1
|
Nairon KG, Nigam A, Khanal T, Rodriguez MA, Rajan N, Anderson SR, Ringel MD, Skardal A. RCAN1.4 regulates tumor cell engraftment and invasion in a thyroid cancer to lung metastasis-on-a-chip microphysiological system. Biofabrication 2024; 17:011001. [PMID: 39361514 DOI: 10.1088/1758-5090/ad82e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Progressive metastasis is the primary cause of cancer-related deaths. It has been recognized that many cancers are characterized by long periods of stability followed by subsequent progression. Genes termed metastasis progression suppressors (MPS) are functional gatekeepers of this process, and their loss leads to late-stage progression. Previously, we identified regulator of calcineurin 1, isoform 4 (RCAN1.4) as a functional MPS for several cancers, including thyroid cancer, a tumor type prone to metastatic dormancy. RCAN1.4 knockdown increases expression of the cancer-promoting transcription factor NFE2-like bZIP transcription factor (NFE2L3), and through this mechanism increases cancer cell proliferation and invasion inin vitroandin vivoand promotes metastatic potential to lungs in tail vein models. However, the mechanisms by which RCAN 1.4 regulates specific metastatic steps is incompletely characterized. Studies of the metastatic cascade are limited in mouse systems due to high cost and long duration. Here, we have shown the creation of a thyroid-to-lung metastasis-on-a-chip (MOC) model to address these limitations, allowing invasion analysis and quantification on a single cell level. We then deployed the platform to investigate RCAN1.4 knockdown in fluorescently tagged hTh74 and FTC236 thyroid cancer cell lines. Cells were circulated through microfluidic channels, running parallel to lung hydrogel constructs allowing tumor cell-lung tissue interactions. Similar to studies in mouse models, RCAN1.4 knockdown increased NFE2L3 expression, globally increased invasion distance into lung constructs and had cell line and clonally dependent variations on bulk metastatic burden. In line with previousin vivoobservations, RCAN1.4 knockdown had a greater impact on hTh74 metastatic propensity than FTC236. In summary, we have developed and validated a novel MOC system evaluate and quantify RCAN1.4-regulated thyroid cancer cell lung adherence and invasion. This system creates opportunities for more detailed and rapid mechanistic studies the metastatic cascade and creates opportunities for translational assay development.
Collapse
Affiliation(s)
- Kylie G Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Akanksha Nigam
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Tilak Khanal
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Marco A Rodriguez
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Neel Rajan
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Sydney R Anderson
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Matthew D Ringel
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, OH, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States of America
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States of America
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
2
|
Wei D, Yuan L, Xu X, Wu C, Huang Y, Zhang L, Zhang J, Jing T, Liu Y, Wang B. Exploring epigenetic dynamics unveils a super-enhancer-mediated NDRG1-β-catenin axis in modulating gemcitabine resistance in pancreatic cancer. Cancer Lett 2024; 605:217284. [PMID: 39366545 DOI: 10.1016/j.canlet.2024.217284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Chemoresistance remains a formidable challenge in pancreatic ductal adenocarcinoma (PDAC) treatment, necessitating a comprehensive exploration of underlying molecular mechanisms. This work aims to investigate the dynamic epigenetic landscape during the development of gemcitabine resistance in PDAC, with a specific focus on super-enhancers and their regulatory effects. We employed well-established gemcitabine-resistant (Gem-R) PDAC cell lines to perform high-throughput analyses of the epigenome, enhancer connectome, and transcriptome. Our findings revealed notable alterations in the epigenetic landscape and genome architecture during the transition from gemcitabine-sensitive to -resistant PDAC cells. Remarkably, we observed substantial plasticity in the activation status of super-enhancers, with a considerable proportion of these cis-elements becoming deactivated in chemo-resistant cells. Furthermore, we pinpointed the NDRG1 super-enhancer (NDRG1-SE) as a crucial regulator in gemcitabine resistance among the loss-of-function super-enhancers. NDRG1-SE deactivation induced activation of WNT/β-catenin signaling, thereby conferring gemcitabine resistance. This work underscores a NDRG1 super-enhancer deactivation-driven β-catenin pathway activation as a crucial regulator in the acquisition of gemcitabine-resistance. These findings advance our understanding of PDAC biology and provide valuable insights for the development of effective therapeutic approaches against chemoresistance in this malignant disease.
Collapse
Affiliation(s)
- Dianhui Wei
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Yuan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoli Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Chengsi Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yiwen Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Lili Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Jilong Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Tiantian Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Yizhen Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Boshi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Mulet-Lazaro R, Delwel R. Oncogenic Enhancers in Leukemia. Blood Cancer Discov 2024; 5:303-317. [PMID: 39093124 PMCID: PMC11369600 DOI: 10.1158/2643-3230.bcd-23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Zhang K, Zhao D, Li Z, Wang Y, Liu J, Du T, Zhou L, Chen Y, Yu Q, Chen Q, Cai R, Zhao Z, Shan J, Hu B, Zhang H, Feng G, Zhu X, Tang J, Deng R. Inactivated cGAS-STING Signaling Facilitates Endocrine Resistance by Forming a Positive Feedback Loop with AKT Kinase in ER+HER2- Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403592. [PMID: 39023171 PMCID: PMC11425221 DOI: 10.1002/advs.202403592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.
Collapse
Affiliation(s)
- Kai‐Ming Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - De‐Chang Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ze‐Yu Li
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yan Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian‐Nan Liu
- Department of OncologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShangdong264000China
| | - Tian Du
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ling Zhou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yu‐Hong Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qi‐Chao Yu
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Shan Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rui‐Zhao Cai
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Xuan Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Lu Shan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bing‐Xin Hu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Liang Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gong‐Kan Feng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jun Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Breast OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Rong Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
5
|
Yates ME, Waltermire H, Mori K, Li Z, Li Y, Guzolik H, Wang X, Liu T, Atkinson JM, Hooda J, Lee AV, Oesterreich S. ESR1 Fusions Invoke Breast Cancer Subtype-Dependent Enrichment of Ligand-Independent Oncogenic Signatures and Phenotypes. Endocrinology 2024; 165:bqae111. [PMID: 39207954 PMCID: PMC11384147 DOI: 10.1210/endocr/bqae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is a leading cause of female mortality and despite advancements in personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. The estrogen receptor (ER, ESR1) is expressed in two-thirds of all breast cancer, and under endocrine stress, somatic ESR1 mutations arise in approximately 30% of cases that result in endocrine resistance. We and others reported ESR1 fusions as a mechanism of ER-mediated endocrine resistance. ER fusions, which retain the activation function 1- and DNA-binding domains, harbor ESR1 exons 1 to 6 fused to an in-frame gene partner resulting in loss of the ER ligand-binding domain (LBD). We demonstrate that in a no-special type (invasive ductal carcinoma [IDC]-NST) and an invasive lobular carcinoma (ILC) cell line, ER fusions exhibit robust hyperactivation of canonical ER signaling pathways independent of estradiol or antiendocrine therapies. We employ cell line models stably overexpressing ER fusions with concurrent endogenous ER knockdown to minimize endogenous ER influence. Cell lines exhibited shared transcriptomic enrichment in pathways known to be drivers of metastatic disease, notably MYC signaling. Cells expressing the 3' fusion partners SOX9 and YAP1 consistently demonstrated enhanced growth and cell survival. ILC cells expressing the DAB2 fusion led to enhanced growth, survival, and migration, phenotypes not appreciated in the IDC-NST DAB2 model. Herein, we report that cell line activity is subtype-, fusion-, and assay-specific, suggesting that LBD loss, the fusion partner, and the cellular landscape all influence fusion activities. Therefore, it will be critical to assess fusion frequency in the context of the clinicopathology.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Cell Line, Tumor
- Phenotype
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
- SOX9 Transcription Factor/genetics
- SOX9 Transcription Factor/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction/genetics
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Ligands
- Cell Proliferation/genetics
Collapse
Affiliation(s)
- Megan E Yates
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hunter Waltermire
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Biomedical Masters Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kanako Mori
