1
|
Li C, Xiao Y, Kong J, Lai C, Chen Z, Li Z, Xie W. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches. Cell Adh Migr 2024; 18:1-17. [PMID: 38555517 PMCID: PMC10984120 DOI: 10.1080/19336918.2024.2335682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Molecule interacting with CasL 1 (MICAL1) is a crucial protein involved in cell motility, axon guidance, cytoskeletal dynamics, and gene transcription. This pan-cancer study analyzed MICAL1 across 33 cancer types using bioinformatics and experiments. Dysregulated expression, diagnostic potential, and prognostic value were assessed. Associations with tumor characteristics, immune factors, and drug sensitivity were explored. Enrichment analysis revealed MICAL1's involvement in metastasis, angiogenesis, metabolism, and immune pathways. Functional experiments demonstrated its impact on renal carcinoma cells. These findings position MICAL1 as a potential biomarker and therapeutic target in specific cancers, warranting further investigation into its role in cancer pathogenesis.
Collapse
Affiliation(s)
- Canxuan Li
- Department of Urology, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China
| | - Yunfei Xiao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhiliang Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhuohang Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
3
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
6
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S, Tao K. Circular RNAs in tumor immunity and immunotherapy. Mol Cancer 2024; 23:171. [PMID: 39169354 PMCID: PMC11337656 DOI: 10.1186/s12943-024-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Circular RNAs (circRNAs) are unique noncoding RNAs that have a closed and stable loop structure generated through backsplicing. Due to their conservation, stability and tissue specificity, circRNAs can potentially be used as diagnostic indicators and therapeutic targets for certain tumors. Many studies have shown that circRNAs can act as microRNA (miRNA) sponges, and engage in interactions with proteins and translation templates to regulate gene expression and signal transduction, thereby participating in the occurrence and development of a variety of malignant tumors. Immunotherapy has revolutionized the treatment of cancer. Early researches have indicated that circRNAs are involved in regulating tumor immune microenvironment and antitumor immunity. CircRNAs may have the potential to be important targets for increasing sensitivity to immunotherapy and expanding the population of patients who benefit from cancer immunotherapy. However, few studies have investigated the correlation between circRNAs and tumor immunity. In this review, we summarize the current researches on circRNAs involved in antitumor immune regulation through different mechanisms and their potential value in increasing immunotherapy efficacy with the goal of providing new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhipeng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Haimin Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
7
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
8
|
Lyu F, Huang S, Yan Z, He Q, Liu C, Cheng L, Cong Y, Chen K, Song Y, Xing Y. CircUGGT2 facilitates progression and cisplatin resistance of bladder cancer through nonhomologous end-joining pathway. Cell Signal 2024; 119:111164. [PMID: 38583745 DOI: 10.1016/j.cellsig.2024.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.
Collapse
Affiliation(s)
- Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Sihuai Huang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, NO.34 North Zhongshan Road, Quanzhou 362000, China
| | - Zhecheng Yan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China..
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO.1277 Jiefang Avenue, Wuhan 430022, China..
| |
Collapse
|
9
|
Cheng Y, Shi R, Ben S, Chen S, Li S, Xin J, Wang M, Cheng G. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing. J Biomed Res 2024; 38:358-368. [PMID: 38808547 PMCID: PMC11300518 DOI: 10.7555/jbr.38.20240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The current study aimed to investigate associations of circRNAs and related genetic variants with the risk of prostate cancer (PCa) as well as to elucidate biological mechanisms underlying the associations. We first compared expression levels of circRNAs between 25 paired PCa and adjacent normal tissues to identify risk-associated circRNAs by using the MiOncoCirc database. We then used logistic regression models to evaluate associations between genetic variants in candidate circRNAs and PCa risk among 4662 prostate cancer patients and 3114 healthy controls, and identified circHIBADH rs11973492 T>C as a significant risk-associated variant (odds ratio = 1.20, 95% confidence interval: 1.08-1.34, P = 7.06 × 10 -4) in a dominant genetic model, which altered the secondary structure of the corresponding RNA chain. In the in silico analysis, we found that circHIBADH sponged and silenced 21 RNA-binding proteins (RBPs) enriched in the RNA splicing pathway, among which HNRNPA1 was identified and validated as a hub RBP using an external RNA-sequencing data as well as the in-house (four tissue samples) and publicly available single-cell transcriptomes. Additionally, we demonstrated that HNRNPA1 influenced hallmarks including MYC target, DNA repair, and E2F target signaling pathways, thereby promoting carcinogenesis. In conclusion, genetic variants in circHIBADH may act as sponges and inhibitors of RNA splicing-associated RBPs including HNRNPA1, playing an oncogenic role in PCa.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rongjie Shi
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junyi Xin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Gong Cheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
10
|
Ni L, Yamada T, Nakatani K. Utility of oligonucleotide in upregulating circular RNA production in a cellular model. Sci Rep 2024; 14:8096. [PMID: 38582789 PMCID: PMC10998836 DOI: 10.1038/s41598-024-58663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Circular RNAs (circRNAs), are a covalently closed, single-stranded RNA without 5'- and 3'-termini, commonly stem from the exons of precursor mRNAs (pre-mRNAs). They have recently garnered interest, with studies uncovering their pivotal roles in regulating various aspects of cell functions and disease progressions. A notable feature of circRNA lies in the mechanism of its biogenesis involving a specialized form of splicing: back-splicing. A splicing process that relies on interactions between introns flanking the circularizing exon to bring the up and downstream splice sites in proximity through the formation of a prerequisite hairpin structure, allowing the spliceosomes to join the two splice sites together to produce a circular RNA molecule. Based on this mechanism, we explored the feasibility of facilitating the formation of such a prerequisite hairpin structure by utilizing a newly designed oligonucleotide, CircuLarIzation Promoting OligoNucleotide (CLIP-ON), to promote the production of circRNA in cells. CLIP-ON was designed to hybridize with and physically bridge two distal sequences in the flanking introns of the circularizing exons. The feasibility of CLIP-ON was confirmed in HeLa cells using a model pre-mRNA, demonstrating the applicability of CLIP-ON as a trans-acting modulator to upregulate the production of circRNAs in a cellular environment.
Collapse
Affiliation(s)
- Lu Ni
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeshi Yamada
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
11
|
Yang H, He P, Luo W, Liu S, Yang Y. circRNA TATA-box binding protein associated factor 15 acts as an oncogene to facilitate bladder cancer progression through targeting miR-502-5p/high mobility group box 3. Mol Carcinog 2024; 63:629-646. [PMID: 38226841 DOI: 10.1002/mc.23677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
Circular RNAs (circRNAs) are key in regulating bladder cancer progression. This study explored the effects of circRNA TATA-box binding protein associated factor 15 (circTAF15) on bladder cancer progression. We enrolled 80 bladder cancer patients to examine the relationship between circTAF15 expression and clinical features. The function of circTAF15 on bladder cancer cell viability, proliferation, migration, invasion, and glycolysis was monitored by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine experiment, Transwell experiment, and glycolysis analysis. Dual luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation assay were used to verify the binding between circTAF15 and miR-502-5p or between miR-502-5p and high mobility group box 3 (HMGB3). circTAF15 effect on in vivo growth of bladder cancer was investigated by xenograft tumor experiment. Quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry were implemented to investigate the expression levels of genes. circTAF15 was upregulated in bladder cancer patients, associated with unfavorable outcomes. circTAF15 knockdown attenuated bladder cancer cell viability, proliferation, migration, invasion, epithelial-mesenchymal transition, and glycolysis. circTAF15 suppressed miR-502-5p expression, and miR-502-5p inhibited HMGB3 expression. Low miR-502-5p expression was associated with unfavorable outcomes in bladder cancer patients. miR-502-5p silencing and HMGB3 overexpression counteracted the inhibition of circTAF15 knockdown on the malignant phenotype of bladder cancer cells. circTAF15 knockdown attenuated the in vivo growth of bladder cancer cells. circTAF15 enhanced the progression of bladder cancer through upregulating HMGB3 via suppressing miR-502-5p. circTAF15 may be a novel target to treat bladder cancer in the future.
