1
|
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8445-8475. [PMID: 38878089 DOI: 10.1007/s00210-024-03189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024]
Abstract
Among cancer-related deaths worldwide, colorectal cancer ranks second, accounting for 1.2% of deaths in those under 50 years and 0.6% of deaths in those between 50 and 54 years. The anticancer drug 5-fluorouracil is widely used to treat colorectal cancer. Due to a better understanding of the drug's mechanism of action, its anticancer activity has been increased through a variety of therapeutic alternatives. Clinical use of 5-FU has been severely restricted due to drug resistance. The chemoresistance mechanism of 5-FU is challenging to overcome because of the existence of several drug efflux transporters, DNA repair enzymes, signaling cascades, classical cellular processes, cancer stem cells, metastasis, and angiogenesis. Curcumin, a potent phytocompound derived from Curcuma longa, functions as a nuclear factor (NF)-κB inhibitor and sensitizer to numerous chemotherapeutic drugs. Piperine, an alkaloid found in Piper longum, inhibits cancer cell growth, causing cell cycle arrest and apoptosis. This review explores the mechanism of 5-FU-induced chemoresistance in colon cancer cells and the role of curcumin and piperine in enhancing the sensitivity of 5-FU-based chemotherapy. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Dorothy Bhattacharjya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Lan T, Quan W, Yu DH, Chen X, Wang ZF, Li ZQ. High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway. Sci Rep 2024; 14:26224. [PMID: 39482401 PMCID: PMC11528118 DOI: 10.1038/s41598-024-77348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.
Collapse
Affiliation(s)
- Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xi Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
4
|
Tofolo MV, Berti FCB, Nunes-Souza E, Ruthes MO, Berti LF, Fonseca AS, Rosolen D, Cavalli LR. Non-coding RNAs as modulators of radioresponse in triple-negative breast cancer: a systematic review. J Biomed Sci 2024; 31:93. [PMID: 39354523 PMCID: PMC11445946 DOI: 10.1186/s12929-024-01081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
Collapse
Affiliation(s)
- Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Fernanda Costa Brandão Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Mayara Oliveira Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, 81280-340, Brazil
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil.
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Washington, DC, 20007, USA.
| |
Collapse
|
5
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Gao L, Meng F, Yang Z, Lafuente-Merchan M, Fernández LM, Cao Y, Kusamori K, Nishikawa M, Itakura S, Chen J, Huang X, Ouyang D, Riester O, Deigner HP, Lai H, Pedraz JL, Ramalingam M, Cai Y. Nano-drug delivery system for the treatment of multidrug-resistant breast cancer: Current status and future perspectives. Biomed Pharmacother 2024; 179:117327. [PMID: 39216449 DOI: 10.1016/j.biopha.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women. Chemotherapy continues to be the treatment of choice for clinically combating it. Nevertheless, the chemotherapy process is frequently hindered by multidrug resistance, thereby impacting the effectiveness of the treatment. Multidrug resistance (MDR) refers to the phenomenon in which malignant tumour cells develop resistance to anticancer drugs after one single exposure. It can occur with a broad range of chemotherapeutic drugs with distinct chemical structures and mechanisms of action, and it is one of the major causes of treatment failure and disease relapse. Research has long been focused on overcoming MDR by using multiple drug combinations, but this approach is often associated with serious side effects. Therefore, there is a pressing need for in-depth research into the mechanisms of MDR, as well as the development of new drugs to reverse MDR and improve the efficacy of breast cancer chemotherapy. This article reviews the mechanisms of multidrug resistance and explores the application of nano-drug delivery system (NDDS) to overcome MDR in breast cancer. The aim is to offer a valuable reference for further research endeavours.
Collapse
Affiliation(s)
- Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China.
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Laura Merino Fernández
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain.
| | - Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| | - Kosuke Kusamori
- Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Junqian Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaoxun Huang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Dongfang Ouyang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Charlestown, Boston, MA 02129, USA.
| | - Oliver Riester
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Villingen-Schwenningen 78054, Germany.
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China.
| | - Jose Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz 01009, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid 28029, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA (Basque Research and Technology Alliance), Centro de Investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Key Lab of Traditional Chinese Medicine Information Technology / International Science and Technology Cooperation Base of Guangdong Province / School of Pharmacy, Jinan University, Guangdong, Guangzhou 510632, China.
| |
Collapse
|
7
|
Almatrafi TA, Lakshmaiya N, Almohaimeed HM, Chakravarthi S, Amin AH, Jafer A, Almars AI, Basabrain AA, Alghamdi YS, Saadh MJ, Akhavan-Sigari R. Reducing metastasis ability of gastric cancer cell line by targeting MMP16 using miR-193a-5p and 5-FU. Adv Med Sci 2024; 69:463-473. [PMID: 39341599 DOI: 10.1016/j.advms.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Co-administration of microRNAs and chemotherapy drugs effectively treats several cancers. The current study sought to investigate the function of matrix metalloproteinase 16 (MMP16) and miR-193a-5p in the pathogenesis of gastric cancer (GC). MATERIALS/METHODS Sixty-five surgical patients, 15 receiving 5-fluorouracil (5-FU), provided GC and adjacent non-cancerous tissue. Following that, qPCR was used to assess the expression levels of MMP16 and miR-193a-5p in GC cells. The impact of miR-193a-5p and 5-FU administration on MMP16 mRNA expression was evaluated using qRT-PCR and Western blotting. MTT and Scratch tests were also conducted to assess their effects on cell viability and migration. Moreover, a rescue experiment using an MTT assay was performed. Using flow cytometry, the apoptotic rate was calculated. Finally, it was evaluated how MMP16 and miR-193a-5p related to the clinicopathological characteristics of the patients. RESULTS The current study found that while MMP16 expression increased in GC patients (P < 0.0001), miR-193a-5p expression significantly decreased (P < 0.001). MMP16 down-regulation was another effect of miR-193a-5p replacement, particularly when 5-FU was added (P < 0.01). In addition, this study found that miR-193a-5p, by concentrating on MMP16, decreased the migration of GC cells brought on by MMP16. In GC cell lines, miR-193 and 5-FU induce apoptosis, with the 5-FU being more pronounced when combined with mir-193, according to flow cytometry results. A strong correlation was also found between clinicopathological traits associated with MMP16 and miR-193a-5p. CONCLUSIONS These findings suggest that miR-193a-5p, in conjunction with 5-FU, down-regulates MMP16 in GC, where it suppresses tumor growth.