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zheqi Li
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yiting Li
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Hannah Guzolik
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Xiaosong Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tiantong Liu
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jagmohan Hooda
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Yang Z, Deng X, Wen D, Sun L, An R, Xu J. Identification of RCAN1's role in hepatocellular carcinoma using single-cell analysis. BMC Cancer 2024; 24:1056. [PMID: 39192218 PMCID: PMC11348566 DOI: 10.1186/s12885-024-12807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The regulator of calcineurin 1 (RCAN1) is expressed in multiple organs, including the heart, liver, brain, and kidney, and is closely linked to the pathogenesis of cardiovascular diseases, Down syndrome, and Alzheimer's disease. It is also implicated in the development of various organ tumors; however, its potential role in hepatocellular carcinoma (HCC) remains poorly understood. Therefore, the objective of this study was to investigate the potential mechanisms of RCAN1 in HCC through bioinformatics analysis. METHODS We conducted a joint analysis based on the NCBI and TCGA databases, integrating both bulk transcriptome and single-cell analyses to examine the principal biological functions of RCAN1 in HCC, as well as its roles related to phenotype, metabolism, and cell communication. Subsequently, an RCAN1-overexpressing cell line was established, and the effects of RCAN1 on tumor cells were validated through in vitro experiments. Moreover, we endeavored to identify potential related drugs using molecular docking and molecular dynamics simulations. RESULTS The expression of RCAN1 was found to be downregulated in 19 types of cancer tissues and upregulated in 11 types of cancer tissues. Higher levels of RCAN1 expression were associated with improved patient survival. RCAN1 was predominantly expressed in hepatocytes, macrophages, endothelial cells, and monocytes, and its high expression not only closely correlated with the distribution of cells related to the HCC phenotype but also with the distribution of HCC cells themselves. Additionally, Rcan1 may directly or indirectly participate in metabolic pathways such as alanine, aspartate, and glutamate metabolism, as well as butanoate metabolism, thereby influencing tumor cell proliferation and migration. In vitro experiments confirmed that RCAN1 overexpression promoted apoptosis while inhibiting proliferation and invasion of HCC cells. Through molecular docking of 1615 drugs, we screened brompheniramine as a potential target drug and verified our results by molecular dynamics. CONCLUSION In this study, we revealed the relationship between RCAN1 and HCC through bioinformatics methods, verified that RCAN1 can affect the progress of the disease through experiments, and finally identified potential therapeutic drugs through drug molecular docking and molecular dynamics.
Collapse
Affiliation(s)
- Ziqi Yang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiwei Deng
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| | - Didi Wen
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijun Sun
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui An
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Jian Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
- Department of Interventional Surgery Center, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Long Z, Li X, Deng W, Tan Y, Liu J. Tumor-associated characteristics and immune dysregulation in nasopharyngeal carcinoma under the regulation of m7G-related tumor microenvironment cells. World J Surg Oncol 2024; 22:166. [PMID: 38918785 PMCID: PMC11202337 DOI: 10.1186/s12957-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant tumor with high morbidity. Aberrant levels of N7-methylguanosine (m7G) are closely associated with tumor progression. However, the characteristics of the tumor microenvironment (TME) in NPC associated with m7G modification remain unclear. METHODS A total of 68,795 single cells from single-cell RNA sequencing data derived from 11 NPC tumor samples and 3 nasopharyngeal lymphatic hyperplasia (NLH) samples were clustered using a nonnegative matrix factorization algorithm according to 61 m7G RNA modification regulators. RESULTS The m7G regulators were found differential expression in the TME cells of NPC, and most m7G-related immune cell clusters in NPC tissues had a higher abundance compared to non-NPC tissues. Specifically, m7G scores in the CD4+ and CD8+ T cell clusters were significantly lower in NPC than in NLH. T cell clusters differentially expressed immune co-stimulators and co-inhibitors. Macrophage clusters differentially expressed EIF4A1, and high EIF4A1 expression was associated with poor survival in patients with head and neck squamous carcinoma. EIF4A1 was upregulated in NPC tissues compared to the non-NPC tissues and mainly expressed in CD86+ macrophages. Moreover, B cell clusters exhibited tumor biological characteristics under the regulation of m7G-related genes in NPC. The fibroblast clusters interacted with the above immune cell clusters and enriched tumor biological pathways, such as FGER2 signaling pathway. Importantly, there were correlations and interactions through various ligand-receptor links among epithelial cells and m7G-related TME cell clusters. CONCLUSION Our study revealed tumor-associated characteristics and immune dysregulation in the NPC microenvironment under the regulation of m7G-related TME cells. These results demonstrated the underlying regulatory roles of m7G in NPC.
Collapse
Affiliation(s)
- Zhen Long
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Tan
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Shi Z, Wang R, Huang J, Qian Q, Hu M, Zhang H, Feng L, Gu H, Wang Y. Super-enhancer-driven ameboidal-type cell migration-related MMP14 expression in tongue squamous cell carcinoma switched by BATF and ATF3. J Pharm Pharmacol 2024:rgae063. [PMID: 38836550 DOI: 10.1093/jpp/rgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) exhibits an aggressive biological behavior of lymph node and distant metastasis, which contributes to poorer prognosis and results in tongue function loss or death. In addition to known regulators and pathways of cell migration in TSCC, it is important to uncover pivotal switches governing tumor metastasis. METHODS Cancer cell migration-associated transcriptional and epigenetic characteristics were profiled in TSCC, and the specific super-enhancers (SEs) were identified. Molecular function and mechanism studies were used to investigate the pivotal switches in TSCC metastasis. RESULTS Ameboidal-type cell migration-related genes accompanied by transcriptional and epigenetic activity were enriched in TSCC. Meanwhile, the higher-ranked SE-related genes showed significant differences between 43 paired tumor and normal samples from the TCGA TSCC cohort. In addition, key motifs were detected in SE regions, and transcription factor-related expression levels were significantly associated with TSCC survival status. Notably, BATF and ATF3 regulated the expression of ameboidal-type cell migration-related MMP14 by switching the interaction with the SE region. CONCLUSION SEs and related key motifs transcriptional regulate tumor metastasis-associated MMP14 and might be potential therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhimin Shi
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Rui Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Jie Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qian Qian
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230022, China
| | - Menglin Hu
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
- Department of Dental, Tongling Traditional Chinese Medicine Hospital, Taipinghu Road, Tongling 244000, China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hao Gu
- Department of Immunology, the School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Luo S, Luo Y, Wang Z, Yin H, Wu Q, Du X, Xie X. Super-enhancer mediated upregulation of MYEOV suppresses ferroptosis in lung adenocarcinoma. Cancer Lett 2024; 589:216811. [PMID: 38490328 DOI: 10.1016/j.canlet.2024.216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Super-enhancers (SEs) exerted a crucial role in regulating the transcription of oncogenes across various malignancies while the roles of SEs driven genes and the core regulatory elements remain elusive in LUAD. In this study, cancer-specific-SE-genes of lung adenocarcinoma (LUAD) were profiled through H3K27ac ChIP-seq data of cancer cell lines and normal lung tissues, which enriched in in biological processes and pathways integral to the pathophysiology of LUAD. Based on this study, LUAD cells were susceptible to SEs inhibitors, with a reduction of cell proliferation as well as an elevation of apoptosis upon JQ1 or THZ1 intervention. Moreover, the integration of SEs landscapes, CRISPRi, ChIP-PCR, Hi-C data analysis and dual-luciferase reporter assays revealed that myeloma overexpressed gene (MYEOV) was aberrantly overexpressed in LUAD via transcriptional activation by the core SE elements. Functionally, the knockdown of MYEOV undermined cell proliferation in vitro and tumor growth in vivo. In addition, the knockdown of MYEOV generated a prominent ferroptotic phenotype, characterized by elevation of intracellular ferrous iron, reactive oxygen species and lipid peroxidation, together with alteration in marker proteins (SLC7A11, GPX4, FTH1, and ACSL4). Instead, the overexpression of MYEOV accelerated cell proliferation and abrogated ferroptosis. Clinically, the overexpression of MYEOV was observed in LUAD tissues indicating a poor prognosis in patients with LUAD. Mechanistically, SMPD1-induced autophagic degradation of GPX4 assumed a crucial role in the process of ferroptosis triggered by MYEOV knockdown. Serving as an oncogene repressing ferroptosis, promoting proliferation as well as shortening survival in LUAD, SEs-mediated activation of MYEOV might distinguish as a promising therapeutic target.