Collapse
Affiliation(s)
- Hong Yang
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peilin He
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Luo
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shaoyou Liu
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Yang
- Department of Urology, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Zhang Z, Liu W, Huang T, Li J, Hu H, Xu X, Fan Z. CircCPA4 induces ASCT2 expression to promote tumor property of non-small cell lung cancer cells in a miR-145-5p-dependent manner. Thorac Cancer 2024; 15:764-777. [PMID: 38400818 PMCID: PMC10995715 DOI: 10.1111/1759-7714.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a type of lung cancer that occurs in the cells of the respiratory tract, and its development is influenced by the regulation of circular RNAs (circRNAs). However, the role of circRNA carboxypeptidase A4 (circCPA4) in the progression of NSCLC and the underlying mechanism remain relatively clear. METHODS The study utilized both real-time quantitative polymerase chain reaction (RT-qPCR) and western blot techniques to evaluate the levels of circCPA4, microRNA-145-5p (miR-145-5p), alanine, serine, or cysteine-preferring transporter 2 (ASCT2). To assess cell proliferation, cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed. Apoptosis was determined using flow cytometry, while cell migration and invasive capacity were evaluated through transwell and wound-healing assays. Intracellular levels of glutamine, glutamate, and α-KG were measured using specific kits. The relationship between miR-145-5p and circCPA4 or ASCT2 was confirmed using dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS CircCPA4 and ASCT2 RNA levels were elevated, while miR-145-5p was downregulated in both NSCLC tissues and cells. Depletion of circCPA4 significantly inhibited NSCLC cell proliferation, migration, invasion, and intracellular levels of glutamine, glutamate, and α-KG, and promoted apoptosis. Moreover, circCPA4 knockdown delayed tumor growth in vivo. Furthermore, circCPA4 was found to bind to miR-145-5p, thereby regulating the progression of NSCLC in vitro. ASCT2 was also identified as a downstream target of miR-145-5p, and its upregulation rescued the effects of miR-145-5p overexpression on NSCLC cell processes. CONCLUSION CircCPA4 knockdown inhibited tumor property of NSCLC cells by modulating the miR-145-5p/ASCT2 axis.
Collapse
Affiliation(s)
| | - Weiliang Liu
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Tao Huang
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Junyan Li
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Hui Hu
- Department of Cardiothoracic SurgeryHanzhongChina
| | - Xinyu Xu
- Department of Cardiothoracic SurgeryHanzhongChina
| | | |
Collapse
|
13
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|
14
|
Dai H, Yi G, Jiang D, Min Y, Li Z. Circ_0000376 regulates miR-577/HK2/LDHA signaling pathway to promote the growth, invasion and glycolysis of osteosarcoma. J Orthop Surg Res 2024; 19:67. [PMID: 38218855 PMCID: PMC10788008 DOI: 10.1186/s13018-023-04520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Many studies have confirmed that circular RNAs (circRNAs) mediate the malignant progression of various tumors including osteosarcoma (OS). Our study is to uncover novel molecular mechanisms by which circ_0000376 regulates OS progression. METHODS The expression of circ_0000376, microRNA (miR)-577, hexokinase 2 (HK2) and lactate dehydrogenase-A (LDHA) was determined by quantitative real-time PCR. OS cell proliferation, apoptosis and invasion were measured using cell counting kit 8 assay, colony formation assay, EdU assay, flow cytometry and transwell assay. Besides, cell glycolysis was assessed by testing glucose consumption, lactate production, and ATP/ADP ratios. Protein expression was examined by western blot analysis. The interaction between miR-577 and circ_0000376 or HK2/LADA was verified by dual-luciferase reporter assay. The role of circ_0000376 on OS tumor growth was explored by constructing mice xenograft models. RESULTS Circ_0000376 had been found to be upregulated in OS tissues and cells. Functional experiments revealed that circ_0000376 interference hindered OS cell growth, invasion and glycolysis. Circ_0000376 sponged miR-577 to reduce its expression. In rescue experiments, miR-577 inhibitor abolished the regulation of circ_0000376 knockdown on OS cell functions. MiR-577 could target HK2 and LDHA in OS cells. MiR-577 suppressed OS cell growth, invasion and glycolysis, and these effects were reversed by HK2 and LDHA overexpression. Also, HK2 and LDHA expression could be regulated by circ_0000376. In vivo experiments showed that circ_0000376 knockdown inhibited OS tumorigenesis. CONCLUSION Circ_0000376 contributed to OS growth, invasion and glycolysis depending on the regulation of miR-577/HK2/LDHA axis, providing a potential target for OS treatment.
Collapse
Affiliation(s)
- Hongchun Dai
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Guangming Yi
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Dong Jiang
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Yanmei Min
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zongwei Li
- Department of Foot and Ankle Surgery, Mianyang Orthopedic Hospital, No.30, Nanhe Road, Fucheng District, Mianyang City, 621000, Sichuan, China.
| |
Collapse
|
15
|
Wang X, Liu Z, Du Y, Hao S, Zhao B. Hsa_circ_0043603 promotes the progression of esophageal squamous cell carcinoma by sponging miR-1178-3p and regulating AADAC expression. Heliyon 2023; 9:e19807. [PMID: 37809396 PMCID: PMC10559168 DOI: 10.1016/j.heliyon.2023.e19807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This study aims to investigate the regulatory impact of hsa_circ_0043,603, a circular RNA, on the progression of esophageal squamous cell carcinoma (ESCC), which ranks as the sixth leading cause of global mortality. We evaluated the expression, origin, and localization of hsa_circ_0043,603 in ESCC tumors using qRT-PCR, bioinformatics, and FISH analysis. Functional studies were conducted by manipulating the hsa_circ_0043,603 expression in Eca109 cells through overexpression and silencing plasmids. Additionally, xenografts derived from circ_0043,603-overexpressing Eca109 cells enabled us to investigate tumor growth, proliferation, and apoptosis. Through Starbase analysis, we identified miR-1178-3p as a target of circ_0043,603, which was validated using RIP and luciferase assays. Furthermore, we predicted arylacetamide deacetylase (AADAC) as a target of miR-1178-3p and examined its expression in ESCC tissues using Western blot. Lastly, we performed AADAC silencing and overexpression in Eca109 cells to study their impact on cellular phenotypic features, apoptosis, and their interaction with miR-1178-3p mimics and inhibitors. The low expression of hsa_circ_0043,603 in ESCC tissue was associated with poor prognosis. Overexpression of hsa_circ_0043,603 inhibited ESCC growth, invasion, migration, and proliferation, while promoting apoptosis in vitro and suppressing tumor growth in vivo. hsa_circ_0043,603 achieved these effects by targeting the oncogenic miR-1178-3p. Furthermore, AADAC was identified as a target of miR-1178-3p, and its reduced expression was confirmed in ESCC tissues. Overexpression of AADAC in Eca109 cells resulted in suppressed cell growth, proliferation, migration, and invasion by regulating miR-1178-3p. hsa_circ_0043,603 acts as a sponge for miR-1178-3p, leading to the regulation of AADAC expression and inhibition of ESCC development. These results suggest the potential of hsa_circ_0043,603 as a therapeutic and diagnostic target for ESCC.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zhiguang Liu
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yalong Du
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Shuguang Hao
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bing Zhao
- Department of Thoracic Surgical Oncology Ward One, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| |
Collapse
|
16
|
Zhang J, Chu G, Zheng L, Liu J, He J. Circular RNA circ_0000119 promotes cervical cancer cell growth and migration via miR-433-3p/PAK2 axis. J Appl Genet 2023; 64:531-543. [PMID: 37540462 DOI: 10.1007/s13353-023-00772-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
The purpose of this study was to investigate the role of circ_0000119 on CC progression and its molecular mechanism. The expression levels of circ_0000119, miR-433-3p, and p21-activated kinase 2 (PAK2) in CC tissues and cell lines were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay. Cell cycle and apoptosis were assessed by flow cytometry. Cell migration and invasive ability were examined by Transwell assays. Downstream binding targets of circ_0000119 were predicted by online bioinformatics tools and confirmed by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay. The role of circ_0000119/miR-433-3p/PAK2 axis in regulating the CC process was explored by rescue experiments. A xenograft model was constructed to further determine the effect of circ_0000119 on CC tumor growth in vivo. Immunohistochemistry (IHC) assay was conducted for Ki67 expression. Circ_0000119 was aberrantly upregulated in CC tissues and cell lines. Knockdown of circ_0000119 inhibited CC cell proliferation, cell cycle progress, migration, invasion, and promoted apoptosis of CC cells. MiR-433-3p was a binding target of circ_0000119, and PAK2 was a downstream gene of miR-433-3p. MiR-433-3p inhibition reversed the inhibitory effect of silencing circ_0000119 on CC progression. In addition, PAK2 overexpression reversed the effect of miR-433-3p on CC progression. PAK2 expression was regulated by circ_0000119 and miR-433-3p. Moreover, circ_0000119 knockdown reduced tumor growth of CC in vivo. Circ_0000119 was upregulated in CC, and circ_0000119 knockdown suppressed CC malignant development through the miR-433-3p/PAK2 axis.
