and migration. Cell Mol Biol Lett 2024; 29:146. [PMID: 39623295 PMCID: PMC11613746 DOI: 10.1186/s11658-024-00665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Sentrin/SUMO-specific protease 3 (SENP3) is essential to regulate protein stability and function in normal and cancer cells. Nevertheless, its role and action mechanisms in prostate cancer (PCa) remain elusive. Thus, clarification of SENP3's involvement and the SUMOylation process in PCa is pivotal for discovering potential targets and understanding SUMOylation dynamics. METHODS Cell viability, EdU staining, live cell imaging, and cell cycle assays were used to determine proliferation of PCa cells. Transwell and wound-healing assays were used to detect migration of PCa cells. The interaction between SENP3 and SIX1 was determined by co-immunoprecipitation, western blotting, and immunofluorescence assays. Xenograft models established on NOD-SCID mice were used to evaluate in vivo effects post SENP3 knockdown. Immunohistochemistry was performed to investigate the expression of SENP3 in PCa tissues. RESULTS This study found that SENP3 is highly expressed in PCa cell lines and tissues from PCa patients. Overexpressed SENP3 is associated with metastatic malignancy in PCa. Various in vivo and in vitro experiments confirmed that SENP3 promotes the proliferation and migration of PCa. In addition, SENP3 interacts with the SD domain of SIX1 and mediates its deSUMOylation and protein stability. Lys154 (K154) is required for the SUMOylation of SIX1. More importantly, SENP3 promotes the malignancy of PCa through the regulation of SIX1. CONCLUSIONS We unravel the significant role of SENP3 in regulating protein stability of SIX1 and progression of PCa, which may deepen our understanding of the SUMOylation modification and provide a promising target for management of metastatic PCa.
Collapse
Affiliation(s)
- Zhenlong Shao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shutong Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xuefen Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Shusha Yin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaohong Xia
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
3
|
Huang H, Zhuang X, Yin S, Sun W, Cheng J, Peng EY, Xiang Y, He X, Tang M, Li Y, Yao Y, Deng Y, Liu Q, Shao Z, Xia X, Cai G, Liao Y. The Ku70-SIX1-GPT2 axis regulates alpha-ketoglutarate metabolism to drive progression of prostate cancer. Oncogene 2024:10.1038/s41388-024-03209-8. [PMID: 39488663 DOI: 10.1038/s41388-024-03209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Sine oculis homeobox homolog 1 (SIX1) is a new identified cancer driver in the development of prostate cancer (PC). However, the upstream regulatory mechanisms for SIX1 reactivation in cancer remains elusive. Here, we found that Ku70 robustly interacts with SIX1 in the nucleus of PC cells. The HD domain of SIX1 and the DBD domain of Ku70 are required for formation of Ku70-SIX1 complex. 20 groups of hydrogen bonds were identified in this complex by molecular dynamics simulation. Depletion of Ku70/SIX1 notably abrogates the proliferation and migration of PC. Further studies revealed that SIX1 is recruited to the promoter region on glutamate-pyruvate transaminase 2 (GPT2). Ku70 enhances the SIX1-mediated transcriptional activation on GPT2, thereby facilitating the generation of alpha-ketoglutarate (α-KG). In addition, formation of the Ku70-SIX1 complex promotes GPT2-dependent cell proliferation and migration in PC. Moreover, the expression of GPT2 is upregulated and strongly correlated with the expression of Ku70/SIX1 in PC tissues. In summary, our findings not only provide insight into the mechanistic interactions between Ku70 and SIX1, but also highlight the significance of the Ku70-SIX1-GPT2 axis for α-KG metabolism and PC carcinogenesis.
Collapse
Affiliation(s)
- Hongbiao Huang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xuefen Zhuang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shusha Yin
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenshuang Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - E-Ying Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yujie Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyue He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengfan Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuting Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuanfei Deng
- Department of Pathology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Qing Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Zhenlong Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaohong Xia
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Mei B, Chen J, Peng Y. The circRNA circSCAF8 promotes tumor growth and metastasis of gastric cancer via miR-1293/TIMP1signaling. Gene Ther 2024:10.1038/s41434-024-00496-4. [PMID: 39465333 DOI: 10.1038/s41434-024-00496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
SR-like CTD-associated factor 8 (SCAF8) can regulate transcriptional termination, but the function of circSCAF8 remains unclear. In our study, we observed a significant increase in circSCAF8 expression in gastric cancer, particularly in tissues with lymph node metastasis. The Kaplan-Meier curve revealed that high circSCAF8 expression was associated with a low overall survival time in gastric cancer patients. Moreover, circSCAF8 shRNA effectively decreased gastric cancer proliferation, invasion, and migration in vitro. Additionally, using bioluminescence imaging (BLI) technology in vivo, we found that circSCAF8 shRNA viruses inhibited the growth of xenograft tumors and gastric cancer lung metastasis. RNA immunoprecipitation (RIP) and circRNA pulldown assays confirmed the direct binding of circSCAF8 to miR-1293, but circSCAF8 could not regulate the expression of miR-1293 in gastric cancer. Interestingly, circSCAF8 regulated the downstream gene tissue inhibitor of metalloproteinases 1 (TIMP1) of miR-1293, and this observation was further verified in gastric cancer tissues. Moreover, we confirmed that miR-1293 directly suppressed TIMP1 expression. Subsequent rescue experiments revealed that TIMP1 overexpression reversed the impact of circSCAF8 shRNA viruses on gastric cancer. In conclusion, circSCAF8 expression was elevated in gastric cancer, and circSCAF8 shRNA viruses inhibited gastric cancer growth and metastasis by upregulating TIMP1 expression via miR-1293.
Collapse
Affiliation(s)
- Bin Mei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhang Y, Xie J. Targeting non-coding RNAs as a promising biomarker in peritoneal metastasis: Background, mechanism, and therapeutic approach. Biomed Pharmacother 2024; 179:117294. [PMID: 39226726 DOI: 10.1016/j.biopha.2024.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Peritoneal metastasis (PM) pathophysiology is complex and not fully understood. PM, originating from gastrointestinal (GI) cancer, is a condition that significantly worsens patient prognosis due to its complex nature and limited treatment options. The non-coding RNAs (ncRNAs) have been shown to play pivotal roles in cancer biology, influencing tumorigenesis, progression, metastasis, and therapeutic resistance. Increasing evidence has demonstrated the regulatory functions of different classes of ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in PM. Identifying biomarkers for early detection of PM is a crucial step towards improving patient outcomes, and how ncRNA profiles correlate with survival rates, response to therapy, and recurrence risks have raised much attention in recent years. Additionally, exploring innovative therapeutic approaches utilizing ncRNAs, such as targeted therapy and gene silencing, may offer new horizons in treating this dire condition. Recent advances in systemic treatments and the development of novel loco-regional therapies have opened doors to multimodal treatment approaches. Radical surgeries combined with hyperthermic intraperitoneal chemotherapy (HIPEC) have shown promising results, leading to extended patient survival. Current research is focused on the molecular characterization of PM, which is crucial for early detection and developing future therapeutic strategies. By summarizing the latest findings, this study underscores the transformative potential of ncRNAs in enhancing the diagnosis, prognosis, and treatment of PM in GI cancer, paving the way for more personalized and effective clinical strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
6
|
Huang S, Hu J, Hu M, Hou Y, Zhang B, Liu J, Liu X, Chen Z, Wang L. Cooperation between SIX1 and DHX9 transcriptionally regulates integrin-focal adhesion signaling mediated metastasis and sunitinib resistance in KIRC. Oncogene 2024; 43:2951-2969. [PMID: 39174859 DOI: 10.1038/s41388-024-03126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
High invasive capacity and acquired tyrosine kinase inhibitors (TKI) resistance of kidney renal clear cell carcinoma (KIRC) cells remain obstacles to prolonging the survival time of patients with advanced KIRC. In the present study, we reported that sine oculis homeobox 1 (SIX1) was upregulated in sunitinib-resistant KIRC cells and metastatic KIRC tissues. Subsequently, we found that SIX1 mediated metastasis and sunitinib resistance via Focal adhesion (FA) signaling, and knockdown of SIX1 enhanced the antitumor efficiency of sunitinib in KIRC. Mechanistically, Integrin subunit beta 1 (ITGB1), an upstream gene of FA signaling, was a direct transcriptional target of SIX1. In addition, we showed that DExH-box helicase 9 (DHX9) was an important mediator for SIX1-induced ITGB1 transcription, and silencing the subunits of SIX1/DHX9 complex significantly reduced transcription of ITGB1. Downregulation of SIX1 attenuated nuclear translocation of DHX9 and abrogated the binding of DHX9 to ITGB1 promoter. Collectively, our results unveiled a new signal axis SIX1/ITGB1/FAK in KIRC and identified a novel therapeutic strategy for metastatic KIRC patients.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Juncheng Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yanguang Hou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Banghua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, 430060, China
| | - Jiachen Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
7
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Qin S, Guo Q, Liu Y, Zhang X, Huang P, Yu H, Xia L, Leng W, Li D. A novel TGFbeta/TGILR axis mediates crosstalk between cancer-associated fibroblasts and tumor cells to drive gastric cancer progression. Cell Death Dis 2024; 15:368. [PMID: 38806480 PMCID: PMC11133402 DOI: 10.1038/s41419-024-06744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Transforming growth factor beta (TGFβ) signaling plays a critical role in tumorigenesis and metastasis. However, little is known about the biological function of TGFbeta-induced lncRNA in cancer. In this study, we discovered a novel TGFbeta-induced lncRNA, termed TGILR, whose function in cancer remains unknown to date. TGILR expression was directly activated by the canonical TGFbeta/SMAD3 signaling axis, and this activation is highly conserved in cancer. Clinical analysis showed that TGILR overexpression showed a significant correlation with lymph node metastasis and poor survival and was an independent prognostic factor in gastric cancer (GC). Depletion of TGILR caused an obvious inhibitory effect on GC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. More importantly, we demonstrated that TGFbeta signaling in GC was overactivated due to cancer-associated fibroblast (CAF) infiltration. Mechanistically, increased level of CAF-secreted TGFbeta activates TGFbeta signaling, leading to TGILR overexpression in GC cells. Meanwhile, TGILR overexpression inhibited the microRNA biogenesis of miR-1306 and miR-33a by interacting with TARBP2 and reducing its protein stability, thereby promoting GC progression via TCF4-mediated EMT signaling. In conclusion, CAF infiltration drives GC metastasis and EMT signaling through activating TGFbeta/TGILR axis. Targeted blocking of CAF-derived TGFbeta should be a promising anticancer strategy in GC.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Qiwei Guo
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yue Liu
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Xiangang Zhang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Pan Huang
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Hedong Yu
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Laboratory of Tumor biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, Hubei, P.R. China.