Collapse
Affiliation(s)
- Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Haofeng Yin
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaowei Du
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China.
| |
Collapse
|
11
|
Jiang Y, Peng Y, Tian Q, Cheng Z, Feng B, Hu J, Xia L, Guo H, Xia K, Zhou L, Hu Z. Intergenic sequences harboring potential enhancer elements contribute to Axenfeld-Rieger syndrome by regulating PITX2. JCI Insight 2024; 9:e177032. [PMID: 38592784 PMCID: PMC11141933 DOI: 10.1172/jci.insight.177032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Recent studies have uncovered that noncoding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese family with ARS and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between paired-like homeodomain transcription factor 2 (PITX2) and family with sequence similarity 241 member A. Knockout of LOH-1 homologous sequences caused ARS phenotypes in mice. RNA-Seq and real-time quantitative PCR revealed a significant reduction in Pitx2 gene expression in LOH-1-/- mice, while forkhead box C1 expression remained unchanged. ChIP-Seq and bioinformatics analysis identified a potential enhancer region (LOH-E1) within LOH-1. Deletion of LOH-E1 led to a substantial downregulation of the PITX2 gene. Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) that is on LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our findings indicate that a potential enhancer sequence that is within LOH-1 may regulate PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when absent.
Collapse
Affiliation(s)
- Yizheng Jiang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Yu Peng
- Department of Medical Genetics, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi Tian
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Zhe Cheng
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Bei Feng
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Junping Hu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Lu Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Hui Guo
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| | - Kun Xia
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences and
| |
Collapse
|
12
|
Lavaud M, Tesfaye R, Lassous L, Brounais B, Baud'huin M, Verrecchia F, Lamoureux F, Georges S, Ory B. Super-enhancers: drivers of cells' identities and cells' debacles. Epigenomics 2024; 16:681-700. [PMID: 38587919 PMCID: PMC11160454 DOI: 10.2217/epi-2023-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Precise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are cis-acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities. Here we review the current knowledge on the composition and structure of super-enhancers to understand how they robustly stimulate the expression of cellular identity genes. We also review their involvement in the development of various cell types and both noncancerous and cancerous disorders, implying the therapeutic interest of targeting them to fight against various diseases.
Collapse
Affiliation(s)
- Mélanie Lavaud
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Robel Tesfaye
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| | - Léa Lassous
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Bénédicte Brounais
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Marc Baud'huin
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Franck Verrecchia
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - François Lamoureux
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Steven Georges
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
| | - Benjamin Ory
- CRCI2NA, INSERM UMR 1307, CNRS UMR 6075, Nantes University & Angers University, Medical School, Nantes, 44035, France
- Cancéropôle Grand-Ouest, Réseau Épigénétique, Medical School, Nantes, 44035, France
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, France
| |
Collapse
|
13
|
Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov 2023; 9:470. [PMID: 38135679 PMCID: PMC10746725 DOI: 10.1038/s41420-023-01775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Transcriptional super-enhancers and the BET bromodomain protein BRD4 are emerging as critical drivers of tumorigenesis and therapeutic targets. Characterized by substantial accumulation of histone H3 lysine 27 acetylation (H3K27ac) signals at the loci of cell identity genes and critical oncogenes, super-enhancers are recognized, bound and activated by BRD4, resulting in considerable oncogene over-expression, malignant transformation, cancer cell proliferation, survival, tumor initiation and progression. Small molecule compound BRD4 BD1 and BD2 bromodomain inhibitors block BRD4 binding to super-enhancers, suppress oncogene transcription and expression, reduce cancer cell proliferation and survival, and repress tumor progression in a variety of cancer types. Like other targeted therapy agents, BRD4 inhibitors show moderate anticancer effects on their own, and exert synergistic anticancer effects in vitro and in preclinical models, when combined with other anticancer agents including CDK7 inhibitors, CBP/p300 inhibitors and histone deacetylase inhibitors. More recently, BRD4 BD2 bromodomain selective inhibitors, proteolysis-targeting chimera (PROTAC) BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors have been developed and shown better anticancer efficacy and/or safety profile. Importantly, more than a dozen BRD4 inhibitors have entered clinical trials in patients with cancer of various organ origins. In summary, super-enhancers and their reader BRD4 are critical tumorigenic drivers, and BRD4 BD1 and BD2 bromodomain inhibitors, BRD4 BD2 bromodomain selective inhibitors, PROTAC BRD4 protein degraders, and dual BRD4 and CBP/p300 bromodomain co-inhibitors are promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Haihong Qian
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Min Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xinyu Tan
- Department of Dentistry, Kunming Medical University, Kunming, 650032, China
| | - Yixing Zhang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Xiangning Liu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Li Yang
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
14
|
Tao Y, Wang QH, Li XT, Liu Y, Sun RH, Xu HJ, Zhang M, Li SY, Yang L, Wang HJ, Hao LY, Cao JL, Pan Z. Spinal-Specific Super Enhancer in Neuropathic Pain. J Neurosci 2023; 43:8547-8561. [PMID: 37802656 PMCID: PMC10711714 DOI: 10.1523/jneurosci.1006-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
15
|
Angarola BL, Sharma S, Katiyar N, Gu Kang H, Nehar-Belaid D, Park S, Gott R, Eryilmaz GN, LaBarge MA, Palucka K, Chuang JH, Korstanje R, Ucar D, Anczukow O. Comprehensive single cell aging atlas of mammary tissues reveals shared epigenomic and transcriptomic signatures of aging and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563147. [PMID: 37961129 PMCID: PMC10634680 DOI: 10.1101/2023.10.20.563147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.