Collapse
Affiliation(s)
- Junxiao Zhang
- Third Department of Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Yanta District, Xi'an, 710061, People's Republic of China.
| | - Guanghua Chu
- Second Department of Gynecology, Northwest Women's and Children's Hospital, Xi'an , 710061, China
| | - Lihua Zheng
- Third Department of Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Yanta District, Xi'an, 710061, People's Republic of China
| | - Juandi Liu
- Third Department of Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Yanta District, Xi'an, 710061, People's Republic of China
| | - Juxian He
- Third Department of Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Yanta District, Xi'an, 710061, People's Republic of China
| |
Collapse
|
17
|
Niu Y, Fan L, Shi X, Wu J, Wang T, Hou X. Circ_0001715 accelerated lung adenocarcinoma process by the miR-1322/CANT1 axis. Diagn Pathol 2023; 18:91. [PMID: 37553672 PMCID: PMC10408075 DOI: 10.1186/s13000-023-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/25/2023] [Indexed: 08/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a type of lung cancer, which belongs to non-small cell lung cancer and has seriously endangered the physical and mental health of people. The study of circRNAs (circRNAs) has been increasingly hot in recent years, in which circRNAs also play an important regulatory role in cancer. The aim of this study was to investigate the biological molecular mechanisms of circ_0001715 in the progression of LUAD. The expression of circ_0001715, miR-1322 and calcium-activated nucleotidase 1 (CANT1) in LUAD tissues and cell lines was assessed by quantitative reverse transcription PCR (RT-qPCR) and western bot assay. Clone formation assay, 5-Ethynyl-2'-Deoxyuridine (EDU) assay and wound healing assay were used to verify the proliferation ability of cells. Dual-luciferase reporter assay and RNA pull-down assay were performed to characterize the interactions between the three factors. Finally, a mouse tumor model was constructed to assess the tumorigenicity of circ_0001715. RT-qPCR assay results showed that circ_0001715 expression was significantly increased in LUAD tissues and cell lines. Finally, knockdown of circ_0001715 could inhibit tumor growth in vivo. Circ_0001715 regulated the progression of LUAD through the miR-1322/CANT1 axis. The results of this study provided ideas for understanding the molecular mechanisms of circ_0001715 in LUAD.
Collapse
Affiliation(s)
- Yue Niu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Lina Fan
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Xiaoyu Shi
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Jia Wu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Tengqi Wang
- Department of Gastrointestinal Surgery, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| | - Xiaofeng Hou
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| |
Collapse
|
18
|
Li Z, Wang Z, Yang S, Shen C, Zhang Y, Jiang R, Zhang Z, Zhang Y, Hu H. CircSTK39 suppresses the proliferation and invasion of bladder cancer by regulating the miR-135a-5p/NR3C2-mediated epithelial-mesenchymal transition signaling pathway. Cell Biol Toxicol 2023; 39:1815-1834. [PMID: 36538242 DOI: 10.1007/s10565-022-09785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) serve as novel noncoding RNAs that have crucial functions in the development of tumors, including those from bladder cancer (BCa). However, the role and underlying molecular mechanism of circRNAs in mediating the epithelial-mesenchymal transition (EMT) processes in BCa have yet to be studied. In this research, we first found a novel circRNA, circSTK39 (termed as has_circ_0001079), which was a downregulated gene based on the results of high-throughput RNA sequencing. Subsequently, we determined that the expression of circSTK39 in BCa tissues and their cell lines was significantly reduced. In addition, lower circSTK39 expression was strongly related to a worse prognosis for BCa patients. Next, we detected the biological functions of circSTK39 by using loss and gain experiments in vitro and in vivo. Ectopic expression of circSTK39 decreased cell proliferation, colony formation, and invasion capacities, while circSTK39 knockdown prevented the above phenotypes. Mechanically, circSTK39 could sponge with miR-135a-5p, thus inhibiting NR3C2-mediated EMT processes in the BCa progression. In conclusion, our results revealed that circSTK39 inhibited EMT of BCa cells through the miR-135a-5p/NR3C2 axis and may provide promising biomarkers for the diagnosis or prospective therapeutic targets for BCa.
Collapse
Affiliation(s)
- Zhi Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zejin Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yinglang Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, People's Republic of China
| | - Runxue Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Oncology Surgery, Tangshan People's Hospital, Tangshan, People's Republic of China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
19
|
Cheng J, Li G, Wang W, Stovall DB, Sui G, Li D. Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188909. [PMID: 37172651 DOI: 10.1016/j.bbcan.2023.188909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.
Collapse
Affiliation(s)
- Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
20
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
21
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
22
|
Feng H, Deng Z, Peng W, Wei X, Liu J, Wang T. Circular RNA EPHA3 suppresses progression and metastasis in prostate cancer through the miR-513a-3p/BMP2 axis. J Transl Med 2023; 21:288. [PMID: 37118847 PMCID: PMC10148471 DOI: 10.1186/s12967-023-04132-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may regulate the onset and progression of human malignancies by competitively binding to microRNA (miRNA) sponges, thus regulating the downstream genes. However, aberrant circRNA expression patterns and their biological functions in prostate cancer (PCa) warrant further studies. Our research sought to shed further light on the possible role and molecular mechanism of circEPHA3 action in controlling the growth and metastasis of PCa cells. MATERIALS AND METHODS circEPHA3 (has_circ_0066596) was initially screened from a previous circRNA microarray and identified following Actinomycin D and RNase R assays. Fluorescence in situ hybridization, biotin-coupled probe RNA pulldown, and dual-luciferase reporter gene assays were performed to examine the relationship between circEPHA3 and miR-513a-3p. The biological role of circEPHA3 in PCa was assessed by CCK8, wound healing, Transwell assays, and animal experiments. RESULTS We identified a novel circular RNA, circEPHA3 (has_circ_0066596), which was down-regulated in high-grade PCa tissues and cell lines. The outcomes of CCK8, wound healing, Transwell assays, and animal experiments revealed that circEPHA3 prohibited the progression and metastasis of PCa in vivo and in vitro. Mechanistically, circEPHA3 was directly bound to miR-513a-3p and regulated the downstream gene, BMP2, thereby serving as a tumor suppressor in PCa. CONCLUSIONS As a tumor suppressor, circEPHA3 inhibited the proliferation and metastasis of PCa cells through the miR-513a-3p/BMP2 axis, suggesting that circEPHA3 might be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, Yu L, Liu J, Duan B, Rahman NA, Wołczyński S, Li G, Li X. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer 2023; 22:16. [PMID: 36691031 PMCID: PMC9869513 DOI: 10.1186/s12943-023-01719-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND hsa_circ_0001727 (circZKSCAN1) has been reported to be a tumor-associated circRNA by sponging microRNAs. Intriguingly, we found that circZKSCAN1 encoded a secretory peptide (circZKSaa) in the liver. The present study aims to elucidate the potential role and molecular mechanism of circZKSaa in the regulation of hepatocellular carcinoma (HCC) progression. METHODS The circRNA profiling datasets (RNA-seq data GSE143233 and GSE140202) were reanalyzed and circZKSCAN1 was selected for further study. Mass spectrometry, polysome fractionation assay, dual-luciferase reporter, and a series of experiments showed that circZKSCAN1 encodes circZKSaa. Cell proliferation, apoptosis, and tumorigenesis in nude mice were examined to investigate the functions of circZKSaa. Mechanistically, the relationship between the circZKSaa and mTOR in HCC was verified by immunoprecipitation analyses, mass spectrometry, and immunofluorescence staining analyses. RESULTS Receiver operating characteristic (ROC) analysis demonstrated that the secretory peptide circZKSaa encoded by circZKSCAN1 might be the potential biomarker for HCC tissues. Through a series of experiments, we found that circZKSaa inhibited HCC progression and sensitize HCC cells to sorafenib. Mechanistically, we found that the sponge function of circZKSCAN1 to microRNA is weak in HCC, while overexpression of circZKSaa promoted the interaction of FBXW7 with the mammalian target of rapamycin (mTOR) to promote the ubiquitination of mTOR, thereby inhibiting the PI3K/AKT/mTOR pathway. Furthermore, we found that the high expression of cicZKSCAN1 in sorafenib-treated HCC cells was regulated by QKI-5. CONCLUSIONS These results reveal that a novel circZKSCAN1-encoded peptide acts as a tumor suppressor on PI3K/AKT/mTOR pathway, and sensitizes HCC cells to sorafenib via ubiquitination of mTOR. These findings demonstrated that circZKSaa has the potential to serve as a therapeutic target and biomarker for HCC treatment.
Collapse
Affiliation(s)
- Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuoqian Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiajia Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peilan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huijiao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fan Yin
- Department of Oncology, The Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, 100071, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100071, China
| | - Qiang Wang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Binwei Duan
- Department of General Surgery CenterBeijing You An Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Nafis A Rahman
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Guangming Li
- Department of General Surgery CenterBeijing You An Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
24
|
Abstract
Circular RNAs (circRNAs) are closed-loop RNA transcripts formed by a noncanonical back splicing mechanism. circRNAs are expressed in various tissues and cell types in a temporospatially regulated manner and have diverse molecular functions including their ability to act as miRNA sponges, transcriptional and splicing regulators, protein traps, and even templates for polypeptide synthesis. Emerging evidence suggests that circRNAs are themselves dynamically regulated throughout development in various organisms, with a substantial accumulation during ageing. Their regulatory roles in cellular pathways associated with ageing and senescence, as well as their implications in ageing-related diseases, such as neurological disease, cancer, and cardiovascular disease, suggest that circRNAs are key molecular determinants of the ageing process. Their unique structure, expression specificity, and biological functions highlight a potential capacity for use as novel biomarkers for diagnosis, prognosis, and treatment outcomes in a variety of conditions including pathological ageing. CircRNA may also have potential as target for interventions that manipulate ageing and longevity. In this chapter, we discuss the most recent advances in circRNA changes in ageing and ageing-associated disease.