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
9
|
Chen Y, Cheng CS, Yang P, Dong S, Chen L. Novel silicene-mesoporous silica nanoparticles conjugated gemcitabine induced cellular apoptosis via upregulating NF- κB p65 nuclear translocation suppresses pancreatic cancer growth in vitroand in vivo. NANOTECHNOLOGY 2024; 35:255101. [PMID: 38452386 DOI: 10.1088/1361-6528/ad312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
10
|
Makarenkov N, Haim Y, Yoel U, Pincu Y, Tarnovscki T, Liberty IF, Kukeev I, Baraf L, Dukhno O, Zilber O, Blüher M, Rudich A, Veksler-Lublinsky I. Circulating miRNAs Detect High vs Low Visceral Adipose Tissue Inflammation in Patients Living With Obesity. J Clin Endocrinol Metab 2024; 109:858-867. [PMID: 37713174 DOI: 10.1210/clinem/dgad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
CONTEXT The severity of visceral adipose tissue (VAT) inflammation in individuals with obesity is thought to signify obesity subphenotype(s) associated with higher cardiometabolic risk. Yet, this tissue is not accessible for direct sampling in the nonsurgical patient. OBJECTIVE We hypothesized that circulating miRNAs (circ-miRs) could serve as biomarkers to distinguish human obesity subgroups with high or low extent of VAT inflammation. METHODS Discovery and validation cohorts of patients living with obesity undergoing bariatric surgery (n = 35 and 51, respectively) were included. VAT inflammation was classified into low/high based on an expression score derived from the messenger RNA levels of TNFA, IL6, and CCL2 (determined by reverse transcription polymerase chain reaction). Differentially expressed circ-miRs were identified, and their discriminative power to detect low/high VAT inflammation was assessed by receiver operating characteristic-area under the curve (ROC-AUC) analysis. RESULTS Fifty three out of 263 circ-miRs (20%) were associated with high-VAT inflammation according to Mann-Whitney analysis in the discovery cohort. Of those, 12 (12/53 = 23%) were differentially expressed according to Deseq2, and 6 significantly discriminated between high- and low-VAT inflammation with ROC-AUC greater than 0.8. Of the resulting 5 circ-miRs that were differentially abundant in all 3 statistical approaches, 3 were unaffected by hemolysis and validated in an independent cohort. Circ-miRs 181b-5p, 1306-3p, and 3138 combined with homeostatic model assessment of insulin resistance (HOMA-IR) exhibited ROC-AUC of 0.951 (95% CI, 0.865-1) and 0.808 (95% CI, 0.654-0.963) in the discovery and validation cohorts, respectively, providing strong discriminative power between participants with low- vs high-VAT inflammation. Predicted target genes of these miRNAs are enriched in pathways of insulin and inflammatory signaling, circadian entrainment, and cellular senescence. CONCLUSION Circ-miRs that identify patients with low- vs high-VAT inflammation constitute a putative tool to improve personalized care of patients with obesity.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
- Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Tanya Tarnovscki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Idit F Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ivan Kukeev
- Department of General Surgery B, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Lior Baraf
- Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Oleg Dukhno
- Department of General Surgery B, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Oleg Zilber
- Goldman Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84103, Israel
| |
Collapse
|
11
|
Li J, Chen Z, Li Q, Liu R, Zheng J, Gu Q, Xiang F, Li X, Zhang M, Kang X, Wu R. Study of miRNA and lymphocyte subsets as potential biomarkers for the diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e16660. [PMID: 38259671 PMCID: PMC10802158 DOI: 10.7717/peerj.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
Objective The aim of this study was to identify the expression of miRNA and lymphocyte subsets in the blood of gastric cancer (GC) patients, elucidate their clinical significance in GC, and establish novel biomarkers for the early diagnosis and prognosis of GC. Methods The expression of miRNAs in the serum of GC patients was screened using second-generation sequencing and detected using qRT-PCR. The correlation between miRNA expression and clinicopathological characteristics of GC patients was analyzed, and molecular markers for predicting cancer were identified. Additionally, flow cytometry was used to detect the proportion of lymphocyte subsets in GC patients compared to healthy individuals. The correlations between differential lymphocyte subsets, clinicopathological features of GC patients, and their prognosis were analyzed statistically. Results The study revealed that hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were expressed at lower levels in the blood of GC patients, which is consistent with miRNA-seq findings. The AUC values of hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be effective predictors of GC occurrence. Additionally, hsa-miR-296-5p was found to be negatively correlated with CA724. Furthermore, hsa-miR-1306-5p, hsa-miR-3173-5p, and hsa-miR-296-5p were found to be associated with the stage of the disease and were closely linked to the clinical pathology of GC. The lower the levels of these miRNAs, the greater the clinical stage of the tumor and the worse the prognosis of gastric cancer patients. Finally, the study found that patients with GC had lower absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and lymphocytes compared to healthy individuals. The quantity of CD4+ T lymphocytes and the level of the tumor marker CEA were shown to be negatively correlated. The ROC curve and multivariate logistic regression analysis demonstrated that lymphocyte subsets can effectively predict gastric carcinogenesis and prognosis. Conclusion These miRNAs such as hsa-miR-1306-5p, hsa-miR-3173-5p, hsa-miR-296-5p and lymphocyte subsets such as the absolute numbers of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, lymphocytes are down-regulated in GC and are closely related to the clinicopathological characteristics and prognosis of GC patients. They may serve as new molecular markers for predicting the early diagnosis and prognosis of GC patients.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongrong Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Han M, Li S, Fan H, An J, Peng C, Peng F. Regulated cell death in glioma: promising targets for natural small-molecule compounds. Front Oncol 2024; 14:1273841. [PMID: 38304870 PMCID: PMC10830839 DOI: 10.3389/fonc.2024.1273841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Gliomas are prevalent malignant tumors in adults, which can be categorized as either localized or diffuse gliomas. Glioblastoma is the most aggressive and deadliest form of glioma. Currently, there is no complete cure, and the median survival time is less than one year. The main mechanism of regulated cell death involves organisms coordinating the elimination of damaged cells at risk of tumor transformation or cells hijacked by microorganisms for pathogen replication. This process includes apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, necrosis, parthanayosis, entosis, lysosome-dependent death, NETosis, oxiptosis, alkaliptosis, and disulfidaptosis. The main goal of clinical oncology is to develop therapies that promote the effective elimination of cancer cells by regulating cell death are the main goal of clinical oncology. Recently, scientists have utilized pertinent regulatory factors and natural small-molecule compounds to induce regulated cell death for the treatment of gliomas. By analyzing the PubMed and Web of Science databases, this paper reviews the research progress on the regulation of cell death and the role of natural small-molecule compounds in glioma. The aim is to provide help for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Mingyu Han
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Sui Li
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Huali Fan
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
14
|
Ma F, Song J, He M, Wang X. The Antimicrobial Peptide Merecidin Inhibit the Metastasis of Triple-Negative Breast Cancer by Obstructing EMT via miR-30d-5p/Vimentin. Technol Cancer Res Treat 2024; 23:15330338241281310. [PMID: 39267432 PMCID: PMC11402084 DOI: 10.1177/15330338241281310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.