Collapse
Affiliation(s)
| | | | - Neerja Katiyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Hyeon Gu Kang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Giray N Eryilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
- Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| |
Collapse
|
16
|
Shi W, Zhong B, Dong J, Hu X, Li L. Super enhancer-driven core transcriptional regulatory circuitry crosstalk with cancer plasticity and patient mortality in triple-negative breast cancer. Front Genet 2023; 14:1258862. [PMID: 37900187 PMCID: PMC10602724 DOI: 10.3389/fgene.2023.1258862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer. Core transcriptional regulatory circuitry (CRC) consists of autoregulated transcription factors (TFs) and their enhancers, which dominate gene expression programs and control cell fate. However, there is limited knowledge of CRC in TNBC. Herein, we systemically characterized the activated super-enhancers (SEs) and interrogated 14 CRCs in breast cancer. We found that CRCs could be broadly involved in DNA conformation change, metabolism process, and signaling response affecting the gene expression reprogramming. Furthermore, these CRC TFs are capable of coordinating with partner TFs bridging the enhancer-promoter loops. Notably, the CRC TF and partner pairs show remarkable specificity for molecular subtypes of breast cancer, especially in TNBC. USF1, SOX4, and MYBL2 were identified as the TNBC-specific CRC TFs. We further demonstrated that USF1 was a TNBC immunophenotype-related TF. Our findings that the rewiring of enhancer-driven CRCs was related to cancer immune and mortality, will facilitate the development of epigenetic anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Wensheng Shi
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bowen Zhong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaming Dong
- Department of Radiation, Cangzhou Central Hospital, Changsha, China
| | - Xiheng Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingfang Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Zhang J, Zhang Y, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Gu M, Tan R. Disruption of RCAN1.4 expression mediated by YY1/HDAC2 modulates chronic renal allograft interstitial fibrosis. Cell Death Discov 2023; 9:271. [PMID: 37507403 PMCID: PMC10382480 DOI: 10.1038/s41420-023-01574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Hai Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zhou Hang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China.
| |
Collapse
|
19
|
Guo W, Wang X, Lu B, Yu J, Xu M, Huang R, Cheng M, Yang M, Zhao W, Zou C. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma. Cell Death Dis 2023; 14:439. [PMID: 37460542 DOI: 10.1038/s41419-023-05966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Osteosarcoma (OS) is a common type of bone tumor for which there has been limited therapeutic progress over the past three decades. The prevalence of transcriptional addiction in cancer cells emphasizes the biological significance and clinical relevance of super-enhancers. In this study, we found that Max-like protein X (MLX), a member of the Myc-MLX network, is driven by super-enhancers. Upregulation of MLX predicts a poor prognosis in osteosarcoma. Knockdown of MLX impairs growth and metastasis of osteosarcoma in vivo and in vitro. Transcriptomic sequencing has revealed that MLX is involved in various metabolic pathways (e.g., lipid metabolism) and can induce metabolic reprogramming. Furthermore, knockdown of MLX results in disturbed transport and storage of ferrous iron, leading to an increase in the level of cellular ferrous iron and subsequent induction of ferroptosis. Mechanistically, MLX regulates the glutamate/cystine antiporter SLC7A11 to promote extracellular cysteine uptake required for the biosynthesis of the essential antioxidant GSH, thereby detoxifying reactive oxygen species (ROS) and maintaining the redox balance of osteosarcoma cells. Importantly, sulfasalazine, an FDA-approved anti-inflammatory drug, can inhibit SLC7A11, disrupt redox balance, and induce massive ferroptosis, leading to impaired tumor growth in vivo. Taken together, this study reveals a novel mechanism in which super-enhancer-driven MLX positively regulates SLC7A11 to meet the alleviated demand for cystine and maintain the redox balance, highlighting the feasibility and clinical promise of targeting SLC7A11 in osteosarcoma.
Collapse
Affiliation(s)
- Weitang Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Lu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiaming Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Yang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Chen Z, Tian D, Chen X, Cheng M, Xie H, Zhao J, Liu J, Fang Z, Zhao B, Bian E. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression. Cell Death Dis 2023; 14:383. [PMID: 37385987 PMCID: PMC10310775 DOI: 10.1038/s41419-023-05892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are tissue-specific expression patterns and dysregulated in cancer. How they are regulated still needs to be determined. We aimed to investigate the functions of glioma-specific lncRNA LIMD1-AS1 activated by super-enhancer (SE) and identify the potential mechanisms. In this paper, we identified a SE-driven lncRNA, LIMD1-AS1, which is expressed at significantly higher levels in glioma than in normal brain tissue. High LIMD1-AS1 levels were significantly associated with a shorter survival time of glioma patients. LIMD1-AS1 overexpression significantly enhanced glioma cells proliferation, colony formation, migration, and invasion, whereas LIMD1-AS1 knockdown inhibited their proliferation, colony formation, migration, and invasion, and the xenograft tumor growth of glioma cells in vivo. Mechanically, inhibition of CDK7 significantly attenuates MED1 recruitment to the super-enhancer of LIMD1-AS1 and then decreases the expression of LIMD1-AS1. Most importantly, LIMD1-AS1 could directly bind to HSPA5, leading to the activation of interferon signaling. Our findings support the idea that CDK7 mediated-epigenetically activation of LIMD1-AS1 plays a crucial role in glioma progression and provides a promising therapeutic approach for patients with glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
| | - Meng Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Han Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - JiaJia Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Jun Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Zhiyou Fang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| | - Erbao Bian
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
21
|
Di Giorgio E, Benetti R, Kerschbamer E, Xodo L, Brancolini C. Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:97-148. [PMID: 37657861 DOI: 10.1016/bs.ircmb.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Super-enhancers evolve as elements at the top of the hierarchical control of gene expression. They are important end-gatherers of signaling pathways that control stemness, differentiation or adaptive responses. Many epigenetic regulations focus on these regions, and not surprisingly, during the process of tumorigenesis, various alterations can account for their dysfunction. Super-enhancers are emerging as key drivers of the aberrant gene expression landscape that sustain the aggressiveness of cancer cells. In this review, we will describe and discuss about the structure of super-enhancers, their epigenetic regulation, and the major changes affecting their functionality in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Roberta Benetti
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emanuela Kerschbamer
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Luigi Xodo
- Laboratory of Biochemistry, Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy.
| |
Collapse
|
22
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
23
|
Fosu K, Quarshie JT, Sarpong KAN, Aikins AR. Inverse Comorbidity between Down Syndrome and Solid Tumors: Insights from In Silico Analyses of Down Syndrome Critical Region Genes. Genes (Basel) 2023; 14:800. [PMID: 37107558 PMCID: PMC10137705 DOI: 10.3390/genes14040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
An inverse comorbidity has been observed between Down syndrome (DS) and solid tumors such as breast and lung cancers, and it is posited that the overexpression of genes within the Down Syndrome Critical Region (DSCR) of human chromosome 21 may account for this phenomenon. By analyzing publicly available DS mouse model transcriptomics data, we aimed to identify DSCR genes that may protect against human breast and lung cancers. Gene expression analyses with GEPIA2 and UALCAN showed that DSCR genes ETS2 and RCAN1 are significantly downregulated in breast and lung cancers, and their expression levels are higher in triple-negative compared to luminal and HER2-positive breast cancers. KM Plotter showed that low levels of ETS2 and RCAN1 are associated with poor survival outcomes in breast and lung cancers. Correlation analyses using OncoDB revealed that both genes are positively correlated in breast and lung cancers, suggesting that they are co-expressed and perhaps have complementary functions. Functional enrichment analyses using LinkedOmics also demonstrated that ETS2 and RCAN1 expression correlates with T-cell receptor signaling, regulation of immunological synapses, TGF-β signaling, EGFR signaling, IFN-γ signaling, TNF signaling, angiogenesis, and the p53 pathway. Altogether, ETS2 and RCAN1 may be essential for the development of breast and lung cancers. Experimental validation of their biological functions may further unravel their roles in DS and breast and lung cancers.
Collapse
Affiliation(s)
- Kwadwo Fosu
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| | - Jude Tetteh Quarshie
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Kwabena Amofa Nketia Sarpong
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| | - Anastasia Rosebud Aikins
- Department of Biochemistry Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Legon, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
24
|
Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. Int J Mol Sci 2023; 24:ijms24031964. [PMID: 36768307 PMCID: PMC9916342 DOI: 10.3390/ijms24031964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman's correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFβR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines.