Collapse
|
25
|
Li C, Gao X, Zhao Y, Chen X. High Expression of circ_0001821 Promoted Colorectal Cancer Progression Through miR-600/ISOC1 Axis. Biochem Genet 2023; 61:410-427. [PMID: 35943670 PMCID: PMC9852123 DOI: 10.1007/s10528-022-10262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
It has been reported that circRNAs play an important regulatory role in the progression of colorectal cancer (CRC). However, the molecular role of circ_0001821 in CRC development is unclear. In this study, we aimed to investigate the regulatory role and molecular mechanisms of circ_0001821 in CRC. Reverse transcription-quantitative PCR and western blot assays were used to detect the expression of circ_0001821, miR-600 and isochorismatase domain containing 1 (ISOC1) in CRC tissues as well as its cell lines. Colony formation assay and EDU assay were used to detect the proliferative capacity of cells. Transwell assay was used to assess cell migration and invasion ability. Flow cytometry was used to analyze cell apoptosis. ELISA was used to measure the glycolytic capacity of cells. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between circ_0001821, miR-600 and ISOC1. Animal experimentation was used to validate the functional study of circ_0001821 in vivo. Immunohistochemistry (IHC) of Ki67 staining analysis was conducted to assess tumor growth. Circ_0001821 and ISOC1 were significantly increased in CRC tissues and its cell lines, and miR-600 was significantly decreased in CRC tissues and its cell lines. Silencing circ_0001821 inhibited cell proliferation, migration, invasion and glycolytic capacity, while inducing apoptosis. And it could inhibit tumor growth in vivo. Circ_0001821 could act as a sponge for miR-600 to regulate CRC processes. ISOC1 was identified as a downstream regulator of miR-600, also miR-600 could regulate the expression of ISOC1. In addition, circ_0001821 could regulate ISOC1 expression changes through miR-600. Mechanistically, either miR-600 inhibitor or overexpression of ISOC1 could reverse the effects of knockdown of circ_0001821 on cell biological properties. Circ_0001821 regulated the developmental process of CRC through miR-600/ISOC1 axis.
Collapse
Affiliation(s)
- Cheng Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xudong Gao
- Department of Otolaryngology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yi Zhao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, No. 256 Youyi West Rd, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
26
|
Lan W, Dong Y, Chen Q, Liu J, Wang J, Chen YPP, Pan S. IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3530-3538. [PMID: 34506289 DOI: 10.1109/tcbb.2021.3111607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accumulating evidences have shown that circRNA plays an important role in human diseases. It can be used as potential biomarker for diagnose and treatment of disease. Although some computational methods have been proposed to predict circRNA-disease associations, the performance still need to be improved. In this paper, we propose a new computational model based on Improved Graph convolutional network and Negative Sampling to predict CircRNA-Disease Associations. In our method, it constructs the heterogeneous network based on known circRNA-disease associations. Then, an improved graph convolutional network is designed to obtain the feature vectors of circRNA and disease. Further, the multi-layer perceptron is employed to predict circRNA-disease associations based on the feature vectors of circRNA and disease. In addition, the negative sampling method is employed to reduce the effect of the noise samples, which selects negative samples based on circRNA's expression profile similarity and Gaussian Interaction Profile kernel similarity. The 5-fold cross validation is utilized to evaluate the performance of the method. The results show that IGNSCDA outperforms than other state-of-the-art methods in the prediction performance. Moreover, the case study shows that IGNSCDA is an effective tool for predicting potential circRNA-disease associations.
Collapse
|
27
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
28
|
Shalata AT, Shehata M, Van Bogaert E, Ali KM, Alksas A, Mahmoud A, El-Gendy EM, Mohamed MA, Giridharan GA, Contractor S, El-Baz A. Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends. Cancers (Basel) 2022; 14:5019. [PMID: 36291803 PMCID: PMC9599984 DOI: 10.3390/cancers14205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer globally and has a high mortality rate if not detected early and treated promptly. Non-muscle-invasive BC (NMIBC) is a subclassification of BC associated with high rates of recurrence and progression. Current tools for predicting recurrence and progression on NMIBC use scoring systems based on clinical and histopathological markers. These exclude other potentially useful biomarkers which could provide a more accurate personalized risk assessment. Future trends are likely to use artificial intelligence (AI) to enhance the prediction of recurrence in patients with NMIBC and decrease the use of standard clinical protocols such as cystoscopy and cytology. Here, we provide a comprehensive survey of the most recent studies from the last decade (N = 70 studies), focused on the prediction of patient outcomes in NMIBC, particularly recurrence, using biomarkers such as radiomics, histopathology, clinical, and genomics. The value of individual and combined biomarkers is discussed in detail with the goal of identifying future trends that will lead to the personalized management of NMIBC.
Collapse
Affiliation(s)
- Aya T. Shalata
- Biomedical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Shehata
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Eric Van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Khadiga M. Ali
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Alksas
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Eman M. El-Gendy
- Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Mohamed
- Electronics and Communication Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | | | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
29
|
Zhou Z, Cui X, Gao P, Zhang X, Zhu C, Sun B. Circular RNA circRASSF5 Functions as an Anti-Oncogenic Factor in Hepatocellular Carcinoma by Acting as a Competitive Endogenous RNA Through Sponging miR-331-3p. J Hepatocell Carcinoma 2022; 9:1041-1056. [PMID: 36217445 PMCID: PMC9547604 DOI: 10.2147/jhc.s376063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Recently, emerging studies have validated that circular RNAs participate in multiple biological progresses in various human malignant tumors, including hepatocellular carcinoma (HCC). However, until now, the elucidated mechanism of circular RNAs is only the tip of the iceberg. In this study, we firstly identify a novel circular RNA circRASSF5 (the only circular RNA derived from the RASSF5 gene), and attempt to investigate its biological function and underlying mechanism in HCC. Methods qRT-PCR, Western blotting and IHC were applied to detect the expression of related genes. CCK-8 assay, EdU staining, wound healing and transwell assays were used to investigate HCC proliferation, migration and invasion abilities. Animal model studies were included to investigate the function of circRASSF5 in HCC tumorigenesis and metastasis. RNA pull-down assay, luciferase reporter assay and FISH (fluorescence in situ hybridization) assay were performed to explore the potential biological mechanism underlying circRASSF5 function in HCC. Results CircRASSF5 is obviously downregulated in both HCC tissues and cell lines. Low level of circRASSF5 is negatively associated with larger tumor size, severe vascular invasion, more portal vein tumor embolus and unfavorable prognosis. Loss-of-function assay reveals that circRASSF5 remarkably impedes the growth and metastasis of HCC cells in vitro and in vivo. Mechanistically, circRASSF5 directly interacts with miR-331-3p as a sponge, and then enhances the expression of PH domain and leucine-rich repeat protein phosphatase (PHLPP), thus restraining the progression of HCC cells. Conclusion Altogether, we validate that circRASSF5 is a tumor suppressor in HCC, which competitively sponges with miR-331-3p and then enhances the tumor inhibitory effect of PHLPP, indicating the potential application value of circRASSF5 for HCC diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Zhao Zhou
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaohan Cui
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Peng Gao
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xudong Zhang
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chunfu Zhu
- The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China,Correspondence: Chunfu Zhu, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China, Email
| | - Beicheng Sun
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China,Beicheng Sun, Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China, Email
| |
Collapse
|
30
|
Zhu L, Liu Y, Tang H, Wang P. Circular RNA Circ_0001777 Suppresses Lung Adenocarcinoma Progression In Vitro and In Vivo. Biochem Genet 2022; 61:704-724. [PMID: 36103059 DOI: 10.1007/s10528-022-10284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Circular RNA_0001777 (circ_0001777) is reported to be down-regulated in lung cancer. Nevertheless, the function of circ_0001777 in lung adenocarcinoma is largely unclear. We explored the role of circ_0001777 in lung adenocarcinoma progression and the underlying molecular mechanism. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were conducted to determine the expression of RNAs and proteins. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-20-deoxyuridine, and colony formation assays were conducted to analyze cell proliferation ability. Flow cytometry was carried out to assess cell apoptosis rate. Cell migration and invasion abilities were analyzed by wound healing assay and transwell assays. Cell glycolytic metabolism was measured using a fluorescence-based glucose assay kit and a lactate oxidase-based colorimetric assay kit. Dual-luciferase reporter assay and RNA immunoprecipitation assay were implemented to verify the intermolecular interactions. Circ_0001777 expression was reduced in lung adenocarcinoma tissues and cell lines. Circ_0001777 overexpression restrained the proliferation, migration, invasion, and glycolysis and promoted the apoptosis of lung adenocarcinoma cells. Circ_0001777 could directly bind to microRNA-942-5p (miR-942-5p). The anti-tumor effects of circ_0001777 overexpression in lung adenocarcinoma cells were reversed after miR-942-5p accumulation. miR-942-5p directly bound to the 3' untranslated region (3'UTR) of prickle planar cell polarity protein 2 (PRICKLE2), and PRICKLE2 silencing reversed the anti-tumor effects of miR-942-5p knockdown in lung adenocarcinoma cells. Circ_0001777 could regulate PRICKLE2 expression by absorbing miR-942-5p. Circ_0001777 overexpression markedly hampered tumor progression in vivo. Circ_0001777 suppressed the progression of lung adenocarcinoma by binding to miR-942-5p to induce PRICKLE2 expression.