Collapse
Affiliation(s)
- Fei Ma
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinxuan Song
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Min He
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiuqing Wang
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Yu Y, Zhang Y, Li Z, Dong Y, Huang H, Yang B, Zhao E, Chen Y, Yang L, Lu J, Qiu F. An EMT-related genes signature as a prognostic biomarker for patients with endometrial cancer. BMC Cancer 2023; 23:879. [PMID: 37723477 PMCID: PMC10506329 DOI: 10.1186/s12885-023-11358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) plays an indispensable role in the development and progression of Endometrial cancer (EC). Nevertheless, little evidence is reported to uncover the functionality and application of EMT-related molecules in the prognosis of EC. This study aims to develop novel molecular markers for prognosis prediction in patients with EC. METHODS RNA sequencing profiles of EC patients obtained from The Cancer Genome Atlas (TCGA) database were used to screen differential expression genes (DEGs) between tumors and normal tissues. The Cox regression model with the LASSO method was utilized to identify survival-related DEGs and to establish a prognostic signature whose performance was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC) and calibration curve. Eventually, functional enrichment analysis and cellular experiments were performed to reveal the roles of prognosis-related genes in EC progression. RESULTS A total of 540 EMT-related DEGs in EC were screened, and subsequently a four-gene risk signature comprising SIRT2, SIX1, CDKN2A and PGR was established to predict overall survival of EC. This risk signature could serve as a meaningfully independent indicator for EC prognosis via multivariate Cox regression (HR = 2.002, 95%CI = 1.433-2.798; P < 0.001). The nomogram integrating the risk signature and clinical characteristics exhibited robust validity and performance at predicting EC overall survival indicated by ROC and calibration curve. Functional enrichment analysis revealed that the EMT-related genes risk signature was associated with extracellular matrix organization, mesenchymal development and cellular component morphogenesis, suggesting its possible relevance to epithelial-mesenchymal transition and cancer progression. Functionally, we demonstrated that the silencing of SIX1, SIRT2 and CDKN2A expression could accelerate the migratory and invasive capacities of tumor cells, whereas the downregulation of PGR dramatically inhibited cancer cells migration and invasion. CONCLUSIONS Altogether, a novel four-EMT-related genes signature was a potential biomarker for EC prognosis. These findings might help to ameliorate the individualized prognostication and therapeutic treatment of EC patients.
Collapse
Affiliation(s)
- Yonghui Yu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yiwen Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Li
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yongshun Dong
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Hongmei Huang
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Binyao Yang
- Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Eryong Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yongxiu Chen
- Department of Gynaecology and Obstetrics, Guangdong Women's and Children's Hospital, Guangzhou, Guangdong, China
| | - Lei Yang
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
16
|
Jiang Y, Feng Y, Huang J, Huang Z, Tan R, Li T, Chen Z, Tang X, Qiu J, Li C, Chen H, Yang Z. LAD1 promotes malignant progression by diminishing ubiquitin-dependent degradation of vimentin in gastric cancer. J Transl Med 2023; 21:632. [PMID: 37718450 PMCID: PMC10506284 DOI: 10.1186/s12967-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Ladinin-1 (LAD1), an anchoring filament protein, has been associated with several cancer types, including cancers of the colon, lungs, and breast. However, it is still unclear how and why LAD1 causes gastric cancer (GC). METHODS Multiple in vitro and in vivo, functional gains and loss experiments were carried out in the current study to confirm the function of LAD1. Mass spectrometry was used to find the proteins that interact with LAD1. Immunoprecipitation analyses revealed the mechanism of LAD1 involved in promoting aggressiveness. RESULTS The results revealed that the LAD1 was overexpressed in GC tissues, and participants with increased LAD1 expression exhibited poorer disease-free survival (DFS) and overall survival (OS). Functionally, LAD1 promotes cellular invasion, migration, proliferation, and chemoresistance in vivo and in vitro in the subcutaneous patient-and cell-derived xenograft (PDX and CDX) tumor models. Mechanistically, LAD1 competitively bound to Vimentin, preventing it from interacting with the E3 ubiquitin ligase macrophage erythroblast attacher (MAEA), which led to a reduction in K48-linked ubiquitination of Vimentin and an increase in Vimentin protein levels in GC cells. CONCLUSIONS In conclusion, the current investigation indicated that LAD1 has been predicted as a possible prognostic biomarker and therapeutic target for GC due to its ability to suppress Vimentin-MAEA interaction.
Collapse
Affiliation(s)
- Yingming Jiang
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Yanchun Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jintuan Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zhenze Huang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Rongchang Tan
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Tuoyang Li
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Zijian Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xiaocheng Tang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jun Qiu
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Hao Chen
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Zuli Yang
- Department of Gastric Surgery Section 2, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 510655, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Department of Thyroid Hernia Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
17
|
Wu YY, Wang Q, Zhang PA, Zhu C, Xu GY. miR-1306-3p directly activates P2X3 receptors in primary sensory neurons to induce visceral pain in rats. Pain 2023; 164:1555-1565. [PMID: 36633528 PMCID: PMC10281022 DOI: 10.1097/j.pain.0000000000002853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
- School of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, P. R. China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
18
|
Zheng X, Zhao N, Peng L, Li Z, Liu C, You Q, Fang B. Biological characteristics of microRNAs secreted by exosomes of periodontal ligament stem cells due to mechanical force. Eur J Orthod 2023:7188171. [PMID: 37262013 DOI: 10.1093/ejo/cjad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Orthodontic tooth movement (OTM) has previously been considered an inflammatory process. However, recent studies suggest that exosomes may play an important role in the cellular microenvironment of OTM. microRNAs (miRNAs) are one of the major constituents of exosomes. This study aims to investigate the biological characteristics of miRNAs secreted by exosomes of periodontal ligament stem cells (PDLSCs) due to mechanical forces. MATERIALS AND METHODS First, we established a mechanical stress model. The PDLSCs were loaded under different force values and exosomes were extracted after 48 h. High-throughput sequencing of exosomal miRNAs was performed to further evaluate their biological functions and underlying mechanisms. RESULTS The morphology and functions of exosomes were not significantly different between the loading and non-loading PDLSC groups. The optimal loading time and force were 48 h and 1 g/cm2, respectively. After sequencing, gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway and network analyses were performed and 10 differentially expressed miRNAs were identified according to a literature search. These are miR-99a-5p, miR-485-3P, miR-29a-3p,miR-21-5p, miR-146a-5p, miR140-3p, miR-1306-5p, miR-126-5p, miR-125a-5p, and miR-23a-3p. LIMITATIONS Extracting exosomes needs a large amount of PDLSCs. More functional experiments need to be done to confirm the exact mechanism of exosomal miRNAs of PDLSCs due to mechanical force. CONCLUSIONS The expression levels of miRNAs secreted by PDLSC-derived exosomes due to mechanical force were very different compared to PDLSC-derived exosomes under nonmechanical stress. The function of many of the identified exosomal miRNAs was found to be related to osteoblasts and osteoclasts. Further validation is required. A functional investigation of these miRNA could provide novel insights into their mechanism.
Collapse
Affiliation(s)
- Xiaowen Zheng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qingling You
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
21
|
Zhou Y, Zhang Y, Tian J, Miao Z, Lv S, Zhao X. A Meaningful Strategy for Glioma Diagnosis via Independent Determination of hsa_circ_0004214. Brain Sci 2023; 13:brainsci13020193. [PMID: 36831736 PMCID: PMC9954075 DOI: 10.3390/brainsci13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Glioma is one of the most common primary tumors in the central nervous system. Circular RNAs (circRNAs) may serve as novel biomarkers of various cancers. The purpose of this study is to reveal the diagnostic value of hsa_circ_0004214 for glioma and to predict its molecular interaction network. The expression of hsa_circ_0004214 was evaluated by RT-qPCR. The vector and siRNAs changed the expression of hsa_circ_0004214 to judge its influence on the migration degree of glioma cells. hsa_circ_0004214 can be stably expressed at a high level in high-grade glioma tissue (WHO III/IV). The area under the ROC curve of hsa_circ_0000745 in glioma tissue was 0.88, suggesting good diagnostic value. While used to distinguish high-grade glioma, AUC value can be increased to 0.931. The multi-factor correlation analysis found that the expression of hsa_circ_0004214 was correlated with GFAP (+) and Ki67 (+) in immunohistochemistry. In addition, the migration capacity of U87 was enhanced by overexpression of hsa_circ_0004214. Through miRNA microarray analysis and database screening, we finally identified 4 miRNAs and 9 RBPs that were most likely to interact with hsa_circ_0004214 and regulate the biological functions of glioma. Hsa_circ_0004 214 plays an important role in glioma, its expression level is a promising diagnostic marker for this malignancy.
Collapse
Affiliation(s)
- Yinan Zhou
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Jiajia Tian
- Wuxi Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Wuxi 214002, China
| | - Zengli Miao
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Shangrui Lv
- Wuxi Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Wuxi 214002, China
| | - Xudong Zhao
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Department of Neurosurgery, Wuxi No. 2 People’s Hospital, Wuxi 214002, China
- Correspondence:
| |
Collapse
|
22
|
Luo M, Deng X, Chen Z, Hu Y. Circular RNA circPOFUT1 enhances malignant phenotypes and autophagy-associated chemoresistance via sequestrating miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer. Cell Death Dis 2023; 14:10. [PMID: 36624091 PMCID: PMC9829716 DOI: 10.1038/s41419-022-05506-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Circular RNAs are key regulators in regulating the progression and chemoresistance of gastric cancer (GC), suggesting circular RNAs as potential therapeutic targets for GC. The roles of a novel circular RNA circPOFUT1 in GC are unknown. Here, we found that circPOFUT1 was upregulated in GC tissues and cells, and increased circPOFUT1 expression indicated poor prognosis. Overexpression of circPOFUT1 enhanced cell proliferation, migration, invasion and autophagy-associated chemoresistance in GC, which were suppressed by miR-488-3p overexpression. CircPOFUT1 reduced miR-488-3p expression via sponging miR-488-3p in GC cells. PLAG1 interacted with ATG12 and promoted its expression. MiR-488-3p bound to PLAG1 and suppressed the expression of PLAG1 and ATG12 in GC cells. Overexpression of circPOFUT1 enhanced autophagy-associated chemoresistance of GC cells in vivo, but it was inhibited by overexpression of miR-488-3p. Collectively, circPOFUT1 directly sponged miR-488-3p to activate the expression of PLAG1 and ATG12, thus enhancing malignant phenotypes and autophagy-associated chemoresistance in GC. Our findings show the potential of circPOFUT1 as biomarkers and targeting circPOFUT1 as a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaofeng Deng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongjun Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
23
|
Novel hypoxia-induced HIF1α-circTDRD3-positive feedback loop promotes the growth and metastasis of colorectal cancer. Oncogene 2023; 42:238-252. [PMID: 36418471 DOI: 10.1038/s41388-022-02548-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Tumor hypoxia and circular RNAs (circRNAs) are considered to play key roles in tumor progression and malignancy, respectively. Nevertheless, the biological functions and underlying mechanisms of specific circRNAs exposed to hypoxic microenvironments in colorectal cancer (CRC) remain largely elusive. Herein, a novel circRNA, circTDRD3, which is upregulated under hypoxic conditions, was identified. The expression of circTDRD3 was highly expressed in CRC tissues and positively correlated with overall survival, tumor size, lymph node invasion and clinical stage. CircTDRD3 facilitated CRC cell proliferation, migration and metastasis in vitro and in vivo. Mechanistically, circTDRD3 promoted HIF1α expression by sponging miR-1231, which facilitated CRC progression. Meanwhile, HIF1α directly combined with TDRD3 promoter to increase the expression of TDRD3 pre-mRNA. Then HIF1a-induced PTBP1 accelerated the formation of circTDRD3. Our findings reveal that circTDRD3 facilitates the proliferation and metastasis of CRC through a positive feedback loop mediated by the HIF1α/PTBP1/circTDRD3/miR-1231/HIF1α axis. Therefore, circTDRD3 may serve as a prognostic biomarker and therapeutic target for patients with CRC.