Collapse
|
25
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
26
|
Yang X, Zheng W, Li M, Zhang S. Somatic Super-Enhancer Epigenetic Signature for Overall Survival Prediction in Patients with Breast Invasive Carcinoma. Bioinform Biol Insights 2023; 17:11779322231162767. [PMID: 37020500 PMCID: PMC10068971 DOI: 10.1177/11779322231162767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
To analyze genome-wide super-enhancers (SEs) methylation signature of breast invasive carcinoma (BRCA) and its clinical value. Differential methylation sites (DMS) between BRCA and adjacent tissues from The Cancer Genome Atlas (TCGA) database were identified by using ChAMP package in R software. Super-enhancers were identified sing ROSE software. Overlap analysis was used to assess the potential DMS in SEs region. Feature selection was performed by Cox regression and least absolute shrinkage and selection operator (LASSO) algorithm based on TCGA training cohort. Prognosis model validation was performed in TCGA training cohort, TCGA validation cohort, and gene expression omnibus (GEO) test cohort. The gene ontology and KEGG analysis revealed that SEs target genes were significantly enriched in cell-migration-associated processes and pathways. A total of 83 654 DMS were identified between BRCA and adjacent tissues. Around 2397 DMS in SEs region were identified by overlap study and used to feature selection. By using Cox regression and LASSO algorithm, 42 features were selected to develop a clinical prediction model (CPM). Both training (TCGA) and validation cohorts (TCGA and GEO) show that the CPM has ideal discrimination and calibration. The CPM based on DMS at SE regions has ideal discrimination and calibration, which combined with tumor node metastasis (TNM) stage could improve prognostication, and thus contribute to individualized medicine.
Collapse
Affiliation(s)
- Xu Yang
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Mengqiang Li
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and
Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen,
P.R. China
- Shiqiang Zhang, Department of Urology,
Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen
University, No.628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen 518107, P.R.
China.
| |
Collapse
|
27
|
Pahwa R, Dubhashi J, Singh A, Jailwala P, Lobanov A, Thomas CJ, Ceribelli M, Wilson K, Ricketts CJ, Vocke CD, Wells C, Bottaro DP, Linehan WM, Neckers L, Srinivasan R. Inhibition of HSP 90 is associated with potent anti-tumor activity in Papillary Renal Cell Carcinoma. J Exp Clin Cancer Res 2022; 41:208. [PMID: 35754026 PMCID: PMC9235180 DOI: 10.1186/s13046-022-02416-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background There is no universally accepted treatment for patients with advanced papillary renal cell carcinoma (PRCC). The presence of activating mutations in MET, as well as gain of chromosome 7, where the MET gene is located, are the most common genetic alterations associated with PRCC, leading to the clinical evaluation of MET tyrosine kinase inhibitors (TKIs) in this cancer. However, TKIs targeting MET selectively, as well as multitargeted TKIs with activity against MET demonstrate modest efficacy in PRCC and primary and secondary treatment failure is common; other approaches are urgently needed to improve outcomes in these patients. Methods High throughput screening with small molecule libraries identified HSP90 inhibitors as agents of interest based on antitumor activity against patient derived PRCC cell lines. We investigated the activity of the orally available HSP90 inhibitor, SNX2112 in vitro, using 2D/3D PRCC cell culture models and in vivo, in mice tumor xenograft models. The molecular pathways mediating antitumor activity of SNX2112 were assessed by Western blot analysis, Flow cytometry, RNA-seq analysis, Real Time qPCR and imaging approaches. Results SNX2112 significantly inhibited cellular proliferation, induced G2/M cell cycle arrest and apoptosis in PRCC lines overexpressing MET. In contrast to TKIs targeting MET, SNX2112 inhibited both MET and known downstream mediators of MET activity (AKT, pAKT1/2 and pERK1/2) in PRCC cell lines. RNAi silencing of AKT1/2 or ERK1/2 expression significantly inhibited growth in PRCC cells. Furthermore, SNX2112 inhibited a unique set of E2F and MYC targets and G2M-associated genes. Interestingly, interrogation of the TCGA papillary RCC cohort revealed that these genes were overexpressed in PRCC and portend a poor prognosis. Finally, SNX-2112 demonstrated strong antitumor activity in vivo and prolonged survival of mice bearing human PRCC xenograft. Conclusions These results demonstrate that HSP90 inhibition is associated with potent activity in PRCC, and implicate the PI3K/AKT and MEK/ERK1/2 pathways as important mediators of tumorigenesis. These data also provide the impetus for further clinical evaluation of HSP90, AKT, MEK or E2F pathway inhibitors in PRCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02416-z.
Collapse
|
28
|
Song X, Zhang T, Ding H, Feng Y, Yang W, Yin X, Chen B, Liang Y, Mao Q, Xia W, Yu G, Xu L, Dong G, Jiang F. Non-genetic stratification reveals epigenetic heterogeneity and identifies vulnerabilities of glycolysis addiction in lung adenocarcinoma subtype. Oncogenesis 2022; 11:61. [PMID: 36216804 PMCID: PMC9550819 DOI: 10.1038/s41389-022-00436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) exhibits high heterogeneity and is well known for its high genetic variation. Recently, the understanding of non-genetic variation provides a new perspective to study the heterogeneity of LUAD. Little is known about whether super-enhancers (SEs) may be primarily responsible for the inter-tumor heterogeneity of LUAD. We used super-enhancer RNA (seRNA) levels of a large-scale clinical well-annotated LUAD cohort to stratify patients into three clusters with different prognosis and other malignant characteristics. Mechanistically, estrogen-related receptor alpha (ERRα) in cluster 3-like cell lines acts as a cofactor of BRD4 to assist SE-promoter loops to activate glycolysis-related target gene expression, thereby promoting glycolysis and malignant progression, which confers a therapeutic vulnerability to glycolytic inhibitors. Our study identified three groups of patients according to seRNA levels, among which patients in cluster 3 have the worst prognosis and vulnerability of glycolysis dependency. We also proposed a 3-TF index model to stratify patients with glycolysis-addicted tumors according to tumor SE stratification.
Collapse
Affiliation(s)
- Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Hanlin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Wenmin Yang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Xuewen Yin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 211198, Nanjing, P. R. China
| | - Bing Chen
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Wenjie Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The affiliated Jiangyin Hospital of Southeast University Medical College, 214400, Jiangyin, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China. .,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, P. R. China.
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China.
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, P. R. China. .,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China. .,The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China.
| |
Collapse
|
29
|
Xie T, Chen S, Hao J, Wu P, Gu X, Wei H, Li Z, Xiao J. Roles of calcium signaling in cancer metastasis to bone. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:445-462. [PMID: 36071984 PMCID: PMC9446157 DOI: 10.37349/etat.2022.00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Bone metastasis is a frequent complication for cancers and an important reason for the mortality in cancer patients. After surviving in bone, cancer cells can cause severe pain, life-threatening hypercalcemia, pathologic fractures, spinal cord compression, and even death. However, the underlying mechanisms of bone metastasis were not clear. The role of calcium (Ca2+) in cancer cell proliferation, migration, and invasion has been well established. Interestingly, emerging evidence indicates that Ca2+ signaling played a key role in bone metastasis, for it not only promotes cancer progression but also mediates osteoclasts and osteoblasts differentiation. Therefore, Ca2+ signaling has emerged as a novel therapeutical target for cancer bone metastasis treatments. Here, the role of Ca2+ channels and Ca2+-binding proteins including calmodulin and Ca2+-sensing receptor in bone metastasis, and the perspective of anti-cancer bone metastasis therapeutics via targeting the Ca2+ signaling pathway are summarized.