Collapse
|
31
|
CircDUSP22 Overexpression Restrains Pancreatic Cancer Development via Modulating miR-1178-3p and Downstream BNIP3. Biochem Genet 2022; 61:651-668. [PMID: 36063260 DOI: 10.1007/s10528-022-10275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2022] [Indexed: 11/02/2022]
Abstract
Aberrant expression of circular RNAs (circRNAs) is important in carcinogenesis, however, many differentially expressed circRNAs have not been functionally characterized. This study aimed to unveil the role of circRNA-dual specificity phosphatase 22 (circDUSP22) in pancreatic cancer (PaCa). Expression analyses of circDUSP22, miR-1178-3p and BCL2 interacting protein 3 (BNIP3) were carried out using quantitative real-time PCR (qRT-PCR) or western blotting. Cell growth was assessed by MTT, EdU and colony formation assays. Cell cycle distribution and cell apoptosis were investigated using flow cytometry assay. The assumed binding relationship between miR-1178-3p and circDUSP22 or BNIP3 was testified by dual-luciferase reporter and pull-down assays. The effect of circDUSP22 in vivo was identified by animal studies. The decreased expression of circDUSP22 was observed in PaCa samples and cells. CircDUSP22 ectopic expression in vitro blocked PaCa cell proliferation, arrested cell cycle and provoked cell apoptosis. CircDUSP22 targeted miR-1178-3p, whose expression was reinforced in PaCa. The inhibitory cell growth caused by circDUSP22 ectopic expression was reversed by miR-1178-3p enrichment. In addition, miR-1178-3p targeted BNIP3, whose expression was declined in PaCa. The inhibitory cell growth caused by circDUSP22 ectopic expression was reversed by BNIP3 knockdown. CircDUSP22 overexpression in vivo decelerated tumor growth. CircDUSP22 upregulation blocked PaCa development partly by targeting miR-1178-3p and increasing BNIP3, implying the potential implication of circDUSP22 in targeted therapy of PaCa.
Collapse
|
32
|
Ding L, Feng Y, Li L. Circ_0001955 promotes the progression of non-small cell lung cancer via miR-769-5p/EGFR axis. Cell Cycle 2022; 21:2433-2443. [PMID: 35920610 PMCID: PMC9645262 DOI: 10.1080/15384101.2022.2100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To elaborate on the role of circular RNA 0001955 (circ_0001955) on the proliferation and apoptosis of non-small cell lung cancer (NSCLC) cells and its underlying mechanism. Circ_0001955 expression in NSCLC was screened out through bioinformatics analysis based on GEO database. Circ_0001955, microRNA-769-5p (miR-769-5p), and epidermal growth factor receptor (EGFR) expression in NSCLC tissues and cell lines was examined using quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation and apoptosis were examined using the CCK-8 method, BrdU experiment and flow cytometry analysis, respectively. Bioinformatics prediction, dual-luciferase reporter gene experiment and RNA immunoprecipitation (RIP) experiments were applied to validate the targeting relationship between miR-769-5p and circ_0001955 and the 3' UTR of EGFR. Pearson's correlation analysis was employed to validate the correlations among them. Circ_0001955 expression was up-regulated in NSCLC tissues and cell lines, and its overexpression was strongly associated with increased tumor TNM stage and lymph node metastasis. Circ_0001955 overexpression enhanced the proliferation and restrained the apoptosis in NSCLC cells, whereas knocking down circ_0001955 exerted the opposite effects. Circ_0001955 directly targeted miR-769-5p and negatively regulated its expression. EGFR, a target gene of miR-769-5p, could be indirectly and positively regulated by circ_0001955. Correlation analysis indicated that circ_0001955 was negatively correlated with miR-769-5p expression, while circ_0001955 was positively correlated with EGFR expression. Circ_0001955 facilitates the proliferation and represses the apoptosis of NSCLC cells by modulating miR-769-5p/EGFR axis.
Collapse
Affiliation(s)
- Li Ding
- Department of Respiratory, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yinan Feng
- Department of Endocrine and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Longguang Li
- Rehabilitation Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
33
|
Ma Y, Yang D, Guo P. Circ_0000144 acts as a miR-1178-3p decoy to promote cell malignancy and angiogenesis by increasing YWHAH expression in papillary thyroid cancer. J Otolaryngol Head Neck Surg 2022; 51:28. [PMID: 35902926 PMCID: PMC9330660 DOI: 10.1186/s40463-022-00574-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common subtype of thyroid cancer. Circular RNA hsa_circ_0000144 (circ_0000144) is related to the progression of thyroid cancer. However, the mechanism by which circ_0000144 accelerates PTC progression is still unclear. Circ_0000144 and YWHAH were upregulated in PTC tissues and cells, while miR-1178-3p had an opposite result. Circ_0000144 silencing constrained PTC cell growth in vitro and in vivo and induced apoptosis and repressed migration, invasion, and angiogenesis of PTC cells in vitro. Circ_0000144 acted as a molecular sponge for miR-1178-3p, which targeted YWHAH. MiR-1178-3p inhibitor reversed circ_0000144 silencing-mediated influence on PTC cell malignancy and angiogenesis. Furthermore, YWHAH overexpression overturned miR-1178-3p mimic-mediated influence on malignant behaviors and angiogenesis of PTC cells. Notably, circ_0000144 regulated YWHAH expression by adsorbing miR-1178-3p. Circ_0000144 promoted cell malignancy and angiogenesis by regulating the miR-1178-3p/YWHAH axis in PTC, offering a novel mechanism for the malignancy and angiogenesis of PTC cells. Inhibition of circ_0000144 repressed malignant behaviors and angiogenesis of PTC cells in vitro. Knockdown of circ_0000144 constrained PTC cell proliferation in vivo. Circ_0000144 acted as a miR-1178-3p sponge. YWHAH acted as a downstream target for miR-1178-3p.
Collapse
Affiliation(s)
- Yinli Ma
- Department of Inspection, The First People's Hospital of Fuyang District, No.429, Beihuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China.
| | - Dan Yang
- Department of Inspection, The First People's Hospital of Fuyang District, No.429, Beihuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| | - Pingan Guo
- Department of Inspection, The First People's Hospital of Fuyang District, No.429, Beihuan Road, Fuyang District, Hangzhou, 311400, Zhejiang, China
| |
Collapse
|
34
|
Tumor suppressive role of microRNA-139-5p in bone marrow mesenchymal stem cells-derived extracellular vesicles in bladder cancer through regulation of the KIF3A/p21 axis. Cell Death Dis 2022; 13:599. [PMID: 35821021 PMCID: PMC9276749 DOI: 10.1038/s41419-022-04936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/26/2022] [Accepted: 05/11/2022] [Indexed: 01/21/2023]
Abstract
The emerging roles of extracellular vesicles (EVs) in bladder cancer have recently been identified. This study aims to elucidate the role of microRNA-139-5p (miR-139-5p) shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived EVs (BMSCs-EVs) in bladder cancer, with the possible mechanism explored. Expression of miR-139-5p and KIF3A was tested, followed by an analysis of their correlation. EVs were isolated from BMSCs and co-cultured with T24 or BOY-12E cells with miR-139-5p mimic/inhibitor, oe-KIF3A, and/or si-p21 transfected to study the roles of miR-139-5p/KIF3A/p21 in bladder cancer cell functions. A nude mouse model of subcutaneous xenograft tumor was constructed to detect the effect of miR-139-5p in BMSCs-EVs on the tumorigenesis and lung metastasis of bladder cancer cells in vivo. It was identified that miR-139-5p was highly expressed in BMSCs-EVs, but poorly expressed in bladder cancer. BMSCs-EVs transferred miR-139-5p into bladder cancer cells where miR-139-5p inhibited the malignant features of bladder cancer cells in vitro. miR-139-5p in BMSCs-EVs targeted KIF3A and inhibited the expression of KIF3A, thereby activating p21. miR-139-5p in BMSCs-EVs arrested the tumorigenesis and lung metastasis of bladder cancer cells in vivo by modulation of the KIF3A/p21 axis. Altogether, BMSCs-EVs carried miR-139-5p targeted KIF3A to activate p21, thus delaying the occurrence of bladder cancer.