Collapse
|
24
|
Gao S, Zhao T, Meng F, Luo Y, Li Y, Wang Y. Circular RNAs in endometrial carcinoma (Review). Oncol Rep 2022; 48:212. [PMID: 36263622 PMCID: PMC9608256 DOI: 10.3892/or.2022.8427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
As one of the leading causes of death in women in Western developed countries, endometrial carcinoma (EC) is a common gynecological malignant tumor that seriously threatens women's health. In recent years, a trend has emerged of EC being manifested in younger women, and its overall incidence is gradually rising. Circular RNAs (circRNAs) are novel endogenous transcripts that have limited ability to encode proteins due to their covalent closed‑loop structure, which differs from that of other types of RNA. A growing body of evidence has demonstrated that circRNAs fulfill an important role in lung cancer, gastric cancer, breast cancer, EC and other malignant tumor types, and they can affect the occurrence and development of these malignancies through a variety of pathways, further demonstrating the potential of circRNAs as molecular biomarkers for the diagnosis, treatment and prognosis of malignant tumors. The purpose of the present review is to summarize the current understanding of the biogenesis and effects of circRNAs, and to discuss the expression, function and underlying mechanism of circRNAs in EC in order to identify potential novel biomarkers.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tianjun Zhao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fangchi Meng
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
25
|
Ding P, Liu P, Wu H, Yang P, Tian Y, Zhao Q. Functional properties of circular RNAs and research progress in gastric cancer. Front Oncol 2022; 12:954637. [DOI: 10.3389/fonc.2022.954637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of closed circular non-coding RNAs widely exist in eukaryotes, with high stability and species conservation. A large number of studies have shown that circRNAs are abnormally expressed in various tumor tissues, and are abundant in plasma with long half-life and high specificity, which may be served as potential tumor biomarkers for early diagnosis, treatment and prognosis of malignant tumors. However, the role of circRNAs is still poorly understood in gastric cancer. This article reviews the research progress of circRNAs in gastric cancer in recent years so as to explore the relationship between circRNAs and the occurrence and the development of gastric cancer, and provide new ideas for the diagnosis and treatment of gastric cancer.
Collapse
|
26
|
Zhou B, Huang Y, Feng Q, Zhu H, Xu Z, Chen L, Peng X, Yang W, Xu D, Qiu Y. TRIM16 promotes aerobic glycolysis and pancreatic cancer metastasis by modulating the NIK-SIX1 axis in a ligase-independent manner. Am J Cancer Res 2022; 12:5205-5225. [PMID: 36504902 PMCID: PMC9729885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Enhanced aerobic glycolysis contributes to the metastasis of pancreatic cancer metastasis, but the mechanism underlying the abnormal activation of glycolysis has not been fully elucidated. The E3 ligase tripartite motif 16 (TRIM16) is involved in the progression of many cancers. However, the role of and molecular mechanism by which TRIM16 acts in pancreatic cancer are unclear. In this study, we report that TRIM16 was significantly upregulated in pancreatic cancer tissues, and high expression of TRIM16 was associated with poor prognosis in patients with pancreatic cancer. Multivariate analyses showed that TRIM16 was an independent predictor of poor outcomes among patients with pancreatic cancer. In addition, in vitro and in vivo evidence showed that TRIM16 promoted pancreatic cancer cell metastasis by enhancing glycolysis. Furthermore, we revealed that TRIM16 controlled glycolysis and pancreatic cancer cell's metastasis by regulating sine oculis homeobox 1 (SIX1), an important transcription factor that promotes glycolysis. TRIM16 upregulated SIX1 by inhibiting its ubiquitination and degradation, which was mediated by NF-κB-inducing kinase (NIK), an upstream regulator of SIX1. Hence, NIK inhibitor can suppress SIX1 expression, glycolysis and metastasis in TRIM16-overexpressing pancreatic cancer cells. Mechanistic investigations demonstrated that TRIM16 competed with NIK's E3 ligase, TNF receptor-associated factor 3 (TRAF3), at the ISIIAQA sequence motif of NIK, and then stabilized NIK protein. Our study identified the TRIM16-NIK-SIX1 axis as a critical regulatory pathway in aerobic glycolysis and pancreatic cancer metastasis, indicating that this axis can be an excellent therapeutic target for curing pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Ying Huang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Qian Feng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hengqing Zhu
- Department of Thyroid Surgery, Zhejiang University School of Medicine Second Affiliated HospitalHangzhou 310000, Zhejiang, China
| | - Zheng Xu
- Department of Head and Neck Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wenlong Yang
- Department of Hepatopathy, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Debin Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yumin Qiu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
27
|
Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Exp Mol Med 2022; 54:1940-1954. [PMID: 36369467 PMCID: PMC9723180 DOI: 10.1038/s12276-022-00877-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.
Collapse
|
28
|
circXRCC5 foster gastric cancer growth and metastasis by the HNRNPC/circXRCC5/miR-655-3p/RREB1/UBA2 positive feedback loop. Cancer Gene Ther 2022; 29:1648-1661. [PMID: 35661832 DOI: 10.1038/s41417-022-00482-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies, leading to millions of deaths each year. Here, we investigated the molecular mechanisms of GC, with a focus on circXRCC5/miR-655-3p/RREB1/UBA2 axis. circXRCC5 was identified in 62 paired cancer specimens and adjacent normal tissues by genome-wide bioinformatics analysis and verified by qRT-PCR and Sanger sequencing. Knockdown or exogenous expression of circXRCC5 was performed to validate the functional significance of circXRCC5 using both in vitro and in vivo assays, including CCK-8, colony formation, EdU incorporation, transwell system, as well as animal experiments. RNA immunoprecipitation, biotinylated RNA pull-down, ChIP, and dual-luciferase assays were employed to validate the regulatory network of circXRCC5/miR-655-3p/RREB1/UBA2. Frequently elevated circXRCC5 in GC tissues and cell lines was associated with poor prognosis of GC patients. Functionally, circXRCC5 overexpression facilitated GC cell proliferation, migration, and invasion, as well as promoted tumor growth and metastasis in vivo. Mechanistically, circXRCC5 served as a sponge of miR-655-3p to induce upregulation of RREB1. RREB1 was identified as a transcriptional activator of UBA2, thus contributing to GC tumorigenesis. Moreover, RNA binding protein (RBP) HNRNPC was proved to interact with circXRCC5 to promote circXRCC5 biogenesis. Collectively, circXRCC5 facilitates GC progression through the HNRNPC/circXRCC5/miR-655-3p/RREB1/UBA2 axis, which might bring novel therapeutic strategies for GC treatment.
Collapse
|
29
|
Xu CY, Zeng XX, Xu LF, Liu M, Zhang F. Circular RNAs as diagnostic biomarkers for gastric cancer: A comprehensive update from emerging functions to clinical significances. Front Genet 2022; 13:1037120. [PMID: 36386850 PMCID: PMC9650219 DOI: 10.3389/fgene.2022.1037120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
The incidence and mortality of gastric cancer ranks as a fouth leading cause of cancer death worldwide, especially in East Asia. Due to the lack of specific early-stage symptoms, the majority of patients in most developing nations are diagnosed at an advanced stage. Therefore, it is urgent to find more sensitive and reliable biomarkers for gastric cancer screening and diagnosis. Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are becoming a latest hot spot in the field of. In recent years, a great deal of research has demonstrated that abnormal expression of circRNAs was associated with the development of gastric cancer, and suggested that circRNA might serve as a potential biomarker for gastric cancer diagnosis. In this review, we summarize the structural characteristics, formation mechanism and biological function of circRNAs, and elucidate research progress and existing problems in early screening of gastric cancer.