Collapse
Affiliation(s)
- Tianying Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sitong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiang Hao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Xuelian Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Zhenxi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Jianru Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
30
|
Redin E, Garrido-Martin EM, Valencia K, Redrado M, Solorzano JL, Carias R, Echepare M, Exposito F, Serrano D, Ferrer I, Nunez-Buiza A, Garmendia I, García-Pedrero JM, Gurpide A, Paz-Ares L, Politi K, Montuenga LM, Calvo A. YES1 is a druggable oncogenic target in Small Cell Lung Cancer. J Thorac Oncol 2022; 17:1387-1403. [PMID: 35988891 DOI: 10.1016/j.jtho.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Small cell lung cancer (SCLC) is an extremely aggressive subtype of lung cancer without approved targeted therapies. Here we identified YES1 as a novel targetable oncogene driving SCLC maintenance and metastasis. OBJECTIVES To investigate the role of YES1 in SCLC prognosis and evaluate its inhibition as a new therapeutic strategy. METHODS Association between YES1 levels and prognosis was evaluated in SCLC clinical samples. In vitro functional experiments for proliferation, apoptosis, cell cycle and cytotoxicity were performed. Genetic and pharmacological inhibition of YES1 was evaluated in vivo in cell-/patient-derived xenografts (PDXs) and in metastasis. YES1 levels were evaluated in mouse and patients' plasma-derived exosomes MEASUREMENTS AND MAIN RESULTS: Overexpression or gain/amplification of YES1 was identified in 31% and 26% of cases, respectively, across molecular subgroups, and was found as an independent predictor of poor prognosis. Genetic depletion of YES1 dramatically reduced cell proliferation, 3D organoid formation, tumor growth and distant metastasis, leading to extensive apoptosis and tumor regressions. Mechanistically, YES1-inhibited cells showed alterations in the replisome and DNA repair processes, that conferred sensitivity to irradiation. Pharmacological blockade with the novel YES1 inhibitor CH6953755 or Dasatinib induced significant anti-tumor activity in organoid models and cell-/patient-derived xenografts. YES1 protein was detected in plasma exosomes from patients and mouse models, with levels matching those of tumors, suggesting that circulating YES1 could represent a biomarker for patient selection/monitoring. CONCLUSIONS Our results provide evidence that YES1 is a new druggable oncogenic target and biomarker to advance the clinical management of a subpopulation of SCLC patients.
Collapse
Affiliation(s)
- Esther Redin
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Eva M Garrido-Martin
- CIBERONC, ISCIII, Madrid, Spain; Cell Biology, Research and Development, Oncology Business Unit, PharmaMar, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA
| | - Miriam Redrado
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA
| | - Jose Luis Solorzano
- Anatomic Pathology and Molecular Diagnostics, MD Anderson Cancer Center Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Rafael Carias
- Anatomic Pathology Unit, Fundacion Jimenez Diaz, Madrid, Spain
| | - Mirari Echepare
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Francisco Exposito
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Diego Serrano
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Irene Ferrer
- CIBERONC, ISCIII, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Angel Nunez-Buiza
- Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Irati Garmendia
- Centre de Recherche des Cordeliers, Inserm, Inflammation, complement and cancer group, Paris, France
| | - Juana M García-Pedrero
- CIBERONC, ISCIII, Madrid, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Alfonso Gurpide
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis Paz-Ares
- CIBERONC, ISCIII, Madrid, Spain; Hospital 12 de Octubre-CNIO Lung Cancer Clinical Research Unit, CNIO, Madrid, Spain
| | - Katerina Politi
- Yale Cancer Center, New Haven; Department of Pathology, Yale School of Medicine, New Haven; Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, USA
| | - Luis M Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; IDISNA; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
31
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
32
|
Biçer A, López-Henares P, Feu-Llauradó A, Sabariego M, Bayod S, Padilla L, Taco MR, Larriba Bartolomé S, Pérez-Riba M, Serrano-Candelas E. The PxIxIT motif of the RCAN3 Inhibits angiogenesis and tumor progression in Triple Negative Breast Cancer in Immunocompetent Mice. Carcinogenesis 2022; 43:808-812. [PMID: 35640493 DOI: 10.1093/carcin/bgac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/10/2022] [Accepted: 05/29/2022] [Indexed: 11/14/2022] Open
Abstract
RCAN proteins are endogenous regulators of the calcineurin- cytosolic nuclear factor of activated T-cells (CN- NFATc) pathway that bind CN through similar conserved motifs PxIxIT and LxVP of the NFATc family. It has been reported that RCAN1 and RCAN3 protein levels correlate with overall survival of breast cancer patients. We have additionally provided supporting results about RCAN3 role on cancer showing that overexpression of the native PxIxIT sequence of RCAN3-derived R3 peptide (PSVVVH, EGFP-R3178-210) dramatically inhibits tumor growth and tumor angiogenesis in an orthotopic mouse model of Triple Negative breast cancer (TNBC). On the other hand, RCAN3 protein and its derived peptide EGFP-R3 178-210 bind to CN and inhibit NFAT-mediated cytokine gene expression without affecting CN phosphatase activity suggesting that RCAN3 and EGFP-R3 178-210 peptide have tumor suppressor and immunosuppressant activity. Due to the known relationship between tumor development and immune system, as well as the relevance of CN-NFATc in the regulation of the immune system, we decided to study the effect of EGFP-R3 178-210 peptide in a syngeneic TNBC model, in order to ensure that the role of RCAN3 as immunosuppressant do not override its tumor suppressor activity. Our results evidence that EGFP-R3 178-210 peptide displays an inhibitory potential on tumor growth and tumor angiogenesis similar to those obtained in the previous orthotopic TNBC model. These results highlight the importance of the RCAN3 peptide as a tumor suppressor protein and totally complement our previous results, indicating that this antitumor activity role is maintained in the presence of a complete functional immune system.