Collapse
|
35
|
Li M, Zhang M, Chen M, Xiao J, Mu X, Peng J, Fan J. KLF2-induced circZKSCAN1 potentiates the tumorigenic properties of clear cell renal cell carcinoma by targeting the miR-1294/PIM1 axis. Cell Cycle 2022; 21:1376-1390. [PMID: 35285410 PMCID: PMC9345621 DOI: 10.1080/15384101.2022.2051293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of urologic cancer. With low survival rates among patients in advanced stages of disease, and increasing rate of morbidity and mortality worldwide, novel therapeutic targets for ccRCC clinical intervention are necessary. In this study, we investigated the functional role of circZKSCAN1 in ccRCC progression. Our results suggested that circZKSCAN1 was abundantly expressed in ccRCC tumor tissues and cells. CircZKSCAN1 knockdown significantly inhibited cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition of renal cell carcinoma (RCC) cells, whereas potentiated Natural Killer (NK) cell-mediated cytotoxicity against RCC cells in vitro and repressed tumor growth in vivo. Furthermore, we identified a novel circZKSCAN1/miR-1294/PIM1 axis was identified in RCC progression, showing that the expression of circZKSCAN1 expression in RCC cells was transcriptionally regulated by Kruppel-like factor 2. The results of our study may provide new insights for ccRCC basic research.Abbreviations: ccRCC: clear cell renal cell carcinoma; ChIP: chromatin immunoprecipitation; circRNA: circular RNA; EDU: 5-ethynyl-2'-deoxyuridine; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; FISH: RNA fluorescent in situ hybridization; KLF2: Kruppel-like factor 2; NC: normal control; NK cell: natural killer cell; NOD/SCID: nonobese severe diabetic/severe combined immunodeficiency; PIM1: Pim-1 proto-oncogene, serine/threonine kinase; RCC: renal cell carcinoma; ZKSCAN1: zinc finger with KRAB and SCAN domains 1.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Mingxun Zhang
- Department of Pathology, the First Affiliated Hospital of Ustc, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Muling Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Shanghai, China
| |
Collapse
|
36
|
Jia L, Liu M, An L, Wang H, Wang X. Circ_0000514 promotes the malignant biological behaviors of non-small cell lung cancer cells by modulating miR-330-5p and HMGA2. Pathol Res Pract 2022; 235:153913. [DOI: 10.1016/j.prp.2022.153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
37
|
Zhang Y, Zhang X, Xu Y, Fang S, Ji Y, Lu L, Xu W, Qian H, Liang ZF. Circular RNA and Its Roles in the Occurrence, Development, Diagnosis of Cancer. Front Oncol 2022; 12:845703. [PMID: 35463362 PMCID: PMC9021756 DOI: 10.3389/fonc.2022.845703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding single-stranded covalently closed circular RNA, mainly produced by reverse splicing of exons of precursor mRNAs (pre-mRNAs). The characteristics of high abundance, strong specificity, and good stability of circRNAs have been discovered. A large number of studies have reported its various functions and mechanisms in biological events, such as the occurrence and development of cancer. In this review, we focus on the classification, characterization, biogenesis, functions of circRNAs, and the latest advances in cancer research. The development of circRNAs as biomarkers in cancer diagnosis and treatment also provides new ideas for studying circRNAs research.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ying Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
38
|
Wu X, Cao W, Lu C, Zuo L, Liu X, Qi M. circ3323 Motivates Host Gene to Promote the Aggressiveness of Bladder Cancer. Biochem Genet 2022; 60:2327-2345. [PMID: 35362879 DOI: 10.1007/s10528-022-10210-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
Bladder cancer (BCa) is the most common cancer in the urinary system with high recurrence rate and poor prognosis. Circular RNA (circRNA) is a novel subclass of noncoding-RNA which participate in progression of BCa. Here, we identified a novel circRNA-circ3323 and aimed to investigate the role of circ3323 in progression of BCa. Public data of RNA sequencing was used to identify significant circRNA related to BCa. The role of circRNAs in progression of BCa was assessed in cytotoxicity assay, transwell assay and flow cytometry. Biotin-coupled RNA pull-down and fluorescence in situ hybridization were performed to evaluate the interaction between circRNAs and miRNAs. The expression of circ3323 was higher in BCa tissues and cells than in normal samples. Experiments in vitro showed that the knockdown of circ3323 inhibited cell proliferation and impeded the metastasis of BCa cells. Mechanistically, we demonstrated that circ3323 acts as a sponge for miR-186-5p and promotes host gene APP's expression. Clinically, circ3323 predicts worse overall survival of BCa patients, indicating its prognostic value. Our study identified that circ3323 modulates metastasis of BCa through miR-186-5p/APP axis and may serve as a promising prognostic biomarker for BCa, which provides novel insights into treatment of BCa.
Collapse
Affiliation(s)
- Xingyu Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Xinglong Road 29, Tianning, Changzhou, 213000, China
| | - Wei Cao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Xinglong Road 29, Tianning, Changzhou, 213000, China
| | - Chao Lu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Xinglong Road 29, Tianning, Changzhou, 213000, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Xinglong Road 29, Tianning, Changzhou, 213000, China
| | - Xiaowu Liu
- Department of Urology Surgery, Changzhou Wujin People's Hospital, Wujin Hospital Affiliated Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Minjun Qi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Xinglong Road 29, Tianning, Changzhou, 213000, China.
| |
Collapse
|
39
|
Ni L, Yamada T, Murata A, Nakatani K. Mismatch binding ligand upregulated back-splicing reaction producing circular RNA in a cellular model. Chem Commun (Camb) 2022; 58:3629-3632. [PMID: 35201254 DOI: 10.1039/d1cc06936e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular RNA (circRNA) is a covalently closed single-stranded RNA produced from pre-mRNAs via back-splicing reaction, an alternative form of splicing. Here, we show naphthyridine carbamate dimer (NCD) upregulating the production of a circRNA from a pre-mRNA containing NCD-binding site UGGAA/UGGAA in cells, demonstrating the feasibility of small-molecule mediated circRNA production.
Collapse
Affiliation(s)
- Lu Ni
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Takeshi Yamada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Asako Murata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Kazuhiko Nakatani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
40
|
hsa_circ_0077837 Alleviated the Malignancy of Non-Small Cell Lung Cancer by Regulating the miR-1178-3p/APITD1 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3902832. [PMID: 35310916 PMCID: PMC8926487 DOI: 10.1155/2022/3902832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 01/03/2023]
Abstract
Objective circRNAs were a group of the most promising molecular biomarkers for clinical prognosis and diagnosis of non-small cell lung cancer (NSCLC). It was a pity that academic circle still struggled to figure out how circRNAs acted on NSCLC. This article aimed to study the function and mechanism of hsa_circ_0077837 in NSCLC progression. Methods Cell viability was measured via CCK-8, while apoptosis was evaluated with flow cytometry. The transwell assay and scratch test were used to detect invasion and migration, respectively. The dual-luciferase reporter gene assay verified the regulatory effect of miR-1178-3p on hsa_circ_0077837 and miR-1178-3p on apoptosis-inducing, TAF9-like domain 1 (APITD1). The TUNEL assay and immunohistochemistry were used to assess cells apoptosis and proliferation in lung tumor tissues in mice. Results Hsa_circ_0077837 and APITD1 expression were suppressed in NSCLC tissues and cells, and miR-1178-3p level was promoted. High amount of hsa_circ_0077837 intensely prevented cell proliferation, migration, and invasion, promoted cell apoptosis in vitro, and delayed tumor growth in mice. Further analysis indicated that hsa_circ_0077837 acted as a miR-1178-3p sponge to stabilize APITD1, the target of miR-1178-3p. Mechanistically, we discovered that hsa_circ_0077837 could prevent proliferation, viability, migration, and invasion of NSCLC cells through stimulating the miR-1178-3p/APITD1 pathway. Conclusion Collectively, our findings validated that hsa_circ_0077837 served as a miR-1178-3p sponge by targeting APITD1 that alleviated NSCLC progression.