Collapse
Affiliation(s)
| | - Natrayan Lakshmaiya
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Srikumar Chakravarthi
- SEGi University, No.9, Jalan Teknologi, Taman Sains Selangor, Petaling Jaya, Selangor, Malaysia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ayman Jafer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef S Alghamdi
- Department of Biology, Turabah University College, Taif University, Saudi Arabia
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Reza Akhavan-Sigari
- Dreifaltigkeits-Hospital Lippstadt, Teaching Hospital of the University of Münster, Münster, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum, Warsaw Management University, Warsaw, Poland
| |
Collapse
|
8
|
Gao Z, Luan X, Wang X, Han T, Li X, Li Z, Li P, Zhou Z. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15:1390300. [PMID: 39253383 PMCID: PMC11381396 DOI: 10.3389/fphar.2024.1390300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The DNA damage repair (DDR) pathway is a complex signaling cascade that can sense DNA damage and trigger cellular responses to DNA damage to maintain genome stability and integrity. A typical hallmark of cancer is genomic instability or nonintegrity, which is closely related to the accumulation of DNA damage within cancer cells. The treatment principles of radiotherapy and chemotherapy for cancer are based on their cytotoxic effects on DNA damage, which are accompanied by severe and unnecessary side effects on normal tissues, including dysregulation of the DDR and induced therapeutic tolerance. As a driving factor for oncogenes or tumor suppressor genes, noncoding RNA (ncRNA) have been shown to play an important role in cancer cell resistance to radiotherapy and chemotherapy. Recently, it has been found that ncRNA can regulate tumor treatment tolerance by altering the DDR induced by radiotherapy or chemotherapy in cancer cells, indicating that ncRNA are potential regulatory factors targeting the DDR to reverse tumor treatment tolerance. This review provides an overview of the basic information and functions of the DDR and ncRNAs in the tolerance or sensitivity of tumors to chemotherapy and radiation therapy. We focused on the impact of ncRNA (mainly microRNA [miRNA], long noncoding RNA [lncRNA], and circular RNA [circRNA]) on cancer treatment by regulating the DDR and the underlying molecular mechanisms of their effects. These findings provide a theoretical basis and new insights for tumor-targeted therapy and the development of novel drugs targeting the DDR or ncRNAs.
Collapse
Affiliation(s)
- Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xuezhe Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Tianyue Han
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoyuan Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zeyang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Wang Y, Xu J, Fu Z, Zhang R, Zhu W, Zhao Q, Wang P, Hu C, Cheng X. The role of reactive oxygen species in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0182. [PMID: 38982978 DOI: 10.20892/j.issn.2095-3941.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ruolan Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Weiwei Zhu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Qianyu Zhao
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
10
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Yan S, Teng L, Du J, Ji L, Xu P, Zhao W, Tao W. Long non‑coding RNA DANCR aggravates breast cancer through the miR‑34c/E2F1 feedback loop. Mol Med Rep 2024; 29:93. [PMID: 38577930 PMCID: PMC11025030 DOI: 10.3892/mmr.2024.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Emerging scientific evidence has suggested that the long non‑coding (lnc)RNA differentiation antagonizing non‑protein coding RNA (DANCR) serves a significant role in human tumorigenesis and cancer progression; however, the precise mechanism of its function in breast cancer remains to be fully understood. Therefore, the objective of the present study was to manipulate DANCR expression in MCF7 and MDA‑MB‑231 cells using lentiviral vectors to knock down or overexpress DANCR. This manipulation, alongside the analysis of bioinformatics data, was performed to investigate the potential mechanism underlying the role of DANCR in cancer. The mRNA and/or protein expression levels of DANCR, miR‑34c‑5p and E2F transcription factor 1 (E2F1) were assessed using reverse transcription‑quantitative PCR and western blotting, respectively. The interactions between these molecules were validated using chromatin immunoprecipitation and dual‑luciferase reporter assays. Additionally, fluorescence in situ hybridization was used to confirm the subcellular localization of DANCR. Cell proliferation, migration and invasion were determined using 5‑ethynyl‑2'‑deoxyuridine, wound healing and Transwell assays, respectively. The results of the present study demonstrated that DANCR had a regulatory role as a competing endogenous RNA and upregulated the expression of E2F1 by sequestering miR‑34c‑5p in breast cancer cells. Furthermore, E2F1 promoted DANCR transcription by binding to its promoter in breast cancer cells. Notably, the DANCR/miR‑34c‑5p/E2F1 feedback loop enhanced cell proliferation, migration and invasion in breast cancer cells. Thus, these findings suggested that targeting DANCR may potentially provide a promising future therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Juntong Du
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liang Ji
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenxi Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
12
|
Arima J, Yoshino H, Fukumoto W, Kawahara I, Saito S, Li G, Fukuda I, Iizasa S, Mitsuke A, Sakaguchi T, Inoguchi S, Matsushita R, Nakagawa M, Tatarano S, Yamada Y, Enokida H. LncRNA BCYRN1 as a Potential Therapeutic Target and Diagnostic Marker in Serum Exosomes in Bladder Cancer. Int J Mol Sci 2024; 25:5955. [PMID: 38892143 PMCID: PMC11172611 DOI: 10.3390/ijms25115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Bladder cancer (BC) is a common genitourinary malignancy that exhibits silent morbidity and high mortality rates because of a lack of diagnostic markers and limited effective treatments. Here, we evaluated the role of the lncRNA brain cytoplasmic RNA 1 (BCYRN1) in BC. We performed loss-of-function assays to examine the effects of BCYRN1 downregulation in T24 and BOY BC cells. We found that BCYRN1 downregulation significantly inhibited the proliferation, migration, invasion, and three-dimensional spheroid formation ability and induced apoptosis in BC cells. Additionally, gene set enrichment analysis (GSEA) using RNA sequences from tumor fractions showed that BCYRN1 downregulation decreased the expression of mRNAs associated with the cell cycle. These findings were supported by observations of G2/M arrest in flow cytometry assays. Finally, we examined the expression of serum exosomal BCYRN1 as a biomarker. Clinically, BCYRN1 expression in serum exosomes from patients with BC (n = 31) was significantly higher than that in healthy donors (n = 19; mean difference: 4.1-fold higher, p < 0.01). Moreover, in patients who had undergone complete resection of BC, serum exosomal BCYRN1 levels were significantly decreased (n = 8). Thus, serum exosomal BCYRN1 may be a promising diagnostic marker and therapeutic target in patients with BC.
Collapse
Affiliation(s)
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
14
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
15
|
Saliu TP, Seneviratne NN, Faizan M, Rajagopalan U, Perera DC, Adhikari A, Senathilake KS, Galhena P, Tennekoon KH, Samarakoon SR. In silico identification and in vitro validation of alpha-hederin as a potent inhibitor of Wnt/β-catenin signaling pathway in breast cancer stem cells. In Silico Pharmacol 2024; 12:31. [PMID: 38617708 PMCID: PMC11014832 DOI: 10.1007/s40203-024-00199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer stem cells (CSCs) play a vital role in metastasis, recurrence and chemoresistance in breast cancer. β-catenin, which is a frequently over activated protein in CSCs, binds to T-cell factor/lymphoid enhancer factor (Tcf/Lef) family transcription factors leading to ectopic expression of Wnt pathway responsive genes necessary for the maintenance and action of CSCs. With the aim of identifying a small molecules that can effectively eliminate CSCs, molecular docking studies were performed against the Tcf/Lef binding hotspot on β-catenin using a library of 100 natural or synthetic small molecules. Small molecule ligands giving docking energy better than - 7 kcal/mol were further investigated by binding interactions analysis and molecular dynamics (MD) simulations. These compounds were then investigated in vitro, for cytotoxicity against CSCs isolated from MDA-MB-231 triple negative breast cancer cells. Alpha-hederin (AH) was identified as the only compound in the selected library that has cytotoxicity against breast CSCs. AH was further investigated for it's ability to regulate Wnt pathway target genes (Cyclin D1 and CD44)and the tumor suppressor p53by real-time quantitative PCR. Absorption, distribution, metabolism, excretion and toxicity properties of the AH was predicted in silico. AH significantly down regulated the transcription of Cyclin D1 and CD44 while up-regulating the transcription of p53. AH was predicted to have acceptable drug likeness. Although AH is currently known to inhibit the growth of various cancer cells in vitro, present study demonstrated for the first time that it is a potent inhibitor of Wnt/β-catenin signaling pathway and induce apoptosis in breast CSCs.