Collapse
Affiliation(s)
- Atilla Biçer
- Genes, Disease and Therapy Program, Human Molecular Genetics Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Hospitalet de Llobregat, Spain.,Centre for Genomic Regulation (CRG), Systems Biology Programme. Aiguader 88, Barcelona, 08003 Spain
| | | | - Andrea Feu-Llauradó
- Bellvitge University Hospital, Pathology Department. L'Hospitalet de Llobregat, Catalunya, ES
| | - Miguel Sabariego
- Genes, Disease and Therapy Program, Human Molecular Genetics Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Hospitalet de Llobregat, Spain.,Centre for Genomic Regulation (CRG), Systems Biology Programme. Aiguader 88, Barcelona, 08003 Spain
| | - Sergi Bayod
- Health & Biomedicine Department of LEITAT Technological Center, Parc Científic de Barcelona, Hèlix building. Baldiri Reixach 15-21, 08028 Barcelona, Spain
| | - Laura Padilla
- Health & Biomedicine Department of LEITAT Technological Center, Parc Científic de Barcelona, Hèlix building. Baldiri Reixach 15-21, 08028 Barcelona, Spain
| | - Mª Rosario Taco
- Bellvitge University Hospital, Pathology Department. L'Hospitalet de Llobregat, Catalunya, ES
| | - Sara Larriba Bartolomé
- Genes, Disease and Therapy Program, Human Molecular Genetics Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Hospitalet de Llobregat, Spain
| | - Mercè Pérez-Riba
- Genes, Disease and Therapy Program, Human Molecular Genetics Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Hospitalet de Llobregat, Spain
| | - Eva Serrano-Candelas
- Genes, Disease and Therapy Program, Human Molecular Genetics Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Hospitalet de Llobregat, Spain.,ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Paterna (Valencia), Spain
| |
Collapse
|
33
|
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: Current status and future perspectives. Semin Cancer Biol 2022; 86:678-696. [PMID: 35452820 DOI: 10.1016/j.semcancer.2022.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/β-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential sytem that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow 109316, Russian Federation
| |
Collapse
|
34
|
Kum Chol Ri, Ri MR, Kim KH, Choe SI, Ri JH, Kim JH, Ri JH. KLF6 Super-enhancer Regulates Cell Proliferation by Recruiting GATA2 and SOX10 in Human Hepatoma Cells. Mol Biol 2022. [DOI: 10.1134/s0026893322030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
36
|
Jia R, Gao Y, Guo S, Li S, Zhou L, Gou C, Huang Y, Fan M, Chen Y. Super Enhancer Profiles Identify Key Cell Identity Genes During Differentiation From Embryonic Stem Cells to Trophoblast Stem Cells Super Enhencers in Trophoblast Differentiation. Front Genet 2021; 12:762529. [PMID: 34712273 PMCID: PMC8546299 DOI: 10.3389/fgene.2021.762529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Trophoblast stem cells (TSCs) are derived from blastocysts and the extra-embryonic ectoderm (ExE) of post-implantation embryos and play a significant role in fetal development, but the roles that TSCs play in the earlier status of fetal diseases need further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development and may participate in TSC differentiation. We identified key cell identity genes regulated by TSC-SEs via integrated analysis of H3K27ac and H3K4me1 chromatin immunoprecipitation sequencing (ChIP-seq), RNA-sequencing (RNA-seq) and ATAC-sequencing (ATAC-seq) data. The identified key TSC identity genes regulated by SEs, such as epidermal growth factor receptor (EGFR), integrin β5 (ITGB5) and Paxillin (Pxn), were significantly upregulated during TSC differentiation, and the transcription network mediated by TSC-SEs enriched in terms like focal adhesion and actin cytoskeleton regulation related to differentiation of TSCs. Additionally, the increased chromatin accessibility of the key cell identity genes verified by ATAC-seq further demonstrated the regulatory effect of TSC-SEs on TSC lineage commitment. Our results illustrated the significant roles of the TSC-SE-regulated network in TSC differentiation, and identified key TSC identity genes EGFR, ITGB5 and Pxn, providing novel insight into TSC differentiation and lays the foundation for future studies on embryo implantation and related diseases.
Collapse
Affiliation(s)
- Rongpu Jia
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Gao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Guo
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si Li
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liangji Zhou
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chenyu Gou
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yijuan Huang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meiqiong Fan
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanqiu Chen
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Yin S, Yang S, Luo Y, Lu J, Hu G, Wang K, Shao Y, Zhou S, Koo S, Qiu Y, Wang T, Yu H. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem Pharmacol 2021; 193:114806. [PMID: 34673013 DOI: 10.1016/j.bcp.2021.114806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The pathological changes and possible underlying molecular mechanisms of hepatocellular carcinoma (HCC) are currently unclear. Effective treatment of this pathological state remains a challenge. The purpose of this study is to obtain some key genes with diagnostic and prognostic meaning and to identify potential therapeutic agents for HCC treatment. Here, CDK1, CCNB1 and CCNB2 were found to be highly expressed in HCC patients and accompanied by poor prognosis, and knockdown of them by siRNA drastically induced autophagy and senescence in hepatoma cells. Simultaneously, the anti-HCC effect of lycorine was comparable to that of interfering with these three genes, and lycorine significantly promoted the decrease both in protein and mRNA expression of CDK1. Molecular validation mechanistically demonstrated that lycorine might attenuate the degradation rate of CDK1 via interaction with it, which had been confirmed by cellular thermal shift assay and drug affinity responsive targets stability assay. Taken together, these findings suggested that CDK1, CCNB1 and CCNB2 could be regarded as potential diagnostic and prognostic biomarkers for HCC, and CDK1 might serve as a promising therapeutic target for lycorine against HCC.
Collapse
Affiliation(s)
- Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenshen Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanming Luo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Gaoyong Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kailong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Yongin, Gyeonggi-Do 17058, South Korea
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
38
|
Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, Hu BX, Ye ZP, Li ZL, Mai J, Huang Y, Li X, Peng XD, Feng GK, Li JD, Tang J, Zhu XF. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy 2021. [PMID: 33213267 DOI: 10.1080/155486271760623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
The function of mitophagy in cancer is controversial. ULK1 is critical for induction of macroautophagy/autophagy and has a more specific role in mitophagy in response to hypoxia. Here, we show that ULK1 deficiency induces an invasive phenotype of breast cancer cells under hypoxia and increases osteolytic bone metastasis. Mechanistically, ULK1 depletion attenuates mitophagy ability during hypoxia. As a result, the accumulation of damaged, ROS-generating mitochondria leads to activation of the NLRP3 inflammasome, which induces abnormal soluble cytokines secretion, then promotes the differentiation and maturation of osteoclasts, and ultimately results in bone metastasis. Notably, phosphorylation of ULK1 by MAPK1/ERK2-MAPK3/ERK1 kinase triggers its interaction with BTRC and subsequent K48-linked ubiquitination and proteasome degradation. Also, a clearly negative correlation between the expression levels of ULK1 and p-MAPK1/3 was observed in human breast cancer tissues. The MAP2K/MEK inhibitor trametinib is sufficient to restore mitophagy function via upregulation of ULK1, leading to inhibition of NLRP3 inflammasome activation, thereby reduces bone metastasis. These results indicate that ULK1 knockout-mediated mitophagy defect promotes breast cancer bone metastasis and provide evidence to explore MAP2K/MEK- MAPK1/3 pathway inhibitors for therapy, especially in cancers displaying low levels of ULK1.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; BTRC/β-TrCP: beta-transducin repeat containing E3 ubiquitin protein ligase; CHX: cycloheximide; CM: conditioned media; FBXW7/FBW7: F-box and WD repeat domain containing 7; MAPK1: mitogen-activated protein kinase 1; MTDR: MitoTracker Deep Red; mtROS: mitochondrial reactive oxygen species; microCT: micro-computed tomography; mtROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; SQSTM1: sequestosome 1; ACP5/TRAP: acid phosphatase, tartrate resistant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Zhao Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
40
|
Huang Y, Zhang HL, Li ZL, Du T, Chen YH, Wang Y, Ni HH, Zhang KM, Mai J, Hu BX, Huang JH, Zhou LH, Yang D, Peng XD, Feng GK, Tang J, Zhu XF, Deng R. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun 2021; 12:2672. [PMID: 33976130 PMCID: PMC8113546 DOI: 10.1038/s41467-021-22618-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Most patients with triple negative breast cancer (TNBC) do not respond to anti-PD1/PDL1 immunotherapy, indicating the necessity to explore immune checkpoint targets. B7H3 is a highly glycosylated protein. However, the mechanisms of B7H3 glycosylation regulation and whether the sugar moiety contributes to immunosuppression are unclear. Here, we identify aberrant B7H3 glycosylation and show that N-glycosylation of B7H3 at NXT motif sites is responsible for its protein stability and immunosuppression in TNBC tumors. The fucosyltransferase FUT8 catalyzes B7H3 core fucosylation at N-glycans to maintain its high expression. Knockdown of FUT8 rescues glycosylated B7H3-mediated immunosuppressive function in TNBC cells. Abnormal B7H3 glycosylation mediated by FUT8 overexpression can be physiologically important and clinically relevant in patients with TNBC. Notably, the combination of core fucosylation inhibitor 2F-Fuc and anti-PDL1 results in enhanced therapeutic efficacy in B7H3-positive TNBC tumors. These findings suggest that targeting the FUT8-B7H3 axis might be a promising strategy for improving anti-tumor immune responses in patients with TNBC.