Collapse
Affiliation(s)
- Chun-Yi Xu
- Zhejiang Chinese Medical University, Hangzhou, China
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Xi-Xi Zeng
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Li-Feng Xu
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Ming Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhang
- Core Facility, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
30
|
Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L, Cui D. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:307. [PMID: 36266731 PMCID: PMC9583503 DOI: 10.1186/s13046-022-02518-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ferroptosis is a novel form of iron-dependent cell death and participates in the malignant progression of glioblastoma (GBM). Although circular RNAs (circRNAs) are found to play key roles in ferroptosis via several mechanisms, including regulating iron metabolism, glutathione metabolism, lipid peroxidation and mitochondrial-related proteins, there are many novel circRNAs regulating ferroptosis need to be found, and they may become a new molecular treatment target in GBM. METHODS The expression levels of circLRFN5, PRRX2 and GCH1 were detected by qPCR, western blotting, and immunohistochemistry. Lentiviral-based infections were used to overexpress or knockdown these molecules in glioma stem cells (GSCs). The biological functions of these molecules on GSCs were detected by MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium), the 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, transwell, neurosphere formation assays, Extreme Limiting Dilution Analysis (ELDA) and xenograft experiments. The content of ferroptosis levels in GSCs was detected by BODIPY 581/591 C11 assay, glutathione (GSH) assay and malondialdehyde (MDA) assay. The regulating mechanisms among these molecules were studied by RNA immunoprecipitation assay, RNA pull-down assay, ubiquitination assay, dual-luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS We found a novel circRNA circLRFN5 is downregulated in GBM and associated with GBM patients' poor prognosis. CircLRFN5 overexpression inhibits the cell viabilities, proliferation, neurospheres formation, stemness and tumorigenesis of GSCs via inducing ferroptosis. Mechanistically, circLRFN5 binds to PRRX2 protein and promotes its degradation via a ubiquitin-mediated proteasomal pathway. PRRX2 can transcriptionally upregulate GCH1 expression in GSCs, which is a ferroptosis suppressor via generating the antioxidant tetrahydrobiopterin (BH4). CONCLUSIONS Our study found circLRFN5 as a tumor-suppressive circRNA and identified its role in the progression of ferroptosis and GBM. CircLRFN5 can be used as a potential GBM biomarker and become a target for molecular therapies or ferroptosis-dependent therapy in GBM.
Collapse
Affiliation(s)
- Yang Jiang
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Junshuang Zhao
- grid.443573.20000 0004 1799 2448Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan, 442000 China
| | - Rongqing Li
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yingliang Liu
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Lin Zhou
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Chengbin Wang
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Caihong Lv
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Liang Gao
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Daming Cui
- grid.24516.340000000123704535Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
31
|
Circular RNA circPGD contributes to gastric cancer progression via the sponging miR-16-5p/ABL2 axis and encodes a novel PGD-219aa protein. Cell Death Dis 2022; 8:384. [PMID: 36104322 PMCID: PMC9472197 DOI: 10.1038/s41420-022-01177-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
CircRNAs have critical effects on tumor development and progression. However, circPGD effect on gastric cancer (GC) is still elusive. Nuclear and cytoplasmic RNA fractionation, and RNA-FISH assay examined the localization of circPGD in MGC-803 cells. qRT-PCR was conducted to detect the expression and prognostic significance of circPGD, miR-16-5p, and ABL2 within GC tissues. Meanwhile, qRT-PCR, luciferase reporter assays, rescue, and western blotting assays confirmed the interactions between circPGD, miR-16-5p, and ABL2. Transwell, wound healing, and colony-formation assays, as well as CCK-8 and cell apoptosis assays, analyzed the functions of circPGD, miR-16-5p, ABL2, as well as PGD-219aa within GC cells. Western blotting and cell immunofluorescence experiments detected the differences in the expression of the related proteins. Finally, xenograft and metastatic mouse models were used to investigate circPGD function in vivo. Mass spectrometry was used to detect the existence of PGD-219aa in MGC-803 cells. CircPGD was localized in the cytoplasm and nucleus of MGC-803 cells. Compared with the control, circPGD and ABL2 expression increased within GC tissues and cells, and the miR-16-5p level was decreased. Functionally, circPGD promoted cell proliferation, migration and suppressed apoptosis in vitro. Mechanistically, circPGD sponged miR-16-5p for relieving miR-16-5p suppression on the corresponding target ABL2 via the SMAD2/3 and YAP signaling pathways. In addition, circPGD encodes a novel PGD-219aa protein that can enhance the growth and migration of GC cells, while inhibiting GC cells apoptosis via the SMAD2/3 and YAP signaling pathways. Furthermore, circPGD overexpression enhanced tumor aggressiveness, while circPGD knockdown inhibited tumor growth. Overall, circPGD has a novel oncogenic effect on GC cells, indicating the potential of circPGD as the tumorigenic factor and a promising diagnostic marker for GC.
Collapse
|
32
|
Wei X, Liu J, Hong Z, Chen X, Wang K, Cai J. Identification of novel tumor microenvironment-associated genes in gastric cancer based on single-cell RNA-sequencing datasets. Front Genet 2022; 13:896064. [PMID: 36046240 PMCID: PMC9421061 DOI: 10.3389/fgene.2022.896064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment and heterogeneity play vital roles in the development and progression of gastric cancer (GC). In the past decade, a considerable amount of single-cell RNA-sequencing (scRNA-seq) studies have been published in the fields of oncology and immunology, which improve our knowledge of the GC immune microenvironment. However, much uncertainty still exists about the relationship between the macroscopic and microscopic data in transcriptomics. In the current study, we made full use of scRNA-seq data from the Gene Expression Omnibus database (GSE134520) to identify 25 cell subsets, including 11 microenvironment-related cell types. The MIF signaling pathway network was obtained upon analysis of receptor–ligand pairs and cell–cell interactions. By comparing the gene expression in a wide variety of cells between intestinal metaplasia and early gastric cancer, we identified 64 differentially expressed genes annotated as immune response and cellular communication. Subsequently, we screened these genes for prognostic clinical value based on the patients’ follow-up data from The Cancer Genome Atlas. TMPRSS15, VIM, APOA1, and RNASE1 were then selected for the construction of LASSO risk scores, and a nomogram model incorporating another five clinical risk factors was successfully created. The effectiveness of least absolute shrinkage and selection operator risk scores was validated using gene set enrichment analysis and levels of immune cell infiltration. These findings will drive the development of prognostic evaluations affected by the immune tumor microenvironment in GC.
Collapse
Affiliation(s)
- Xujin Wei
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jie Liu
- The Graduate School of Fujian Medical University, Fuzhou, China
| | - Zhijun Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Xin Chen
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jianchun Cai
- The Graduate School of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
- *Correspondence: Jianchun Cai,
| |
Collapse
|
33
|
Dey SS, Sharma PK, Munshi AD, Jaiswal S, Behera TK, Kumari K, G. B, Iquebal MA, Bhattacharya RC, Rai A, Kumar D. Genome wide identification of lncRNAs and circRNAs having regulatory role in fruit shelf life in health crop cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884476. [PMID: 35991462 PMCID: PMC9383263 DOI: 10.3389/fpls.2022.884476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Cucumber is an extremely perishable vegetable; however, under room conditions, the fruits become unfit for consumption 2-3 days after harvesting. One natural variant, DC-48 with an extended shelf-life was identified, fruits of which can be stored up to 10-15 days under room temperature. The genes involved in this economically important trait are regulated by non-coding RNAs. The study aims to identify the long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) by taking two contrasting genotypes, DC-48 and DC-83, at two different fruit developmental stages. The upper epidermis of the fruits was collected at 5 days and 10 days after pollination (DAP) for high throughput RNA sequencing. The differential expression analysis was performed to identify differentially expressed (DE) lncRNAs and circRNAs along with the network analysis of lncRNA, miRNA, circRNA, and mRNA interactions. A total of 97 DElncRNAs were identified where 18 were common under both the developmental stages (8 down regulated and 10 upregulated). Based on the back-spliced reads, 238 circRNAs were found to be distributed uniformly throughout the cucumber genomes with the highest numbers (71) in chromosome 4. The majority of the circRNAs (49%) were exonic in origin followed by inter-genic (47%) and intronic (4%) origin. The genes related to fruit firmness, namely, polygalacturonase, expansin, pectate lyase, and xyloglucan glycosyltransferase were present in the target sites and co-localized networks indicating the role of the lncRNA and circRNAs in their regulation. Genes related to fruit ripening, namely, trehalose-6-phosphate synthase, squamosa promoter binding protein, WRKY domain transcription factors, MADS box proteins, abscisic stress ripening inhibitors, and different classes of heat shock proteins (HSPs) were also found to be regulated by the identified lncRNA and circRNAs. Besides, ethylene biosynthesis and chlorophyll metabolisms were also found to be regulated by DElncRNAs and circRNAs. A total of 17 transcripts were also successfully validated through RT PCR data. These results would help the breeders to identify the complex molecular network and regulatory role of the lncRNAs and circRNAs in determining the shelf-life of cucumbers.
