1
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Alrumaihi F. Chemoinformatics and machine learning techniques to identify novel inhibitors of the lemur tyrosine kinase-3 receptor involved in breast cancer. Front Mol Biosci 2024; 11:1366763. [PMID: 38638686 PMCID: PMC11025642 DOI: 10.3389/fmolb.2024.1366763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Breast cancer is still the largest cause of cancer death in women, and around 70% of primary breast cancer patients are estrogen receptor (ER)-positive, which is the most frequent kind of breast cancer. The lemur tyrosine kinase-3 (LMTK3) receptor has been linked to estrogen responsiveness in breast cancer. However, the function of LMTK3 in reaction to cytotoxic chemotherapy has yet to be studied. Breast cancer therapy research remains tricky due to a paucity of structural investigations on LMTK3. We performed structural investigations on LMTK3 using molecular docking and molecular dynamics (MD) simulations of the LMTK3 receptor in complex with the top three inhibitor molecules along with a control inhibitor. Analysis revealed the top three compounds show the best binding affinities during docking simulations. Interactive analysis of hydrogen bonds inferred hotspot residues Tyr163, Asn138, Asp133, Tyr56, Glu52, Ser132, Asp313, and Asp151. Some other residues in the 5-Å region determined strong alkyl bonds and conventional hydrogen bond linkages. Furthermore, protein dynamics analysis revealed significant modifications among the top complexes and the control system. There was a transition from a loop to a-helix conformation in the protein-top1 complex, and in contrast, in complexes top2 and top3, the formation of a stabilizing sheet in the C chain was observed, which limited significant mobility and increased complex stability. Significant structural alterations were observed in the protein-top complexes, including a shorter helix region and the creation of some loop regions in comparison to the control system. Interestingly, binding free energies, including MMGB/PBSA WaterSwap analysis estimation, reveals that the top1 complex system was more stable than other systems, especially in comparison to the control inhibitor complex system. These results suggest a the plausible mode of action for the novel inhibitors. Therefore, the current investigation contributes to understanding the mechanism of action, serving as a basis for future experimental studies.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Vella V, Ditsiou A, Chalari A, Eravci M, Wooller SK, Gagliano T, Bani C, Kerschbamer E, Karakostas C, Xu B, Zhang Y, Pearl FM, Lopez G, Peng L, Stebbing J, Klinakis A, Giamas G. Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306027. [PMID: 38353396 PMCID: PMC11022721 DOI: 10.1002/advs.202306027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/23/2023] [Indexed: 02/17/2024]
Abstract
Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.
Collapse
Affiliation(s)
- Viviana Vella
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Angeliki Ditsiou
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Anna Chalari
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Murat Eravci
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Sarah K. Wooller
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Cecilia Bani
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Christos Karakostas
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Bin Xu
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubei430064China
| | - Yongchang Zhang
- Department of Medical OncologyLung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan430064China
| | - Frances M.G. Pearl
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Gianluca Lopez
- Division of PathologyFondazione IRCCS Ca' Granda – Ospedale Maggiore PoliclinicoMilan20122Italy
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilan20122Italy
| | - Ling Peng
- Department of Respiratory DiseaseZhejiang Provincial People's HospitalHangzhouZhejiang310003China
| | - Justin Stebbing
- Department of Life SciencesAnglia Ruskin UniversityEast RoadCambridgeCB1 1PTUK
| | - Apostolos Klinakis
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Georgios Giamas
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| |
Collapse
|
4
|
Mórotz GM, Bradbury NA, Caluseriu O, Hisanaga SI, Miller CCJ, Swiatecka-Urban A, Lenz HJ, Moss SJ, Giamas G. A revised nomenclature for the lemur family of protein kinases. Commun Biol 2024; 7:57. [PMID: 38191649 PMCID: PMC10774328 DOI: 10.1038/s42003-023-05671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.
Collapse
Affiliation(s)
- Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, 60064, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 92-0397, Japan
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Heinz-Josef Lenz
- Department of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, 90033, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1 6BT, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
5
|
Diving into the dark kinome: lessons learned from LMTK3. Cancer Gene Ther 2021; 29:1077-1079. [PMID: 34819628 DOI: 10.1038/s41417-021-00408-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
|
6
|
Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021; 11:210218. [PMID: 34582708 PMCID: PMC8478525 DOI: 10.1098/rsob.210218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Christos Tolias
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Neurosurgery, Royal Sussex County Hospital, Brighton and Sussex University Hospitals (BSUH) NHS Trust, Millennium Building, Brighton BN2 5BE, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
7
|
Cilibrasi C, Ditsiou A, Papakyriakou A, Mavridis G, Eravci M, Stebbing J, Gagliano T, Giamas G. Correction to: LMTK3 inhibition affects microtubule Stability. Mol Cancer 2021; 20:65. [PMID: 33836760 PMCID: PMC8034141 DOI: 10.1186/s12943-021-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Athanasios Papakyriakou
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - George Mavridis
- National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, 15341, Athens, Greece
| | - Murat Eravci
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, W12 0NN, London, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.,Department of Medical Science, University of Udine, 33100, Udine, Italy
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|