Collapse
Affiliation(s)
- Tolulope Peter Saliu
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Nirwani Natasha Seneviratne
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Umapriyatharshini Rajagopalan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Damith Chathuranga Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kanishka Sithira Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Prasanna Galhena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, CumaratungaMunidasaMawatha, Colombo, 03 Sri Lanka
| |
Collapse
|
16
|
Ali ES, Yalın AE, Yalın S. Long noncoding RNAs and their possible roles in tumorigenesis and drug resistance in cancer chemotherapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-15. [PMID: 38575568 DOI: 10.1080/15257770.2024.2336210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Cancer is still one of the most important diseases that have a high mortality rate around the world. The management of cancer involves many procedures, which include surgery, radiotherapy, and chemotherapy. Drug resistance in cancer chemotherapy is considered one of the most important problems in clinical oncology. A good understanding of the tumorigenesis process and the mechanisms of developing chemotherapy resistance in cancer cells will help achieve significant advances in cancer treatment protocols. In recent years, there has been an increasing interest in long noncoding RNAs (lncRNAs). LncRNAs are no longer just a transcriptional noise, and many investigations proved their possible roles in regulating mandatory cellular functions. A lot of newly published studies confirmed the implication of lncRNAs in the tumor formation process and the multiple drug resistance in cancer chemotherapy. The main aim of this review is to focus on the lncRNAs' functions in the cell, their possible roles in the tumor formation process, and their roles in the development of chemotherapy resistance in different cancer cells.
Collapse
Affiliation(s)
- Ehsan Sayed Ali
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ali Erdinç Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
17
|
Zhang C, Wang J, Wang H, Li J. Interference of the Circular RNA Sperm Antigen With Calponin Homology and Coiled-Coil Domains 1 Suppresses Growth and Promotes Apoptosis of Breast Cancer Cells Partially Through Targeting miR-1236-3p/Chromobox 8 Pathway. Clin Breast Cancer 2024; 24:e138-e151.e2. [PMID: 38341369 DOI: 10.1016/j.clbc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024]
Abstract
Noncoding RNAs and RNA modifiers are implicated in cancer radiotherapy. Here, we aimed to investigate the role of sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1)-derived circular RNA (circSPECC1; hsa_circ_0000745) in breast cancer (BC) cells under radiation treatment. Based on quantitative real-time PCR, circSPECC1 was highly upregulated in BC patients' tumors and cells, and circSPECC1 expression was further increased with the dosage of radiation in BC cells. Moreover, circSPECC1 upregulation was found to be concomitant with higher chromobox 8 (CBX8) and lower microRNA (miR)-1236-3p expression. Functionally, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays showed that circSPECC1 interference suppressed cell proliferation and long-term survival in BC cells and irradiated BC cells. Xenograft tumor model experiments showed that circSPECC1 knockdown restrained BC tumor growth in vivo. Meanwhile, flow cytometry assay and western blotting revealed an enhanced apoptosis by silencing circSPECC1. Moreover, miR-1236-3p overexpression, similar to circSPECC1 silencing, displayed anti-growth and proapoptosis roles in irradiated BC cells. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay identified a target relationship between miR-1236-3p and circSPECC1 or CBX8. Also, CBX8 expression could be modulated by circSPECC1 via miR-1236-3p regulation. Collectively, we indicated that inhibiting circSPECC1 could suppress growth and promote apoptosis of BC cells in both irradiated and nonirradiated conditions at least partially via miR-1236-3p/CBX8 axis, confirming that circSPECC1 might be target to develop anticancer drug in BC.
Collapse
Affiliation(s)
- Cuipeng Zhang
- Department of Oncology, Second Affiliated Hospital of Guizhou Medical University, Guizhou Province, China.
| | - Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, Shandong Province, China
| | - Hongwei Wang
- Department of Oncology, Lianyungang No. 2 Hospital of Jiangsu Province, China
| | - Jing Li
- Department of Oncology, Shandong Energy Zaozhuang Mining Group Central Hospital, China
| |
Collapse
|
18
|
Zhao X, Cao Y, Lu R, Zhou Z, Huang C, Li L, Huang J, Chen R, Wang Y, Huang J, Cheng J, Zheng J, Fu Y, Yu J. Phosphorylation of AGO2 by TBK1 Promotes the Formation of Oncogenic miRISC in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305541. [PMID: 38351659 PMCID: PMC11022703 DOI: 10.1002/advs.202305541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/22/2024] [Indexed: 04/18/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| |
Collapse
|
19
|
Wang Y, Wang X, Sun H, Zhang Z, Gu J. LncRNA MCM3AP-AS1 promotes chemoresistance in triple-negative breast cancer through the miR-524-5p/RBM39 axis. Mol Cell Biochem 2024:10.1007/s11010-023-04908-8. [PMID: 38472681 DOI: 10.1007/s11010-023-04908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal subtype of BC, with unfavorable treatment outcomes. Evidence suggests the engagement of lncRNA MCM3AP-AS1 in BC development. This study investigated the action of MCM3AP-AS1 in chemoresistance of TNBC cells. Drug-resistant TNBC cell lines SUM159PTR and MDA-MB-231R were constructed by exposure to increasing concentrations of doxorubicin/docetaxel (DOX/DXL). MCM3AP-AS1 and miR-524-5p expression levels were determined by RT-qPCR. RNA binding motif 39 (RBM39) level was measured using Western blot. Cell viability and apoptosis were assessed by CCK-8 assay and flow cytometry. The targeted binding of miR-524-5p with MCM3AP-AS1 or RBM39 was predicted by ECORI database and validated by dual-luciferase assays. The gain-and-loss of function assays were conducted in cells to investigate the interactions among MCM3AP-AS1, miR-524-5p, and RBM39. TNBC xenograft mouse models were established through subcutaneous injection of MCM3AP-AS1-silencing MDA-MB-231R cells and intraperitoneally administrated with DOX/DXL to verify the role of MCM3AP-AS1 in vivo. MCM3AP-AS1 was upregulated in drug-resistant TNBC cells, and MCM3AP-AS1 silencing could sensitize drug-resistant TNBC cells to chemotherapeutic drugs by promoting apoptosis. MCM3AP-AS1 targeted miR-524-5p. After DOX/DXL treatment, miR-524-5p inhibition partially reversed the effect of MCM3AP-AS1 silencing on inhibiting chemoresistance and promoting apoptosis of drug-resistant TNBC cells. miR-524-5p targeted RBM39. Silencing MCM3AP-AS1 promoted apoptosis via the miR-524-5p/RBM39 axis, thereby enhancing chemosensitivity of drug-resistant TNBC cells. MCM3AP-AS1 knockdown upregulated miR-524-5p, downregulated RBM39, and restrained tumor development in vivo. MCM3AP-AS1 silencing potentiates apoptosis of drug-resistant TNBC cells by upregulating miR-524-5p and downregulating RBM39, thereby suppressing chemoresistance in TNBC.