Collapse
Affiliation(s)
- Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tian Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan-He Ni
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai-Ming Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Huan Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
41
|
AKT-mediated regulation of chromatin ubiquitylation and tumorigenesis through Mel18 phosphorylation. Oncogene 2021; 40:2422-2436. [PMID: 33664452 DOI: 10.1038/s41388-020-01602-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Polycomb repressor complex 1 (PRC1) is linked to the regulation of gene expression and histone ubiquitylation conformation, which contributes to carcinogenesis. However, the upstream regulators of PRC1 biogenesis machinery remain obscure. Here, we report that the polycomb group-related mammalian gene Mel18 is a target of the protein kinase AKT. AKT phosphorylates Mel18 at T334 to disrupt the interaction between Mel18 and other PRC1 members, leading to attenuated PRC1-dependent ubiquitylation of histone H2A at Lys119. As such, PRC1 target genes, many of which are known oncogenes, are derepressed upon T334-Mel18 phosphorylation, which promotes malignant behaviours, including cell proliferation, tumour formation, migration and invasion, bone and brain metastatic lesion formation. Notably, a positive correlation between AKT activity and pT334-Mel18 is observed, and prognostic models based on p-AKT and pT334-Mel18 that predicted overall survival and distant metastasis-free survival in breast cancer patients are established. These findings have implications for understanding the role of AKT and its associated proteins in chromatin ubiquitylation, and also indicate the AKT-Mel18-H2AK119ub axis as a novel prognostic biomarker and therapeutic target for cancer patients.
Collapse
|
42
|
Identification of oxytocin-related lncRNAs and assessment of their expression in breast cancer. Sci Rep 2021; 11:6471. [PMID: 33742056 PMCID: PMC7979916 DOI: 10.1038/s41598-021-86097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Oxytocin is a neuropeptide released by the central nervous system. A number of studies have demonstrated the role of this neuropeptide in the pathogenesis of breast cancer. In the present project, we have identified mRNA coding genes and long non-coding RNAs (lncRNAs) that are associated with this pathway through an in-silico strategy, and measured their expression in a cohort of Iranian females affected with this type of malignancy. Expression levels of OXTR, FOS, ITPR1, RCAN1, CAMK2D, CACNA2D and lnc_ZFP161 were significantly down-regulated in breast cancer tissues compared with nearby non-cancerous tissues. On the other hand, expression of lnc_MTX2 was higher in breast cancer tissues compared with controls. Expression of lnc_TNS1 and lnc_FOXF1 were not different between these two kinds of samples. Expression of CACNA2D was associated with mitotic rate and PR status (P values = 3.02E−02 and 2.53E−02, respectively). Expression of other oxytocin-related genes was not associated with clinicopathological parameters. FOS and ITPR1 had the highest AUC value among the oxytocin-related genes. Combination of expression profiles of all oxytocin-related genes increased the AUC value to 0.75. However, the combinatorial sensitivity and specificity values were lower than some individual genes. In the breast cancer tissues, the most robust correlations have been detected between lnc_ZFP161/ lnc_FOXF1, CAMK2D/ lnc_ZFP161 and CAMK2D / lnc_FOXF1 (r = 0.86, 0.71 and 0.64 respectively). In the non-cancerous tissues, the strongest correlation was detected between lnc_FOXF1/lnc_MTX2 and lnc_ZFP161/CAMK2D respectively (r = 0.78 and 0.65). Taken together, oxytocin-associated genes have been dysregulated in breast cancer tissues. Moreover, the correlation ratio between these genes is connected with the existence of cancer.
Collapse
|
43
|
Cui S, Wu Q, Liu M, Su M, Liu S, Shao L, Han X, He H. EphA2 super-enhancer promotes tumor progression by recruiting FOSL2 and TCF7L2 to activate the target gene EphA2. Cell Death Dis 2021; 12:264. [PMID: 33712565 PMCID: PMC7955082 DOI: 10.1038/s41419-021-03538-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/11/2023]
Abstract
Super-enhancers or stretch enhancers (SEs) consist of large clusters of active transcription enhancers which promote the expression of critical genes that define cell identity during development and disease. However, the role of many super-enhancers in tumor cells remains unclear. This study aims to explore the function and mechanism of a new super-enhancer in various tumor cells. A new super-enhancer that exists in a variety of tumors named EphA2-Super-enhancer (EphA2-SE) was found using multiple databases and further identified. CRISPR/Cas9-mediated deletion of EphA2-SE results in the significant downregulation of its target gene EphA2. Mechanistically, we revealed that the core active region of EphA2-SE comprises E1 component enhancer, which recruits TCF7L2 and FOSL2 transcription factors to drive the expression of EphA2, induce cell proliferation and metastasis. Bioinformatics analysis of RNA-seq data and functional experiments in vitro illustrated that EphA2-SE deletion inhibited cell growth and metastasis by blocking PI3K/AKT and Wnt/β-catenin pathway in HeLa, HCT-116 and MCF-7 cells. Overexpression of EphA2 in EphA2-SE-/- clones rescued the effect of EphA2-SE deletion on proliferation and metastasis. Subsequent xenograft animal model revealed that EphA2-SE deletion suppressed tumor proliferation and survival in vivo. Taken together, these findings demonstrate that EphA2-SE plays an oncogenic role and promotes tumor progression in various tumors by recruiting FOSL2 and TCF7L2 to drive the expression of oncogene EphA2.
Collapse
Affiliation(s)
- Shuang Cui
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| | - Ming Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - ShiYou Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
44
|
Deng R, Zhang HL, Huang JH, Cai RZ, Wang Y, Chen YH, Hu BX, Ye ZP, Li ZL, Mai J, Huang Y, Li X, Peng XD, Feng GK, Li JD, Tang J, Zhu XF. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy 2020; 17:3011-3029. [PMID: 33213267 DOI: 10.1080/15548627.2020.1850609] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The function of mitophagy in cancer is controversial. ULK1 is critical for induction of macroautophagy/autophagy and has a more specific role in mitophagy in response to hypoxia. Here, we show that ULK1 deficiency induces an invasive phenotype of breast cancer cells under hypoxia and increases osteolytic bone metastasis. Mechanistically, ULK1 depletion attenuates mitophagy ability during hypoxia. As a result, the accumulation of damaged, ROS-generating mitochondria leads to activation of the NLRP3 inflammasome, which induces abnormal soluble cytokines secretion, then promotes the differentiation and maturation of osteoclasts, and ultimately results in bone metastasis. Notably, phosphorylation of ULK1 by MAPK1/ERK2-MAPK3/ERK1 kinase triggers its interaction with BTRC and subsequent K48-linked ubiquitination and proteasome degradation. Also, a clearly negative correlation between the expression levels of ULK1 and p-MAPK1/3 was observed in human breast cancer tissues. The MAP2K/MEK inhibitor trametinib is sufficient to restore mitophagy function via upregulation of ULK1, leading to inhibition of NLRP3 inflammasome activation, thereby reduces bone metastasis. These results indicate that ULK1 knockout-mediated mitophagy defect promotes breast cancer bone metastasis and provide evidence to explore MAP2K/MEK- MAPK1/3 pathway inhibitors for therapy, especially in cancers displaying low levels of ULK1.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; BTRC/β-TrCP: beta-transducin repeat containing E3 ubiquitin protein ligase; CHX: cycloheximide; CM: conditioned media; FBXW7/FBW7: F-box and WD repeat domain containing 7; MAPK1: mitogen-activated protein kinase 1; MTDR: MitoTracker Deep Red; mtROS: mitochondrial reactive oxygen species; microCT: micro-computed tomography; mtROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; SQSTM1: sequestosome 1; ACP5/TRAP: acid phosphatase, tartrate resistant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Hao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui-Zhao Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Dan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Dong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|