Collapse
Affiliation(s)
- Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T. K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Boopalakrishnan G.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
34
|
Zhang J, Zhang J, Fu Z, Zhang Y, Luo Z, Zhang P, Xu Y, Huang C. CHREBP suppresses gastric cancer progression via the cyclin D1-Rb-E2F1 pathway. Cell Death Dis 2022; 8:300. [PMID: 35768405 PMCID: PMC9243070 DOI: 10.1038/s41420-022-01079-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022]
Abstract
Accumulating evidence has demonstrated that carbohydrate response element binding protein (CHREBP) has a crucial function in tumor pathology. In this study, we found CHREBP downregulation in gastric cancer (GC) tissues, and CHREBP was determined to be an independent diagnostic marker of GC. The downregulation of CHREBP promoted cell proliferation and inhibited apoptosis. Moreover, the level of cyclin D1 was significantly correlated with CHREBP expression in GC and paracancerous normal samples. In addition, CHREBP transcriptionally inhibited cyclin D1 expression in GC cells. Tumor suppressor activity of CHREBP could be affected by the upregulation of cyclin D1. In summary, CHREBP was found to be an independent diagnostic marker of GC and to influence GC growth and apoptosis via targeting the cyclin D1-Rb-E2F1 pathway.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
35
|
Identification of Novel circRNA-Based ceRNA Network Involved in the Pathogenesis of Gastric Cancer. Int J Genomics 2022; 2022:5281846. [PMID: 35685832 PMCID: PMC9174013 DOI: 10.1155/2022/5281846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/09/2022] Open
Abstract
Objective Evidence increasingly shows that circular RNAs (circRNAs) are closely associated with tumorigenesis and cancer progression. However, the roles of circRNAs and the underlying mechanism behind these circRNAs in gastric cancer (GC) remain to be elucidated. This study is aimed at conferring a better understanding of GC pathogenesis with a specific focus on circRNA-based ceRNA action. Methods circRNA expression profiles were downloaded from two Gene Expression Omnibus (GEO) microarray datasets, GSE152309 and GSE121445. Expression profiles of miRNAs and mRNAs were collected from The Cancer Genome Atlas (TCGA) database. The ceRNA network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs. Functional and pathway enrichment analyses were performed to evaluate functional pathways of differentially expressed mRNAs (DEmRNAs). The PPI network was constructed by mapping DEmRNAs into the STRING database to identify hub genes, and then the DEcircRNA-DEmiRNA-hub gene subnetwork was constructed. The expression levels of candidate differentially expressed circRNAs (DEcircRNAs) in cancerous and matched noncancerous gastric tissues surgically resected from 52 GC patients were determined by the RT-qPCR analysis. Results Differential expression analysis with Venn diagram analysis showed 11 overlapped DEcircRNAs (7 upregulated circRNAs and 4 downregulated ones) between cancerous tissues and noncancerous gastric tissues. The DEcircRNA-DEmiRNA-DEmRNA network was constructed, consisting of 2 DEcircRNAs, 7 DEmiRNAs, and 104 DEmRNAs. GO and KEGG pathway analyses revealed that 104 DEmRNAs might be associated with GC development and progression. The PPI network was constructed, yielding 16 hub genes, TFDP1, KRAS, LMNB1, MET, MYBL2, CDC25A, E2F5, HMGA1, HMGA2, CBFB, CBX3, CDC7, IGF2BP3, KIF11, PDGFB, and SMC1A, which were all upregulated in GC tissues compared with adjacent tumor-free gastric tissues. Based on the above hub genes in GC, the DEcircRNA-DEmiRNA-hub gene subnetwork was reconstructed based on hsa_circ_0000384 and hsa_circ_0000043, including 22 pairs of the upcircRNA-downmiRNA-upmRNA network. The expression levels of hsa_circ_0000384 and hsa_circ_0000043 were remarkably higher in GC tissues than those in matched adjacent tumor-free gastric tissues (p < 0.001), concurring with the bioinformatics results. Conclusion Our study offers a better understanding of circRNA-related ceRNA regulatory mechanism in the pathogenesis of GC, highlighting two ceRNA networks based on hsa_circ_0000384 and hsa_circ_0000043.
Collapse
|
36
|
Sun X, Zhao X, Xu S, Zhou Y, Jia Z, Li Y. CircSRSF4 Enhances Proliferation, Invasion, and Migration to Promote the Progression of Osteosarcoma via Rac1. Int J Mol Sci 2022; 23:ijms23116200. [PMID: 35682879 PMCID: PMC9180939 DOI: 10.3390/ijms23116200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: At present, cancer cell metastasis is the main cause of death in patients with malignant tumors, and up to 23% of osteosarcoma patients have died due to lung and lymph node metastasis. Therefore, finding new molecules involved in tumor development can provide new strategies for the diagnosis and treatment of osteosarcoma patients. Circular RNAs (circRNAs) are a type of RNA molecule that are connected head-to-tail to form a closed ring. There is increasing evidence that circRNAs are RNA molecules with many biological functions in various diseases. However, the role and mechanism of circRNAs in osteosarcoma have rarely been reported. (2) Methods: The expression of circSRSF4 in osteosarcoma tissues and cell lines was detected by quantitative real-time PCR (RT-qPCR), and the result of high-throughput sequencing was verified. In order to explore the effect of circSRSF4 on tumor proliferation, invasion, and migration, a dual-luciferase reporter assay, RNA binding protein immunoprecipitation assay, cell counting kit-8 (CCK-8), transwell assay, scratch wound healing assay, Western blot analysis, and other experiments were carried out in vitro. Rescue experiments and a xenograft model confirmed that circSRSF4 directly acted on miR-224 to regulate Rac1 expression. (3) Results: The expression of circSRSF4 was significantly higher in osteosarcoma tissues and cell lines. Down-regulating the expression of circSRSF4 in vitro significantly inhibited the proliferation, invasion, and migration of cells, and also reduced the expression of Rac1, while the overexpression of Rac1 and miR-224 inhibition could reverse these effects. The inhibition of circSRSF4 expression in vivo also attenuated tumor growth. A mechanistic study showed that circSRSF4 can be used as an miR-224 sponge to up-regulate the expression of Rac1, thereby promoting the development of osteosarcoma. (4) Conclusions: CircSRSF4 acting as a ceRNA promotes the malignant behavior of osteosarcoma through the circSRSF4/miR-224/Rac1 axis, which provides a new theoretical basis for the clinical prevention and treatment of osteosarcoma and the study of related markers and intervention targets.
Collapse
|
37
|
Exosome-Associated circRNAs as Key Regulators of EMT in Cancer. Cells 2022; 11:cells11101716. [PMID: 35626752 PMCID: PMC9140110 DOI: 10.3390/cells11101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic program of cell plasticity aberrantly reactivated in cancer. The crosstalk between tumor cells and the tumoral microenvironment (TME) has a pivotal importance for the induction of the EMT and the progression toward a malignant phenotype. Notably, exosomes are key mediators of this crosstalk as vehicles of specific molecular signals that include the class of circular RNAs (circRNAs). This review specifically focuses on the role of exosome-associated circRNAs as key regulators of EMT in cancer. The relevance of these molecules in regulating the intercellular communication in TME and tumor progression is highlighted. Moreover, the here-presented evidence indicates that exosome-associated circRNA modulation should be taken in account for cancer diagnostic and therapeutic approaches.
Collapse
|
38
|
Wang W, Zhang J, Fan Y, Zhang L. MiR-1306-5p predicts favorable prognosis and inhibits proliferation, migration, and invasion of colorectal cancer cells via PI3K/AKT/mTOR pathway. Cell Cycle 2022; 21:1491-1501. [PMID: 35416128 PMCID: PMC9278426 DOI: 10.1080/15384101.2022.2054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the occurrence and progression of colorectal cancer. Our study aims to explore the role of miR-1306-5p in cell malignant phenotypes of colorectal cancer cells. RT-qPCR was performed to assess the expression of miR-1306-5p in colorectal cancer samples and cell lines. The effects of miR-1306-5p on cell proliferation, migration, and invasion were evaluated through the CCK-8 assay, wound healing assay, and transwell invasion assay, respectively. Apoptosis was detected by flow cytometry. Luciferase reporter assay was used to predict the target gene of miR-1306-5p. Western blot was used to detect the expression levels of signal pathway molecules and target proteins. We found that miR-1306-5p was low-expressed in colorectal cancer tissues and cell lines, and its expression was also associated with colorectal cancer development and prognosis. MiR-1306-5p overexpression led to a decrease in colorectal cancer cell proliferation, migration, and invasion, while promoting apoptosis. Moreover, it was discovered that SLCO2A1 was a target of miR-1306-5p. By targeting SLCO2A1, overexpression of miR-1306-5p could inhibit the PI3K/AKT/mTOR signaling pathway. Overexpression of miR-1306-5p inhibited the colorectal cancer cell malignant phenotypes via regulating PI3K/AKT/mTOR signaling pathway regulation by targeting SLCO2A1. Therefore, miR-1306-5p can be a prospective therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Jun Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - YunXiu Fan
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| | - Li Zhang
- Department of cancer center, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, Sichuan, China
| |
Collapse
|
39
|
Wu Z, Liu P, Zhang G. Identification of circRNA-miRNA-Immune-Related mRNA Regulatory Network in Gastric Cancer. Front Oncol 2022; 12:816884. [PMID: 35280778 PMCID: PMC8907717 DOI: 10.3389/fonc.2022.816884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of gastric cancer (GC) is still not fully understood. We aimed to find the potential regulatory network for ceRNA (circRNA–miRNA–immune-related mRNA) to uncover the pathological molecular mechanisms of GC. The expression profiles of circRNA, miRNA, and mRNA in gastric tissue from GC patients were downloaded from the Gene Expression Omnibus (GEO) datasets. Differentially expressed circRNAs, miRNAs, and immune-related mRNAs were filtered, followed by the construction of the ceRNA (circRNA–miRNA–immune-related mRNA) network. Functional annotation and protein–protein interaction (PPI) analysis of immune-related mRNAs in the network were performed. Expression validation of circRNAs and immune-related mRNAs was performed in the new GEO and TCGA datasets and in-vitro experiment. A total of 144 differentially expressed circRNAs, 216 differentially expressed miRNAs, and 2,392 differentially expressed mRNAs were identified in GC. Some regulatory pairs of circRNA–miRNA–immune-related mRNA were obtained, including hsa_circ_0050102–hsa-miR-4537–NRAS–Tgd cells, hsa_circ_0001013–hsa-miR-485-3p–MAP2K1–Tgd cells, hsa_circ_0003763–hsa-miR-145-5p–FGF10–StromaScore, hsa_circ_0001789–hsa-miR-1269b–MET–adipocytes, hsa_circ_0040573–hsa-miR-3686–RAC1–Tgd cells, and hsa_circ_0006089–hsa-miR-5584-3p–LYN–neurons. Interestingly, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN had potential diagnostic value for GC patients. In the KEGG analysis, some signaling pathways were identified, such as Rap1 and Ras signaling pathways (involved NRAS and FGF10), Fc gamma R-mediated phagocytosis and cAMP signaling pathway (involved RAC1), proteoglycans in cancer (involved MET), T-cell receptor signaling pathway (involved MAP2K1), and chemokine signaling pathway (involved LYN). The expression validation of hsa_circ_0003763, hsa_circ_0004928, hsa_circ_0040573, FGF10, MET, NRAS, RAC1, MAP2K1, and LYN was consistent with the integrated analysis. In conclusion, the identified ceRNA (circRNA–miRNA–immune-related mRNA) regulatory network may be associated with the development of GC.