Collapse
Affiliation(s)
- Yueping Wang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuedong Wang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China.
| | - Haiyi Sun
- School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ziyun Zhang
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
| | - Juan Gu
- Department of Medical Laboratory Science, Anhui No. 2 Provincial People's Hospital, 1868 #Dangshan Road, North 2nd Ring, Hefei, 230041, Anhui, China
| |
Collapse
|
20
|
Li J, Guo S, Li T, Hu S, Xu J, Xu X. Long non-coding RNA CCAT1 acts as an oncogene to promote radiation resistance in lung adenocarcinoma: an epigenomics-based investigation. Funct Integr Genomics 2024; 24:52. [PMID: 38448654 DOI: 10.1007/s10142-024-01330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. As one of the LncRNAs, LncRNA CCAT1 has been reported to be closely associated with the progression multiple cancers, but its role in modulating the radioresistance of lung adenocarcinoma (LUAD) remains unclear. In our present study, we screened the potential radioresistance related LncRNAs in LUAD based on the data from The Cancer Genome Atlas (TCGA) database. Data suggested that CCAT1 was abundantly expressed in LUAD and CCAT1 was significantly associated with poor prognosis and radioresistance. Moreover, our in vitro experiments showed that radiation treatment could trigger elevated expression of CCAT1 in the human LUAD cell lines. Further loss/gain-of-function investigations indicated that CCAT1 knockdown significantly inhibited cell proliferation, migration and promoted cell apoptosis in NCI-H1299 cells under irradiation, whereas CCAT1 overexpression in A549 cells yield the opposite effects. In summary, we identified the promoting role of CCAT1 in radioresistance of LUAD, which may provide a theoretical basis for radiotherapy sensitization of LUAD.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Shengnan Guo
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Tianhao Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Songliu Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Jianyu Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China
| | - Xiangying Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Street, Harbin, 150076, Heilongjiang, China.
- Department of Radiotherapy, The Third Affilliated Hospital of Sun Yat-Sen University, No.600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
21
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
22
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
23
|
Sadida HQ, Abdulla A, Marzooqi SA, Hashem S, Macha MA, Akil ASAS, Bhat AA. Epigenetic modifications: Key players in cancer heterogeneity and drug resistance. Transl Oncol 2024; 39:101821. [PMID: 37931371 PMCID: PMC10654239 DOI: 10.1016/j.tranon.2023.101821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Cancer heterogeneity and drug resistance remain pivotal obstacles in effective cancer treatment and management. One major contributor to these challenges is epigenetic modifications - gene regulation that does not involve changes to the DNA sequence itself but significantly impacts gene expression. As we elucidate these phenomena, we underscore the pivotal role of epigenetic modifications in regulating gene expression, contributing to cellular diversity, and driving adaptive changes that can instigate therapeutic resistance. This review dissects essential epigenetic modifications - DNA methylation, histone modifications, and chromatin remodeling - illustrating their significant yet complex contributions to cancer biology. While these changes offer potential avenues for therapeutic intervention due to their reversible nature, the interplay of epigenetic and genetic changes in cancer cells presents unique challenges that must be addressed to harness their full potential. By critically analyzing the current research landscape, we identify knowledge gaps and propose future research directions, exploring the potential of epigenetic therapies and discussing the obstacles in translating these concepts into effective treatments. This comprehensive review aims to stimulate further research and aid in developing innovative, patient-centered cancer therapies. Understanding the role of epigenetic modifications in cancer heterogeneity and drug resistance is critical for scientific advancement and paves the way towards improving patient outcomes in the fight against this formidable disease.
Collapse
Affiliation(s)
- Hana Q Sadida
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Alanoud Abdulla
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sara Al Marzooqi
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Laboratory of Genomic Medicine, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu & Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| | - Ajaz A Bhat
- Laboratory of Precision Medicine in Diabetes, Obesity and Cancer, Department of Population Genetics, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
24
|
Huang P, Cheng H, Ji J, Zhang W, Ma J, Wei D, Ren L. LncRNA Miat knockdown enhances pirarubicin-mediated anticancer sensitivity in breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:23-30. [PMID: 37598394 DOI: 10.1002/tox.23940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Pirarubicin (THP) is a widely used antitumor agent in clinical practice, but its reduced sensitivity during treatment has limited its use. The aim of this study was to investigate the role and mechanism of LncRNA Miat knockdown in improving THP sensitivity. We assessed the role of Miat overexpression/knockdown on THP-mediated 4T1 anticancer activity by CCK8, TUNEL, flow cytometry, wound healing assay, Transwell, Ca2+ , real time quantitative PCR (RT-qPCR) and Western blot. The results showed that Miat expression was higher in 4T1 mouse breast cancer cells than in HC11 mouse mammary epithelial cells, while THP decreased Miat expression in 4T1. Miat knockdown in combination with further reduced cell viability, promoted apoptosis and inhibited migration compared to THP alone. This may be related to the reduction of calcium ions in 4T1. In conclusion, Miat knockdown enhanced the sensitivity of THP to 4T1 by inhibiting calcium channels.
Collapse
Affiliation(s)
- Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
25
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
26
|
Zhou Z, Cao Y, Yang Y, Wang S, Chen F. METTL3-mediated m 6A modification of lnc KCNQ1OT1 promotes doxorubicin resistance in breast cancer by regulating miR-103a-3p/MDR1 axis. Epigenetics 2023; 18:2217033. [PMID: 37243702 PMCID: PMC10228414 DOI: 10.1080/15592294.2023.2217033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Doxorubicin (DOX) resistance in breast cancer (BC) poses a huge challenge for the therapeutic effect on BC. Lnc KCNQ1OT1 play crucial roles in chemotherapy resistance. However, the role and mechanism of lnc KCNQ1OT1 in DOX resistance BC have not been investigated, which merits further exploration. Based on MCF-7 and MDA-MB-231 cells, MCF-7/DOX and MDA-MB-231/DOX cells were established using gradient concentrations of DOX. IC50 values and cell viability were determined using MTT. Cell proliferation was investigated by colony formation. Flow cytometry was performed to examine cell apoptosis and cell cycle. Gene expression was examined using qRT-PCR and western blot. The interactions among METTL3, lnc KCNQ1OT1, miR-103a-3p, and MDR1 were validated with MeRIP-qPCR, RIP, and dual-luciferase reporter gene assays. The results showed that Lnc KCNQ1OT1 was highly expressed in DOX-resistant BC cells, and lnc KCNQ1OT1 depletion could enhance DOX sensitivity in BC cells and DOX-resistant BC cells. Besides, lnc KCNQ1OT1 was modulated by MELLT3 in the manner of m6A modification. MiR-103a-3p could interact with lnc KCNQ1OT1 and MDR1. Overexpression of MDR1 abolished the impacts of lnc KCNQ1OT1 depletion on DOX resistance in BC. In conclusion, our results unveiled that in BC cells and DOX-resistant BC cells, lnc KCNQ1OT1 could be mediated by METTL3 through m6A modification to elevate and stabilize its expression, further inhibiting miR-103a-3p/MDR1 axis to promote DOX resistance, which might provide novel thought to overcome DOX resistance in BC.