Collapse
|
41
|
Ghafouri-Fard S, Najafi S, Hussen BM, Basiri A, Hidayat HJ, Taheri M, Rashnoo F. The Role of Circular RNAs in the Carcinogenesis of Bladder Cancer. Front Oncol 2022; 12:801842. [PMID: 35296022 PMCID: PMC8918517 DOI: 10.3389/fonc.2022.801842] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of transcripts with enclosed configurations which can regulate gene expression. These transcripts have important roles in normal development and in the pathogenesis of disorders. Recent evidence has supported involvement of circRNAs in the development of bladder cancer. Several circRNAs such as circ_0058063, hsa-circRNA-403658, circPDSS1, circCASC15, circRNA-MYLK, and circRNA_103809 have been upregulated in bladder cancer samples. On the other hand, hsa_circ_0137606, BCRC-3, circFUT8, hsa_circ_001598, circSLC8A1, hsa_circ_0077837, hsa_circ_0004826, and circACVR2A are among downregulated circRNAs in bladder cancer. Numerous circRNAs have diagnostic or prognostic value in bladder cancer. In this review, we aim to outline the latest findings about the role of circRNAs in bladder cancer and introduce circRNAs for further investigations as therapeutic targets.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Fariborz Rashnoo,
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Fariborz Rashnoo,
| |
Collapse
|
42
|
CircCYP24A1 hampered malignant phenotype of renal cancer carcinoma through modulating CMTM-4 expression via sponging miR-421. Cell Death Dis 2022; 13:190. [PMID: 35220395 PMCID: PMC8882186 DOI: 10.1038/s41419-022-04623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/28/2023]
Abstract
Renal cell carcinoma (RCC) is a lethal urinary malignancy. Circular RNAs (circRNAs) contribute to the malignant phenotype and progression of several types of human cancers, including RCC. In this study, we identified relatively low hsa_circ_0060927 (circCYP24A1) expression in RCC tissue through high-throughput sequencing and RT-qPCR. Fluorescence in situ hybridization (FISH) was used to validate the expression and subcellular localization of circCYP24A1 in RCC tissues. CCK-8, Transwell, EdU, and wound-healing assays indicated that circCYP24A1 overexpression inhibited the proliferation, invasion, and migration of RCC cells. Dual-luciferase reporter, RNA immunoprecipitation (RIP), FISH, and RNA-pulldown assays verified that circCYP24A1 inhibited RCC progression by sponging miR-421, thus inducing CMTM-4 expression. Xenograft assays and metastasis models further indicated that circCYP24A1 significantly inhibited the metastasis and proliferation of RCC cells in vivo. Taken together, circCYP24A1 is a prognosis-related circRNA in RCC that functions through the circCYP24A1/miR-421/CMTM-4 axis to modulate RCC progression.
Collapse
|
43
|
Zhang Z, Zhao H, Zhou G, Han R, Sun Z, Zhong M, Jiang X. Circ_0002623 promotes bladder cancer progression by regulating the miR-1276/SMAD2 axis. Cancer Sci 2022; 113:1250-1263. [PMID: 35048477 PMCID: PMC8990873 DOI: 10.1111/cas.15274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Circular RNAs (circRNAs) are key regulatory factors in the development of multiple cancers. This study is targeted at exploring the effect of circ_0002623 on bladder cancer (BCa) progression and its mechanism. Circ_0002623 was screened out by analyzing the expression profile of circRNAs in BCa tissues. Circ_0002623, miR-1276 and SMAD2 mRNA expression levels in clinical sample tissues and cell lines were detected through quantitative real-time polymerase chain reaction (qRT-PCR). After circ_0002623 was overexpressed or silenced in BCa cells, the cell proliferation, migration and cell cycle were evaluated by CCK-8, BrdU, Transwell assay and flow cytometry. Tumor xenograft model was used to validate the biological function of circ_0002623 in vivo. Bioinformatics analysis and dual-luciferase reporter gene assay were conducted for analyzing and confirming, respectively, the targeted relationship between circ_0002623 and miR-1276, as well as between miR-1276 and SMAD2. The regulatory effects of circ_0002623 and miR-1276 on the expression levels of TGF-β, WNT1 and SMAD2 in BCa cells were detected by Western blot. We reported that, in BCa tissues and cell lines, circ_0002623 was up-regulated, whereas miR-1276 was down-regulated. Circ_0002623 positively regulated BCa cell proliferation, migration and cell cycle progression. Additionally, circ_0002623 could competitively bind with miR-1276 to increase the expression of SMAD2, the target gene of miR-1276. Furthermore, circ_0002623 could regulate the expression of TGF-β and WNT1 via modulating miR-1276 and SMAD2. This study helps to better understand the molecular mechanism underlying BCa progression.
Collapse
Affiliation(s)
- Zhaocun Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Haifeng Zhao
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Guanwen Zhou
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Ruoyan Han
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Zhuang Sun
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Minglei Zhong
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
44
|
Gui CP, Liao B, Luo CG, Chen YH, Tan L, Tang YM, Li JY, Hou Y, Song HD, Lin HS, Xu QH, Yao GS, Yao HH, Xi-Liu, Luo JH, Cao JZ, Wei JH. circCHST15 is a novel prognostic biomarker that promotes clear cell renal cell carcinoma cell proliferation and metastasis through the miR-125a-5p/EIF4EBP1 axis. Mol Cancer 2021; 20:169. [PMID: 34922539 PMCID: PMC8684108 DOI: 10.1186/s12943-021-01449-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been indicated as potentially critical mediators in various types of tumor progression, generally acting as microRNA (miRNA) sponges to regulate downstream gene expression. However, the aberrant expression profile and dysfunction of circRNAs in human clear cell renal cell carcinoma (ccRCC) need to be further investigated. This study mined key prognostic circRNAs and elucidates the potential role and molecular mechanism of circRNAs in regulating the proliferation and metastasis of ccRCC. Methods circCHST15 (hsa_circ_0020303) was identified by mining two circRNA microarrays from the Gene Expression Omnibus database and comparing matched tumor versus adjacent normal epithelial tissue pairs or matched primary versus metastatic tumor tissue pairs. These results were validated by quantitative real-time polymerase chain reaction and agarose gel electrophoresis. We demonstrated the biological effect of circCHST15 in ccRCC both in vitro and in vivo. To test the interaction between circCHST15 and miRNAs, we conducted a number of experiments, including RNA pull down assay, dual-luciferase reporter assay and fluorescence in situ hybridization. Results The expression of circCHST15 was higher in ccRCC tissues compared to healthy adjacent kidney tissue and higher in RCC cell lines compared to normal kidney cell lines. The level of circCHST15 was positively correlated with aggressive clinicopathological characteristics, and circCHST15 served as an independent prognostic indicator for overall survival and progression-free survival in patients with ccRCC after surgical resection. Our in vivo and in vitro data indicate that circCHST15 promotes the proliferation, migration, and invasion of ccRCC cells. Mechanistically, we found that circCHST15 directly interacts with miR-125a-5p and acts as a microRNA sponge to regulate EIF4EBP1 expression. Conclusions We found that sponging of miR-125a-5p to promote EIF4EBP1 expression is the underlying mechanism of hsa_circ_0020303-induced ccRCC progression. This prompts further investigation of circCHST15 as a potential prognostic biomarker and therapeutic target for ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01449-w.
Collapse
|
45
|
Wang S, Ying Y, Ma X, Wang W, Wang X, Xie L. Diverse Roles and Therapeutic Potentials of Circular RNAs in Urological Cancers. Front Mol Biosci 2021; 8:761698. [PMID: 34869591 PMCID: PMC8640215 DOI: 10.3389/fmolb.2021.761698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs, which are mainly formed as a loop structure at the exons caused by noncanonical splicing; they are much more stable than linear transcripts; recent reports have suggested that the dysregulation of circRNAs is associated with the occurrence and development of diseases, especially various human malignancies. Emerging evidence demonstrated that a large number of circRNAs play a vital role in a series of biological processes such as tumor cell proliferation, migration, drug resistance, and immune escape. Additionally, circRNAs were also reported to be potential prognostic and diagnostic biomarkers in cancers. In this work, we systematically summarize the biogenesis and characteristics of circRNAs, paying special attention to potential mechanisms and clinical applications of circRNAs in urological cancers, which may help develop potential therapy targets for urological cancers in the future.