Collapse
Affiliation(s)
- Zhenhai Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| | - Pengyuan Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ganlu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
40
|
Zhan H, Chen H, Tang Z, Liu S, Xie K, Wang H. SIX1 attenuates inflammation and rheumatoid arthritis by silencing MyD88-dependent TLR1/2 signaling. Int Immunopharmacol 2022; 106:108613. [PMID: 35180623 DOI: 10.1016/j.intimp.2022.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic autoimmune disease that severely affects the patients' quality of life. Sine oculis homeobox 1 (SIX1) has been reported as a key regulator of organogenesis and inflammation. This study aimed to explore the effects of SIX1 on RA. METHODS Wistar rats were immunized with type II collagen to induce an animal model of RA. RA synovial fibroblasts (RASFs) were isolated from the rats. SIX1 expression in RA rats and RASFs was detected by qRT-PCR and western blot. CCK-8, EdU, transwell, flow cytometer, and ELISA were conducted to assay the effects of SIX1 on RASFs. The effects of SIX1 on RA rats were studied by Safranin O staining, H&E staining, and ELISA. Besides, GSEA and KEGG analysis were used to predict the underlying signaling pathways. RESULTS SIX1 was low expressed in synovial tissue of RA rats and RASFs. SIX1 overexpression inhibited the proliferation, invasion, and levels of TNF-α, IL-6, and IL-8 in RASFs. However, SIX1 overexpression promoted the apoptosis of RASFs. SIX1 overexpression enhanced body weight, and attenuated the cartilage damage, pathological injury, and pro-inflammatory cytokine release of RA rat model. MyD88-dependent TLR1/2 might be a downstream signaling of SIX1. RelA acted as a transcription factor of TLR1/2, and SIX1 inhibited TLR1/2 signaling possibly via interaction with RelA. Adding with Pam3CSK4, a specific agonist of TLR1/2 signaling, attenuated the effects of SIX1 on RASFs. CONCLUSION SIX1 attenuated inflammation and RA by silencing MyD88-dependent TLR1/2 signaling. SIX1 may be a promising target for RA treatment.
Collapse
Affiliation(s)
- Hongyan Zhan
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China
| | - Hongxia Chen
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China
| | - Zizheng Tang
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China
| | - Shasha Liu
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China
| | - Kangqi Xie
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China
| | - Hui Wang
- Department of Rheumatology, The Fourth Hospital of Jinan, Ji'nan 250031, Shandong, PR China.
| |
Collapse
|
41
|
Liu H, Dai W. Circular RNA 0000654 facilitates the growth of gastric cancer cells through absorbing microRNA-149-5p to up-regulate inhibin-beta A. Bioengineered 2022; 13:469-480. [PMID: 35100076 PMCID: PMC8805893 DOI: 10.1080/21655979.2021.2009414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Circular (circ) RNAs are differentially expressed in gastric cancer (GC) and participate in the biological growth of tumor cells. Given that, investigations were performed to unravel the function of circ_0000654 in GC. GC tissue and normal tissue specimens were obtained, in which circ_0000654, microRNA (miR)-149-5p, and inhibin-beta A (INHBA) levels were examined. GC cell line (BGC-823) was transfected to alter circ_0000654 and miR-149-5p expression, thereby observing cell malignancy. Stably-transfected BGC-823 cells were injected into nude mice to observe tumor growth in vivo. The interaction circ_0000654, miR-149-5p, and INHBA was validated. circ_0000654 and INHBA were up-regulated but miR-149-5p was down-regulated in GC. circ_0000654 absorbed miR-149-5p to target INHBA. Silencing circ_0000654inhibited the progress of GC cell biology. Oppositely, restoring circ_0000654 enhanced the growth of GC cells. Inhibiting miR-149-5p rescued down-regulated circ_0000654-induced anti-tumor effect on GC. circ_0000654 silence or miR-149-5p overexpression limited the growth of GC tumors in vivo. Obviously, circ_0000654 facilitates the growth of GC cells through absorbing miR-149-5p to up-regulate INHBA.
Collapse
Affiliation(s)
- Han Liu
- Department of General Medicine, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Wen Dai
- Department of Joint Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| |
Collapse
|
42
|
Abstract
The relationship between epitranscriptomics and malignant tumours has become a popular research topic in recent years. N6-methyladenosine (m6A), the most common post-transcriptional modification in mammals, is involved in various physiological processes in different cancer types, including gastric cancer (GC). The incidence and mortality of GC have been increasing annually, especially in developing countries. Insights into the epitranscriptomic mechanisms of gastric carcinogenesis could provide potential strategies for the prevention, diagnosis, and treatment of GC. In this review, we describe the mechanisms of RNA m6A modification; the functions of m6A regulators in GC; the functional crosstalk among m6A, messenger RNA, and noncoding RNA; and the promising application of m6A in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|
43
|
Li M, Xu C, Wang Y, Liu H. miR-1306 Promotes Lung Squamous Cell Carcinoma Progression and Predicts Clinical Prognosis of Patients. Cancer Manag Res 2021; 13:9029-9035. [PMID: 34916847 PMCID: PMC8666722 DOI: 10.2147/cmar.s339292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Lung squamous cell carcinoma (LUSC) is one of the major subtypes of non-small cell lung cancer (NSCLC) with high mortality. Identification of novel biomarkers of the development of LUSC could provide basis for clinical treatment and improve patients’ prognosis. The function of miR-1306 in the development of LUSC was investigated. Patients and Methods A total of 103 paired LUSC and normal tissues were collected from LUSC patients. The expression of miR-1306 in collected tissues and cultured cells was evaluated by PCR. The clinical significance of miR-1306 was assessed by a series of statistical analyses, and the biological effect of miR-1306 was also estimated with the CCK8 and Transwell assay. Results The significant upregulation of miR-1306 was observed in LUSC, which was associated with positive lymph node metastasis and advanced TNM stage of patients. miR-1306 was also identified as an independent prognostic factor negatively associated with the prognosis of patients. Additionally, the upregulation of miR-1306 was found to promote the proliferation, migration, and invasion of LUSC cells, indicating its tumor enhancer role in the development of LUSC. While miR-1306 was also found to regulate RBM3, which was speculated to be the mechanism underlying the function of miR-1306. Conclusion miR-1306 functions as a prognostic indicator and tumor promoter of LUSC through targeting RBM3, which provides a potential therapeutic target of LUSC.