Collapse
Affiliation(s)
- Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Cancer In Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Yukun Cao
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Shouman Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Cancer In Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Feiyu Chen
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Cancer In Hunan Province, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| |
Collapse
|
27
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
28
|
Wang J, Xu J, Zheng J. A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner. Sci Rep 2023; 13:20730. [PMID: 38007504 PMCID: PMC10676358 DOI: 10.1038/s41598-023-47956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Adriamycin (ADR) resistance is an obstacle for chemotherapy of breast cancer (BC). ATP binding cassette subfamily B member 1 (ABCB1) expression is indicated to be closely related to the drug resistance of cancer cells. The current work intended to explore the molecular mechanisms to regulate ABCB1 in BC cells with ADR resistance. We found that long noncoding RNA (lncRNA) A1BG antisense RNA 1 (A1BG-AS1) is upregulated in ADR resistant BC cell lines (MCF-7/ADR, MDA-MB-231/ADR). A1BG-AS1 knockdown enhanced the ADR sensitivity by suppressing the viability, proliferation potential and migration ability, and facilitating cell apoptosis in BC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is known to be an m6A reader to modulate the stability of mRNA transcripts in an m6A-dependent manner, which was a shared RNA binding protein (RBP) for A1BG-AS1 and ABCB1. The interaction of IGF2BP2 with A1BG-AS1 or ABCB1 was explored and verified using RNA pulldown and RNA immunoprecipitation (RIP) assays. ABCB1 mRNA and protein expression was positively regulated by A1BG-AS1 and IGF2BP2 in BC cells. ABCB1 mRNA expression was stabilized by A1BG-AS1 via recruiting IGF2BP2 in an m6A-dependent manner. Moreover, rescue assays demonstrated that A1BG-AS1 enhanced BC ADR resistance by positively modulating ABCB1. Xenograft mouse models were used to explore whether A1BG-AS1 affected the ADR resistance in BC in vivo. The findings indicated that A1BG-AS1 silencing inhibited tumor growth and alleviated ADR resistance in vivo. In conclusion, A1BG-AS1 enhances the ADR resistance of BC by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner.
Collapse
Affiliation(s)
- Jian Wang
- Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Tanggu Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
| | - Jie Xu
- Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Tanggu Zhejiang Road, Binhai New Area, Tianjin, 300450, China
| | - Jie Zheng
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| |
Collapse
|
29
|
Wang T, Xin C, Zhang S, Tian X, Hu Y, Wang Y, Wang J, Ji N, Zeng X, Li J. Circular RNA from Tyrosylprotein Sulfotransferase 2 Gene Inhibits Cisplatin Sensitivity in Head and Neck Squamous Cell Carcinoma by Sponging miR-770-5p and Interacting with Nucleolin. Cancers (Basel) 2023; 15:5351. [PMID: 38001611 PMCID: PMC10669990 DOI: 10.3390/cancers15225351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Chemoresistance poses a significant challenge in the treatment of advanced head and neck squamous cell cancer (HNSCC). The role and mechanism of circular RNAs (circRNAs) in HNSCC chemoresistance remain understudied. We conducted circRNA microarray analysis to identify differentially expressed circRNAs in HNSCC. The expression of circRNAs from the tyrosylprotein sulfotransferase 2 (TPST2) gene and miRNAs was evaluated through qPCR, while the circular structure of circTPST2 was verified using Sanger sequencing and RNase R. Through Western blotting, biotin-labeled RNA pulldown, RNA immunoprecipitation, mass spectrometry, and rescue experiments, we discovered miR-770-5p and nucleolin as downstream targets of circTPST2. Functional tests, including CCK8 assays and flow cytometry, assessed the chemoresistance ability of circTPST2, miR-770-5p, and Nucleolin. Additionally, FISH assays determined the subcellular localization of circTPST2, miR-770-5p, and Nucleolin. IHC staining was employed to detect circTPST2 and Nucleolin expression in HNSCC patients. circTPST2 expression was inversely correlated with cisplatin sensitivity in HNSCC cell lines. Remarkably, high circTPST2 expression correlated with lower overall survival rates in chemotherapeutic HNSCC patients. Mechanistically, circTPST2 reduced chemosensitivity through sponge-like adsorption of miR-770-5p and upregulation of the downstream protein Nucleolin in HNSCC cells. The TCGA database revealed improved prognosis for patients with low circTPST2 expression after chemotherapy. Moreover, analysis of HNSCC cohorts demonstrated better prognosis for patients with low Nucleolin protein expression after chemotherapy. We unveil circTPST2 as a circRNA associated with chemoresistance in HNSCC, suggesting its potential as a marker for selecting chemotherapy regimens in HNSCC patients. Further exploration of the downstream targets of circTPST2 advanced our understanding and improved treatment strategies for HNSCC.
Collapse
Affiliation(s)
- Tianqing Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Chuan Xin
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Yuting Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| |
Collapse
|
30
|
Alemi F, Sadeghsoltani F, Fattah K, Hassanpour P, Malakoti F, Kardeh S, Izadpanah M, de Campos Zuccari DAP, Yousefi B, Majidinia M. Applications of engineered exosomes in drugging noncoding RNAs for cancer therapy. Chem Biol Drug Des 2023; 102:1257-1275. [PMID: 37496299 DOI: 10.1111/cbdd.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Noncoding RNAs (ncRNAs) are engaged in key cell biological and pathological events, and their expression alteration is connected to cancer progression both directly and indirectly. A huge number of studies have mentioned the significant role of ncRNAs in cancer prevention and therapy that make them an interesting subject for cancer therapy. However, there are several limitations, including delivery, uptake, and short half-life, in the application of ncRNAs in cancer treatment. Exosomes are introduced as promising options for the delivery of ncRNAs to the target cells. In this review, we will briefly discuss the application and barriers of ncRNAs. After that we will focus on exosome-based ncRNAs delivery and their advantages as well as the latest achievements in drugging ncRNAs with exosomes.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Melika Izadpanah
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
32
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Ma Y, Sun Y, Zhao X, Li J, Fu X, Gong T, Zhang X. Identification of m 5C-related lncRNAs signature to predict prognosis and therapeutic responses in esophageal squamous cell carcinoma patients. Sci Rep 2023; 13:14499. [PMID: 37666951 PMCID: PMC10477299 DOI: 10.1038/s41598-023-41495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a dismal prognosis because of atypical early symptoms and heterogeneous therapeutic responses. 5-methylcytosine (m5C) modification plays an important role in the onset and development of many tumors and is widespread in long non-coding RNA (lncRNA) transcripts. However, the functions of m5C and lncRNAs in ESCC have not been completely elucidated. Herein, this study aimed to explore the role of m5C-related lncRNAs in ESCC. The RNA-seq transcriptome profiles and clinical information were downloaded from the TCGA-ESCC database. Pearson analysis was used to identify m5C-related lncRNAs. Then we established the m5C-related lncRNAs prognostic signature (m5C-LPS) using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis. Then, the prognostic value of m5C-LPS was evaluated internally and externally using the TCGA-ESCC and GSE53622 databases through multiple methods. We also detected the expression of these lncRNAs in ESCC cell lines and patient tissues. Fluorescence in situ hybridization (FISH) was used to detect the prognostic value of specific lncRNA. In addition, clinical parameters, immune status, genomic variants, oncogenic pathways, enrichment pathways, and therapeutic response features associated with m5C-LPS were explored using bioinformatics methods. We constructed and validated a prognostic signature based on 9 m5C-related lncRNAs (AC002091.2, AC009275.1, CAHM, LINC02057.1, AC0006329.1, AC037459.3, AC064807.1, ATP2B1-AS1, and UBAC2-AS1). The quantitative real-time polymerase chain reaction (qRT-PCR) revealed that most lncRNAs were upregulated in ESCC cell lines and patient tissues. And AC002091.2 was validated to have significant prognostic value in ESCC patients. A composite nomogram was generated to facilitate clinical practice by integrating this signature with the N stage. Besides, patients in the low-risk group were characterized by good clinical outcomes, favorable immune status, and low oncogenic alteration. Function enrichment analysis indicated that the risk score was associated with mRNA splicing, ncRNA processing, and DNA damage repair response. At the same time, we found significant differences in the responses to chemoradiotherapy between the two groups, proving the value of m5C-LPS in treatment decision-making in ESCC. This study established a novel prognostic signature based on 9 m5C-related lncRNAs, which is a promising biomarker for predicting clinical outcomes and therapeutic response in ESCC.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Xing Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China.