Collapse
Affiliation(s)
- Song Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyou Ma
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyu Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Li J, Bao S, Wang L, Wang R. CircZKSCAN1 Suppresses Hepatocellular Carcinoma Tumorigenesis by Regulating miR-873-5p/Downregulation of Deleted in Liver Cancer 1. Dig Dis Sci 2021; 66:4374-4383. [PMID: 33439397 DOI: 10.1007/s10620-020-06789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. CircZKSCAN1 (hsa_circ_0001727) was reported to be related to HCC development. The present study aims to elucidate the potential role and molecular mechanism of circZKSCAN1 in the regulation of HCC progression. METHODS CircZKSCAN1, miR-873-5p, and downregulation of deleted in liver cancer 1 (DLC1) in HCC tissues and cells were detected by RT-qPCR. Correlation between circZKSCAN1 expression and overall survival rate was measured by Kaplan-Meier survival analysis. The effects of circZKSCAN1, miR-873-5p, and DLC1 on proliferation, migration, and invasion were analyzed by CCK-8 and transwell assays, respectively. CyclinD1, Matrix metalloproteinase (MMP)-9, MMP-2, and DLC1 in HCC cells were detected by Western blot assay. The binding relationship between miR-873-5p and circZKSCAN1 or DLC1 was predicted by the Circinteractome or Starbase, and then confirmed by dual-luciferase reporter assays, respectively. Tumor volume and tumor weight were measured in vivo. RESULTS CircZKSCAN1 was downregulated in HCC tissues and cells. Kaplan-Meier survival analysis suggested that there was a positive correlation between circZKSCAN1 expression and overall survival rate. Functionally, circZKSCAN1 blocked proliferation, migration, and invasion of HCC cells. MiR-873-5p was a target miRNA of circZKSCAN1, and miR-873-5p directly bound with DLC1. Rescue experiments confirmed that miR-873-5p overexpression or DLC1 knockdown attenuated the suppressive effects of circZKSCAN1 on HCC tumor growth in vitro. Besides, circZKSCAN1 inhibited HCC cell growth in vivo. CONCLUSIONS This study firstly revealed that circZKSCAN1 curbed HCC progression via modulating miR-873-5p/DLC1 axis, providing a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China.
| | - Siyang Bao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| | - Linqi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| | - Ronglong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| |
Collapse
|
47
|
Du Y, Liu X, Zhang S, Chen S, Guan X, Li Q, Chen X, Zhao Y. CircCRIM1 promotes ovarian cancer progression by working as ceRNAs of CRIM1 and targeting miR-383-5p/ZEB2 axis. Reprod Biol Endocrinol 2021; 19:176. [PMID: 34847936 PMCID: PMC8630901 DOI: 10.1186/s12958-021-00857-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ovarian cancer is the leading cause of death in patients with gynecologic cancer, and circular RNAs (circRNAs) are involved in cancer progression. However, there are limited studies on the roles of circRNAs in ovarian cancer. METHODS We designed divergent and convergent primers, used sanger sequencing and RNase R digestion to verify the source of circCRIM1. We detected the expression of circCRIM1 and its parental gene cysteine rich transmembrane BMP regulator 1 (CRIM1) in ovarian cancer and normal ovarian samples via qRT-PCR. MTT viability assay, apoptosis assay, wound healing assay and invasion assay were used to investigate the function of circCRIM1 and CRIM1 in ovarian cancer cell lines OVCAR3 and CAOV3. Mice xenografts experiment was performed. Bioinformatics predicted the microRNAs that bond with circCRIM1 and CRIM1, and dual luciferase reporter system confirmed it. Rescue experiments of microRNAs mimics transfection on the basis of circCRIM1 over-expression were carried out to uncover the mechanism by which circCRIM1 played cancer-promoting roles in ovarian cancer. RESULTS CircCRIM1 was derived from CRIM1 by back-splicing. CircCRIM1 and CRIM1 had higher expression in ovarian cancer than in normal ovarian tissues, and both of them promoted ovarian cancer progression in vitro. In vivo circCRIM1 promoted the growth of tumors. CircCRIM1 and CRIM1 had a positive correlation relationship in the same cohort of ovarian cancer tissues. Bioinformatics predicted and dual luciferase assay confirmed circCRIM1 and CRIM1 bond with miR-145-5p, and circCRIM1 bond with miR-383-5p additionally. CircCRIM1 positively affected the expression of CRIM1. After circCRIM1 was over-expressed, miR-145-5p mimics transfection reversed the expression of CRIM1. Western blot discovered circCRIM1 positively affected the expression of zinc finger E-box binding homeobox 2 (ZEB2). Rescue experiments found miR-383-5p mimics reversed ZEB2 expression and the cancer-promoting effects of circCRIM1. CONCLUSIONS CircCRIM1 bond with miR-145-5p to work as competing endogenous RNA (ceRNA) of CRIM1, and circCRIM1 bond with miR-383-5p to improve the expression of ZEB2 in ovarian cancer. CircCRIM1 and CRIM1 promoted the ovarian cancer progression and supplied a novel insight into the researches of ovarian cancer.
Collapse
Affiliation(s)
- Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, 110001, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xue Guan
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qianhui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
48
|
Li Z, Cheng Y, Fu K, Lin Q, Zhao T, Tang W, Xi L, Sheng L, Zhang H, Sun Y. Circ-PTPDC1 promotes the Progression of Gastric Cancer through Sponging Mir-139-3p by Regulating ELK1 and Functions as a Prognostic Biomarker. Int J Biol Sci 2021; 17:4285-4304. [PMID: 34803498 PMCID: PMC8579456 DOI: 10.7150/ijbs.62732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
Circular RNAs (circRNAs) is a novel class of non-coding RNAs resulting from the non-canonical splicing of linear pre-mRNAs. However, the role of circRNAs in gastric cancer (GC) remains indistinct. This study aims to explore their potential modulation in GC and its prognostic value. We first screen for circRNA expression patterns in GC through GC and adjacent noncancerous tissues by microarray. Based on the bioinformatics analysis of the microarray data, we screened out a novel circRNA, circ-PTPDC1. Then we demonstrated that circ-PTPDC1 was up-regulated in GC cells, tissues, and serum. Its overexpression was positively correlated with age, invasion depth, advanced clinical stages, and worse survival in patients with GC. We further revealed that circ-PTPDC1 promotes the proliferation, migration, and invasion of GC cell lines via sponging miR-139-3p by regulating ELK1. Importantly, we identified that circ-PTPDC1 promotes tumor upgrowth and metabasis in vivo. Additionally, we established its prognostic prediction model based on the follow-up data of the patients. Our study revealed a novel regulatory mechanism and a comprehensive landscape of circ-PTPDC1 in GC, suggesting that circ-PTPDC1 has the potential to be a biomarker for early detection and prognostic prediction of GC.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Pettenkoferstrasse 8a, 80336 Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiaowei Lin
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich
| | - Weiwei Tang
- Jiangsu Province Hospital, The first affiliated hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xi
- Jiangsu Province Hospital, The first affiliated hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lulu Sheng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Six People's Hospital, Shanghai, China
| | - Hao Zhang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
49
|
Tumor Suppressive Circular RNA-102450: Development of a Novel Diagnostic Procedure for Lymph Node Metastasis from Oral Cancer. Cancers (Basel) 2021; 13:cancers13225708. [PMID: 34830863 PMCID: PMC8616294 DOI: 10.3390/cancers13225708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs), which form as covalently closed loop structures, have several biological functions such as regulation of cellular behavior by adsorbing microRNAs. However, there is limited information of circRNAs in oral squamous cell carcinoma (OSCC). Here, we aimed to elucidate the roles of aberrantly expressed circRNAs in OSCC. CircRNA microarray showed that circRNA-102450 was down-regulated in OSCC cells. Clinical validation of circRNA-102450 was performed using highly sensitive droplet digital PCR in preoperative liquid biopsy samples from 30 OSCC patients. Interestingly, none of 16 studied patients with high circRNA-102450 had regional lymph node metastasis (RLNM), whereas 4 of 14 studied patients (28.5%) with low expression had pathologically proven RLNM. Overexpressed circRNA-102450 significantly inhibited the tumor metastatic properties of cell proliferation, migration, and invasion. Furthermore, circRNA-102450 directly bound to, and consequently down-regulated, miR-1178 in OSCC cells. Taken together, circRNA-102450 has a tumor suppressive effect via the circRNA-102450/miR-1178 axis and may be a novel potential marker of RLNM in OSCC patients.
Collapse
|
50
|
Xiao W, Li J, Hu J, Wang L, Huang JR, Sethi G, Ma Z. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif 2021; 54:e13143. [PMID: 34672397 PMCID: PMC8666285 DOI: 10.1111/cpr.13143] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 10/03/2021] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs), a type of non‐coding RNA, are single‐stranded circularized molecules characterized by high abundance, evolutionary conservation and cell development‐ and tissue‐specific expression. A large body of studies has found that circRNAs exert a wide variety of functions in diverse biological processes, including cell cycle. The cell cycle is controlled by the coordinated activation and deactivation of cell cycle regulators. CircRNAs exert mutifunctional roles by regulating gene expression via various mechanisms. However, the functional relevance of circRNAs and cell cycle regulation largely remains to be elucidated. Herein, we briefly describe the biogenesis and mechanistic models of circRNAs and summarize their functions and mechanisms in the regulation of critical cell cycle modulators, including cyclins, cyclin‐dependent kinases and cyclin‐dependent kinase inhibitors. Moreover, we highlight the participation of circRNAs in cell cycle‐related signalling pathways and the clinical value of circRNAs as promising biomarkers or therapeutic targets in diseases related to cell cycle disorder.
Collapse
Affiliation(s)
- Wei Xiao
- Health Science Center, Yangtze University, Jingzhou, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - June Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|