Collapse
Affiliation(s)
- Mei Li
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Chunxiang Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Hua Liu
- Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Zhang Y, Zhang PS, Rong ZY, Huang C. One stomach, two subtypes of carcinoma-the differences between distal and proximal gastric cancer. Gastroenterol Rep (Oxf) 2021; 9:489-504. [PMID: 34925847 PMCID: PMC8677565 DOI: 10.1093/gastro/goab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract, posing a significant risk to human health. Over the past 10 years, the pathological characteristics and the prognosis of GC have been determined based on the locations of the tumors that were then classified into two types-proximal and distal GC. This review focuses on the differences in epidemiology, etiology, cell source, pathological characteristics, gene expression, molecular markers, manifestations, treatment, prognosis, and prevention between proximal and distal GC to provide guidance and a basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Peng-Shan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ze-Yin Rong
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
45
|
Li X, Li Z, Liu P, Ai S, Sun F, Hu Q, Dong Y, Xia X, Guan W, Liu S. Novel CircRNAs in Hub ceRNA Axis Regulate Gastric Cancer Prognosis and Microenvironment. Front Med (Lausanne) 2021; 8:771206. [PMID: 34820403 PMCID: PMC8606568 DOI: 10.3389/fmed.2021.771206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies with an unfavorable survival rate. Immunotherapy may contribute to a better prognosis. However, several phase III trials failed. Circular RNA (circRNA) is a novel type of non-coding RNA, plays a vital role in the progression of tumors. The expression and function of circRNA in the GC immune microenvironment remain obscure. In this study, we utilized a bioinformatic analysis to construct a circRNA/microRNA (miRNA)/messenger RNA (mRNA) network involved in the progression and prognosis of GC. CircRNA DYRK1A_017, circRNA FLNA_118, miR-6512-3p, miR-6270-5p, and VCAN were identified as the key molecules in the hub regulatory axis. Dysregulation of this axis contributed to the cancer-associated signaling pathways (epithelial-mesenchymal transition [EMT], Nuclear factor kappa β-Tumor necrosis factor-α (NFκβ-TNFα) signaling, and angiogenesis) and aberrant immune microenvironment (infiltration by tumor associated macrophage, regulatory T cell, and mast cell). More importantly, the immunosuppressive tumor microenvironment may reveal the mechanism of novel circRNAs in tumors and serve as the target of immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyan Li
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ping Liu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Shichao Ai
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Sun
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxiang Dong
- First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xuefeng Xia
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Liu
- Department of Gastrointestinal Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Rong Z, Luo Z, Fu Z, Zhang P, Li T, Zhang J, Zhu Z, Yu Z, Li Q, Qiu Z, Huang C. The novel circSLC6A6/miR-1265/C2CD4A axis promotes colorectal cancer growth by suppressing p53 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:324. [PMID: 34656159 PMCID: PMC8520208 DOI: 10.1186/s13046-021-02126-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most frequent malignancy and a leading cause of cancer-related deaths. Therefore, further researches are required to identify novel and more effective diagnoses and to identify molecular targets in treatment of CRC. Methods C2CD4A expression in CRC tissues and cell lines was detected by qRT-PCR and western blot. The biological functions of C2CD4A were performed both in vitro and in vivo. Western blot, cDNA array, IP-MS, Co-immunoprecipitation assay, and Ubiquitination assay were used to analyze the interaction between C2CD4A and p53. Bioinformatics analysis, FISH, RNA sequencing, luciferase reporter assay, RNA immunoprecipitation, RNA pull-down and rescue experiments, were deployed to detect upstream regulation mechanism of C2CD4A. Results C2CD4A was elevated in CRC tissues compared with adjacent normal colorectal tissues. C2CD4A knockdown significantly promoted cell apoptosis and with inhibited proliferation in vitro, and tumorigenicity in vivo, whereas C2CD4A overexpression led to opposite effects. Moreover, circSLC6A6 was upregulated and shown to positively regulate C2CD4A expression via sponging miR-1265. Fundamentally, C2CD4A inhibited p53 signaling pathway through interacting with p53 and increasing its ubiquitination and degradation. Conclusion Our results identified that circSLC6A6/miR-1265/C2CD4A axis, which was involved in CRC via the p53 signaling pathway, may serve as a therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02126-y.
Collapse
Affiliation(s)
- Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Tengfei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Hai Ning Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
47
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
48
|
Bian W, Liu Z, Chu Y, Xing X. Silencing of circ_0078607 prevents development of gastric cancer and inactivates the ERK1/2/AKT pathway through the miR-188-3p/RAP1B axis. Anticancer Drugs 2021; 32:909-918. [PMID: 33929989 DOI: 10.1097/cad.0000000000001083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is to explore the expression and mechanism of circ_0078607 on proliferation and apoptosis of gastric cancer. Real time PCR (RT-PCR) was performed to detect the expression of circ_0078607 in gastric cancer tumor tissues, plasma and cell lines. Cell viability was detected by cell counting Kit-8. Cell proliferation ability was assessed by cell cycle assay. The samples were analyzed by flow cytometry for the detection of apoptosis. Luciferase assay and RNA immunoprecipitation (RIP) were carried out to verify the relationship between circ_0078607 and miR-188-3p, miR-188-3p, and RAP1B. Western blot was employed to detect the protein level of RAP1B, ERK1/2 and AKT. In vivo, the effect of circ_0078607 on gastric cancer tumor growth was detected by lentivirus vector injection. Here, we found the increased level of circ_0078607 in gastric cancer tissues, gastric cancer patients plasma and cell lines. Knockdown of circ_0078607 could prevent proliferation and induce cell apoptosis in MKN-28 cells. Then we verified that circ_0078607 could interact with miR-188-3p by performed luciferase assay and RIP. Furthermore, we observed that RAP1B was a potential target of miR-188-3p. Next, we found that miR-188-3p inhibitor or overexpression of RAP1B could prevent the anti-tumor function of sh-circ_0078607. Silencing of circ_0078607 inhibited ERK1/2/AKT signal pathways via regulating miR-188-3p/RAP1B. In vivo, knockdown of circ_0078607 inhibited tumor growth. Knockdown of circ_0078607 inhibits the proliferation and induces apoptosis of gastric cancer via miR-188-3p/RAP1B signal pathway.
Collapse
Affiliation(s)
- Weixin Bian
- Department of Oncology, Heilongjiang Province Hospital
| | - Zhiqiang Liu
- Department of Hematology, Harbin Medical University Cancer Hospital
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaofang Xing
- Department of Oncology, Heilongjiang Province Hospital
| |
Collapse
|
49
|
Zhang Y, Hu G, Zhang Z, Jing Y, Tao F, Ye M. CircRNA_0043691 sponges miR-873-3p to promote metastasis of gastric cancer. Mamm Genome 2021; 32:476-487. [PMID: 34370061 DOI: 10.1007/s00335-021-09900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022]
Abstract
Circular RNAs (circRNAs) are a class of novel RNAs, and aberrant expression of circRNAs has been implicated in human diseases, including gastric cancer (GC). This study aimed to identify the mechanism of circRNA_0043691 in regulating the progression of GC. GSE141977 was downloaded from Gene Expression Omibus ( http://www.ncbi.nlm.nih.gov/geo/ ). Differentially expressed circRNAs were obtained by R software. The expression levels of circRNA_0043691 in GC tissue and normal tissue were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Knockdown of circRNA_0043691 was then constructed and verified by qRT-PCR. Cell viability, migration, and invasion capacity were determined by Cell Counting Kit-8 assay, Transwell migration, and invasion, respectively. Next, knockdown of miR-873-3p was constructed and co-cultured with circRNA_0043691 knockdown to identify whether knockdown of miR-873-3p could attenuate the circRNA_0043691 knockdown on GC cells proliferation, migration, and invasion. The relationship between miR-873-3p and circRNA_0043691 or GART was predicted by bioinformatics tools and verified by dual-luciferase reporter. A total of 211 circRNAs were significantly differentially expressed, including 143 remarkably downregulated circRNAs and 68 significantly upregulated circRNAs. CircRNA_0043691 was upregulated in GC tissue. Knockdown of circRNA_0043691 decreased cell viability, migration, and invasion in GC cells. CircRNA_0043691 has potential putative binding sites with miR-873-3p. Moreover, CircRNA_0043691 positively regulated GART expression by sponging miR-873-3p. Furthermore, knockdown of miR-591 could partially attenuate the si-circRNA_0043691 on the GART expression. GART was upregulated in GC tissue and knockdown of GART could inhibit GC cells proliferation and invasion. Knockdown of circRNA_0043691 delayed the progression of GC via modulating the miR-873-3p-GART axis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Gengyuan Hu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Zhenxing Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China
| | - Minfeng Ye
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
50
|
Diao W, Wang Y, Zhang J, Shao H, Huang Y, Jin M. Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in postmenopausal osteoporosis. J Orthop Surg Res 2021; 16:459. [PMID: 34271965 PMCID: PMC8285836 DOI: 10.1186/s13018-021-02604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as crucial regulators in various human diseases. So far, the expression profile and regulatory mechanism of circRNAs in postmenopausal osteoporosis (PMOP) are less studied and should be deciphered urgently. Herein, we aimed to reveal key circRNAs affecting PMOP and clarify their compounding regulatory actions. METHODS To reveal key circRNAs affecting PMOP and clarify their compounding regulatory actions, whole transcriptome sequencing and bioinformatics analysis were performed to identify differentially expressed circRNAs (DECs). The expression pattern and regulatory networks of DECs in peripheral blood mononuclear cells (PBMCs) were unearthed. RESULTS A total of 373 DECs comprising 123 intronic, 100 antisense, 70 exonic, 55 intergenic, and 25 sense-overlapping circRNAs were identified. Among these, 73 circRNAs were upregulated and 300 were downregulated. These DECs exerted pivotal functions in the pathogenesis of PMOP as demonstrated by Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The circRNA-miRNA-mRNA co-expression network comprising 28 DECs, 145 miRNAs, and 175 differentially expressed mRNAs predicted the possible mechanism of the pathogenesis and progression of PMOP. CONCLUSION The results of the present study provided a further comprehension of circRNA-associated competing endogenous RNA regulatory mechanism in PMOP. The steadily expressed and disease-specific DECs may serve as promising diagnostic and prognostic biomarkers for PMOP.
Collapse
Affiliation(s)
- Weiyi Diao
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Qingchun Road No. 79, Hangzhou, 310001 Zhejiang Province China
| | - Yongguang Wang
- Department of Orthopedics, The Fifth People’s Hospital of Yuhang District, Baojian Road No. 60, Hangzhou, 310013 Zhejiang Province China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Haiyu Shao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Yazeng Huang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| | - Mengran Jin
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, Qingchun Road No. 79, Hangzhou, 310001 Zhejiang Province China
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Shangtang Road No. 158, Hangzhou, 310014 Zhejiang Province China
| |
Collapse
|