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta West Road 277, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
34
|
Gharakhyli EA, Tabar Molla Hassan A, Alipour M, Vahidi S, Samadani AA. The effect of miR-372-5p regulation on CDX1 and CDX2 in the gastric cancer cell line. Horm Mol Biol Clin Investig 2023; 44:271-276. [PMID: 36848481 DOI: 10.1515/hmbci-2022-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES MicroRNA expression disruptions play an important function in the expansion of gastric cancer. Previous investigation has indicated that miR-372-5p doing as an oncogene in several malignancies. CDX1 and CDX2, as target genes of miR-372-5p, play the role of tumor suppressors and oncogenes in gastric cancer cells, respectively. The current investigation explored the effects of miR-372-5p regulation on CDX2 and CDX1 in AGS cell lines and studied their molecular mechanism. METHODS hsa-miR-372-5p miRCURY LNA miRNA Inhibitors and Mimic were transfected into AGS cell line. The cell viability and cell cycle calculation were defined by MTT assay and flow cytometry, respectively. The Expression levels of miR-372-5p, CDX1, CDX2 and transfection efficiency were measured using Real-time PCR. Statistical investigation p values <0.05 were considered to be meaningful. RESULTS miR-372-5p particularly was upregulated in control cells and also after transfection by mimic. While its expression was reduced by the inhibitor. Upregulation of miR-372-5p remarkably increased cell growth and led to accumulation in the G2/M phase, although the inhibitor decreased cell growth and accumulation in the S phase. Accordingly, upregulation of miR-372-5p increased CDX2 and decreased CDX1 expression. By inhibition of miR-372-5p, expression of CDX2 was decreased and expression of CDX1 was increased. CONCLUSIONS Up and down-regulation of miR-372-5P has a potential effect on the expression levels of its target genes, CDX1 and CDX22. Accordingly, the downregulation of miR-372-5p may be assumed as a possible therapeutic target in treating gastric cancer.
Collapse
Affiliation(s)
| | | | - Majid Alipour
- Department of Cell and Molecular Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
35
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
36
|
Wu S, Xie H, Su Y, Jia X, Mi Y, Jia Y, Ying H. The landscape of implantation and placentation: deciphering the function of dynamic RNA methylation at the maternal-fetal interface. Front Endocrinol (Lausanne) 2023; 14:1205408. [PMID: 37720526 PMCID: PMC10499623 DOI: 10.3389/fendo.2023.1205408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The maternal-fetal interface is defined as the interface between maternal tissue and sections of the fetus in close contact. RNA methylation modifications are the most frequent kind of RNA alterations. It is effective throughout both normal and pathological implantation and placentation during pregnancy. By influencing early embryo development, embryo implantation, endometrium receptivity, immune microenvironment, as well as some implantation and placentation-related disorders like miscarriage and preeclampsia, it is essential for the establishment of the maternal-fetal interface. Our review focuses on the role of dynamic RNA methylation at the maternal-fetal interface, which has received little attention thus far. It has given the mechanistic underpinnings for both normal and abnormal implantation and placentation and could eventually provide an entirely novel approach to treating related complications.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Su
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yabing Mi
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, Zhang X, Zhou Y. SP1-Induced Upregulation of LncRNA AFAP1-AS1 Promotes Tumor Progression in Triple-Negative Breast Cancer by Regulating mTOR Pathway. Int J Mol Sci 2023; 24:13401. [PMID: 37686205 PMCID: PMC10563082 DOI: 10.3390/ijms241713401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Daheng Xian
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Ting Xie
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| |
Collapse
|
38
|
Yan M, Hu C, Hu Q, Ma H, Lei C, Liu Y. circ_0008285 Regulates Glioma Progression via the miR-384/HMGB1 Axis. Int J Genomics 2023; 2023:1680634. [PMID: 37575469 PMCID: PMC10415084 DOI: 10.1155/2023/1680634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background Recent studies indicate that circular RNAs (circRNAs) have been implicated in the initiation or progression of a wide spectrum of diseases. In the current study, we explored the potential engagement of circ_0008285 in glioma and investigated the downstream regulators. Methods The detection of circ_0008285 level in glioma specimens and cell lines was conducted by quantitative real-time polymerase chain reaction. The chi-squared test was employed to evaluate the relationship between the circ_0008285 level and the clinical features of glioma patients. The roles of circ_0008285 on the proliferation and apoptosis of glioma cells were studied by knockdown experiment. Meanwhile, the regulatory relationship of circ_0008285, miR-384, and high mobility group protein B1 (HMGB1) was explored in glioma cells, and we explored the effects of circ_0008285/miR-384/HMGB1 pathway on glioma cells. Results In glioma specimens and cell lines, the expression of circ_0008285 was significantly increased, and a high circ_0008285 level was associated with a larger tumor size and more advanced grading in glioma patients. Furthermore, downregulating circ_0008285 suppressed proliferation and triggered apoptosis of glioma cells, which was associated with a cell cycle arrest at the G1/G0 phase. Mechanism studies indicated that circ_0008285 regulated HMGB1 by sponging miR-384. Functional experiments demonstrated that circ_0008285 promoted the malignant phenotype of glioma cells by miR-384/HMGB1 axis. Conclusion Our study revealed circ_0008285 as a novel oncogenic factor in glioma through modulating the miR-384/HMGB1 pathway, suggesting that targeting circ_0008285 could serve as a strategy for glioma management.
Collapse
Affiliation(s)
- Manli Yan
- Department of Internal Medicine, The Fifth Hospital of Wuhan, Wuhan 430050, China
| | - Caihong Hu
- Department of Internal Medicine, Wuhan Hospital of China University of Geoscience, Wuhan 430074, China
| | - Qi Hu
- Department of Surgery, The Fifth Hospital of Wuhan, Wuhan, Hubei 430050, China
| | - Heran Ma
- Qilu Cell Therapy Technology Co., Ltd., Jinan 250100, China
| | - Changjiang Lei
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan 430050, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225321, China
| |
Collapse
|
39
|
Wang J, Liu Q, Zhao Y, Fu J, Su J. Tumor Cells Transmit Drug Resistance via Cisplatin-Induced Extracellular Vesicles. Int J Mol Sci 2023; 24:12347. [PMID: 37569723 PMCID: PMC10418773 DOI: 10.3390/ijms241512347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a first-line clinical agent used for treating solid tumors. Cisplatin damages the DNA of tumor cells and induces the production of high levels of reactive oxygen species to achieve tumor killing. Tumor cells have evolved several ways to tolerate this damage. Extracellular vesicles (EVs) are an important mode of information transfer in tumor cells. EVs can be substantially activated under cisplatin treatment and mediate different responses of tumor cells under cisplatin treatment depending on their different cargoes. However, the mechanism of action of tumor-cell-derived EVs under cisplatin treatment and their potential cargoes are still unclear. This review considers recent advances in cisplatin-induced release of EVs from tumor cells, with the expectation of providing a new understanding of the mechanisms of cisplatin treatment and drug resistance, as well as strategies for the combined use of cisplatin and other drugs.
Collapse
Affiliation(s)
| | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (Q.L.); (Y.Z.); (J.F.)
| |
Collapse
|
40
|
Zhang S, Zhong J, Guo D, Zhang S, Huang G, Chen Y, Xu C, Chen W, Zhang Q, Zhao C, Liu S, Luo Z, Lin C. MIAT shuttled by tumor-secreted exosomes promotes paclitaxel resistance in esophageal cancer cells by activating the TAF1/SREBF1 axis. J Biochem Mol Toxicol 2023; 37:e23380. [PMID: 37132394 DOI: 10.1002/jbt.23380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Chemoresistance remains a major obstacle to the treatment of esophageal cancer (EC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) has recently been unveiled to correlate with the regulation of drug resistance in EC. This study aimed to investigate the physiological mechanisms by which exosome-encapsulated lncRNA myocardial infarction-associated transcript (MIAT) derived from tumor cells might mediate the paclitaxel (PTX) resistance of EC cells. First, MIAT was experimentally determined to be upregulated in PTX nonresponders and PTX-resistant EC cells. Silencing of MIAT in PTX-resistant EC cells decreased cell viability and enhanced apoptosis, corresponding to a reduced half-maximal inhibitory concentration (IC50 ) value. Next, exosomes were isolated from EC109 and EC109/T cells, and EC109 cells were cocultured with EC109/T-cell-derived exosomes. Accordingly, MIAT was revealed to be transmitted through exosomes from EC109/T cells to EC109 cells. Tumor-derived exosomes carrying MIAT increased the IC50 value of PTX and suppressed apoptosis in EC109 cells to promote PTX resistance. Furthermore, MIAT promoted the enrichment of TATA-box binding protein-associated Factor 1 (TAF1) in the promoter region of sterol regulatory element binding transcription factor 1 (SREBF1), as shown by a chromatin immunoprecipitation assay. This might be the mechanism by which MIAT could promote PTX resistance. Finally, in vivo experiments further confirmed that the knockdown of MIAT attenuated the resistance of EC cells to PTX. Collectively, these results indicate that tumor-derived exosome-loaded MIAT activates the TAF1/SREBF1 axis to induce PTX resistance in EC cells, providing a potential therapeutic target for overcoming PTX resistance in EC.
Collapse
Affiliation(s)
- Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, P. R. China
- Department of Pharmacology, Shantou University Medical College, Shantou, P. R. China
| | - Junyong Zhong
- Department of Oncology, Longgang District Central Hospital of Shenzhen, Shenzhen, P. R. China
| | - Dainian Guo
- Good Clinical Practice, Cancer Hospital of Shantou University Medical College, Shantou, P. R. China
| | - Shengqi Zhang
- Dafeng Hospital of Chaoyang District in Shantou City, Shantou, P. R. China
- Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, P. R. China
| | - Guifeng Huang
- Dafeng Hospital of Chaoyang District in Shantou City, Shantou, P. R. China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, P. R. China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, P. R. China
- Department of Pharmacology, Shantou University Medical College, Shantou, P. R. China
| | - Wang Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, P. R. China
| | - Qiuzhen Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, P. R. China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Guangzhou, P. R. China
- Department of Pharmacology, Shantou University Medical College, Shantou, P. R. China
| | - Sulin Liu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, P. R. China
| | - Zebin Luo
- Dafeng Hospital of Chaoyang District in Shantou City, Shantou, P. R. China
| | - Chaoxian Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou, P. R. China
- Shantou Chaonan Minsheng Hospital, Shantou, P. R. China
| |
Collapse
|
41
|
Cheng D, Wang B, Wu L, Chen R, Zhao W, Fang C, Ji M. Exosomal non-coding RNAs-mediated EGFR-TKIs resistance in NSCLC with EGFR mutation. Med Oncol 2023; 40:254. [PMID: 37505345 DOI: 10.1007/s12032-023-02125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The advent of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has significantly improved survival rates of patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, as with other antitumor drugs, resistance to EGFR-TKIs is inevitably develops over time. Exosomes, extracellular vesicles with a 30-150 nm diameter, have emerged as vital mediators of intercellular communication. Recent studies revealed that exosomes carry non-coding RNAs (ncRNAs), including circular RNA (circRNA), microRNA (miRNA), and long noncoding RNA (lncRNA), which contribute to the development of EGFR-TKIs resistance. This review provides a comprehensive overview of the current research on exosomal ncRNAs mediating EGFR-TKIs resistance in EGFR-mutated NSCLC. In the future, detecting exosome ncRNAs can be used to monitor targeted therapy for NSCLC. Meanwhile, developing therapeutic regimens targeting these resistance mechanisms may provide additional clinical benefits to patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daoan Cheng
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Banglu Wang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Lige Wu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Rui Chen
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Weiqing Zhao
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China
| | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213004, China.
| |
Collapse
|
42
|
Nowak P, Bil-Lula I, Śliwińska-Mossoń M. A Cross-Talk about Radioresistance in Lung Cancer-How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. Int J Mol Sci 2023; 24:11206. [PMID: 37446385 DOI: 10.3390/ijms241311206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.
Collapse
Affiliation(s)
- Paulina Nowak
- Scientific Club of Specialized Biological Analyzes, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
43
|
Wang X, Wang B, Li F, Li X, Guo T, Gao Y, Wang D, Huang W. The c-Src/LIST Positive Feedback Loop Sustains Tumor Progression and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300115. [PMID: 37156751 PMCID: PMC10369257 DOI: 10.1002/advs.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Chemotherapy resistance and treatment failure hinder clinical cancer treatment. Src, the first mammalian proto-oncogene to be discovered, is a valuable anti-cancer therapeutic target. Although several c-Src inhibitors have reached the clinical stage, drug resistance remains a challenge during treatment. Herein, a positive feedback loop between a previously uncharacterized long non-coding RNA (lncRNA), which the authors renamed lncRNA-inducing c-Src tumor-promoting function (LIST), and c-Src is uncovered. LIST directly binds to and regulates the Y530 phosphorylation activity of c-Src. As a c-Src agonist, LIST promotes tumor chemoresistance and progression in vitro and in vivo in multiple cancer types. c-Src can positively regulate LIST transcription by activating the NF-κB signaling pathway and then recruiting the P65 transcription factor to the LIST promoter. Interestingly, the LIST/c-Src interaction is associated with evolutionary new variations of c-Src. It is proposed that the human-specific LIST/c-Src axis renders an extra layer of control over c-Src activity. Additionally, the LIST/c-Src axis is of high physiological relevance in cancer and may be a valuable prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Bing Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fang Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xingkai Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Ting Guo
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Dawei Wang
- Department of Thoracic SurgeryChifeng Municipal HospitalChifeng024000China
| | - Weiren Huang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
44
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Dunkel H, Wehrmann H, Jensen LR, Kuss AW, Simm S. MncR: Late Integration Machine Learning Model for Classification of ncRNA Classes Using Sequence and Structural Encoding. Int J Mol Sci 2023; 24:8884. [PMID: 37240230 PMCID: PMC10218863 DOI: 10.3390/ijms24108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-coding RNA (ncRNA) classes take over important housekeeping and regulatory functions and are quite heterogeneous in terms of length, sequence conservation and secondary structure. High-throughput sequencing reveals that the expressed novel ncRNAs and their classification are important to understand cell regulation and identify potential diagnostic and therapeutic biomarkers. To improve the classification of ncRNAs, we investigated different approaches of utilizing primary sequences and secondary structures as well as the late integration of both using machine learning models, including different neural network architectures. As input, we used the newest version of RNAcentral, focusing on six ncRNA classes, including lncRNA, rRNA, tRNA, miRNA, snRNA and snoRNA. The late integration of graph-encoded structural features and primary sequences in our MncR classifier achieved an overall accuracy of >97%, which could not be increased by more fine-grained subclassification. In comparison to the actual best-performing tool ncRDense, we had a minimal increase of 0.5% in all four overlapping ncRNA classes on a similar test set of sequences. In summary, MncR is not only more accurate than current ncRNA prediction tools but also allows the prediction of long ncRNA classes (lncRNAs, certain rRNAs) up to 12.000 nts and is trained on a more diverse ncRNA dataset retrieved from RNAcentral.
Collapse
Affiliation(s)
- Heiko Dunkel
- Institute of Bioinformatics, University Medicine Greifswald, Walther-Rathenau Str. 48, 17489 Greifswald, Germany
| | - Henning Wehrmann
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt am Main, Germany
| | - Lars R. Jensen
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Andreas W. Kuss
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Walther-Rathenau Str. 48, 17489 Greifswald, Germany
| |
Collapse
|
46
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
47
|
Lin R, Zhang L, Ye B, Wang Y, Li YD, Jason H, Liu W, Hu P, Chen J, Chen ZS, Chen Z. A multi-functional nano-system combining PI3K-110α/β inhibitor overcomes P-glycoprotein mediated MDR and improves anti-cancer efficiency. Cancer Lett 2023; 563:216181. [PMID: 37086953 DOI: 10.1016/j.canlet.2023.216181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR) in cancers severely limit chemotherapeutic efficacy. We recently reported that phosphatidylinositol-3-kinase (PI3K) 110α and 110β subunits can be novel targets for reversal of P-gp mediated MDR in cancers, and BAY-1082439 as an inhibitor specific for PI3K 110α and 110β subunits could reverse P-gp-mediated MDR by downregulating P-gp expression in cancer cells. However, BAY-1082439 has very low solubility, short half-life and high in-vivo clearance rate. Till now, nano-system with the functions to target PI3K P110α and P110β and reverse P-gp mediated MDR in cancers has not been reported. In our study, a tumor targeting drug delivery nano-system PBDF was established, which comprised doxorubicin (DOX) and BAY-1082439 respectively encapsulated by biodegradable PLGA-SH nanoparticles (NPs) that were grafted to gold nanorods (Au NRs) modified with FA-PEG-SH, to enhance the efficacy to reverse P-gp mediated MDR and to target tumor cells, further, to enhance the efficiency to inhibit MDR tumors overexpressing P-gp. In-vitro experiments indicated that PBDF NPs greatly enhanced uptake of DOX, improved the activity to reverse MDR, inhibited the cell proliferation, and induced S-phase arrest and apoptosis in KB-C2 cells, as compared with free DOX combining free BAY-1082439. In-vivo experiments further demonstrated that PBDF NPs improved the anti-tumor ability of DOX and inhibited development of KB-C2 tumors. Notably, the metastasis of KB-C2 cells in livers and lungs of nude mice were inhibited by treatment with PBDF NPs, which showed no obvious in-vitro or in-vivo toxicity.
Collapse
Affiliation(s)
- Ruikun Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Biwei Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yanan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yi-Dong Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Hsu Jason
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ping Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
48
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
49
|
Liu B, Qu X, Wang J, Xu L, Zhang L, Xu B, Su J, Bian X. LINC00365 functions as a tumor suppressor by inhibiting HIF-1α-mediated glucose metabolism reprogramming in breast cancer. Exp Cell Res 2023; 425:113514. [PMID: 36804531 DOI: 10.1016/j.yexcr.2023.113514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in regulating several physiological processes and have been implicated in several pathologies including cancer. LncRNAs have been found to regulate key cellular pathways involved in cancer development, and their aberrant expression plays critical roles in the onset or progression of disease. The role of lncRNAs in breast cancer (BC) has become a hot topic of research in recent years. We previously showed that LINC00365 inhibits BC survival. In the current study, based on the important role of energy metabolism and HIF-1α for tumor cell proliferation, we investigated the role and mechanism of the LINC00365/HIF-1α axis in affecting tumor growth through glycolysis using the breast cancer cell lines MCF-7 and HCC-1937. We found that LINC00365 inhibited BC cell proliferation. Furthermore, LINC00365 overexpression suppressed aerobic glycolysis in BC cells. RNA-sequencing identified hypoxia-inducible factor-1α (HIF-1α), which has been linked with glycolysis and upregulates glycolysis-related genes, as a potential target gene of LINC00365. Accordingly, we found that LINC00365 overexpression resulted in decreased expression of key glycolytic enzymes such as downstream hexokinase 2 (HK2), recombinant pyruvate kinase isozymes M2 (PKM2) and lactate dehydrogenase A (LDHA). Our results suggest that targeting LINC00365 may reverse the glucose metabolism pattern of BC and effectively inhibit BC survival both in vitro and in vivo.
Collapse
Affiliation(s)
- Buhan Liu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Labor-atory of Surgical Translational Medicine, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lichao Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bo Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuehai Bian
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Labor-atory of Surgical Translational Medicine, Changchun, China.
| |
Collapse
|
50
|
Jia F, Li Y, Gao Y, Wang X, Lu J, Cui X, Pan Z, Xu C, Deng X, Wu Y. Long-acting anti-colorectal cancer by nanocomplex co-regulating Bmi1 through miR-218 and siCCAT1. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|