1
|
Xia X, Shen P, Yang G, Yao M, Wu X, Lyu L, He Y, Li Z, Wang W, Yang Y, Ao X, Xia C, Chen Z, Xu X. The proliferation/migration ability mediated by CD151/PI3K/AKT pathway determines the therapeutic effect of hUC-MSCs transplantation on rheumatoid arthritis. Clin Exp Hypertens 2024; 46:2366270. [PMID: 38864268 DOI: 10.1080/10641963.2024.2366270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To elucidate the underlying mechanism by which the proliferation and migration abilities of human umbilical cord mesenchymal stem cells (hUC-MSCs) determine their therapeutic efficacy in rheumatoid arthritis treatment. METHODS The DBA/1J mice were utilized to establish a collagen-induced RA (CIA) mouse model and to validate the therapeutic efficacy of hUC-MSCs transfected with CD151 siRNA. RNA-seq, QT-PCR and western blotting were utilized to evaluate the mRNA and protein levels of the PI3K/AKT pathway, respectively. RESULTS IFN-γ significantly enhanced the proliferation and migration abilities of hUC-MSCs, up-regulating the expression of CD151, a gene related to cell proliferation and migration. Effective inhibition of this effect was achieved through CD151 siRNA treatment. However, IFN-γ did not affect hUC-MSCs differentiation or changes in cell surface markers. Additionally, transplantation of CD151-interfered hUC-MSCs (siRNA-CD151-hUC-MSCs) resulted in decreased colonization in the toes of CIA mice and worse therapeutic effects compared to empty vector treatment (siRNA-NC-hUC-MSCs). CONCLUSION IFN-γ facilitates the proliferation and migration of hUC-MSCs through the CD151/PI3K/AKT pathway. The therapeutic efficacy of siRNA-CD151-hUC-MSCs was found to be inferior to that of siRNA-NC-hUC-MSCs.
Collapse
Affiliation(s)
- Xuewei Xia
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of senile Cardio-cerebrovascular diseases, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Peixin Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Guomei Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengwei Yao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaofeng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Lina Lyu
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of senile Cardio-cerebrovascular diseases, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Yanji He
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of senile Cardio-cerebrovascular diseases, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Zhuxin Li
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of senile Cardio-cerebrovascular diseases, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China
- Key Laboratory of senile Cardio-cerebrovascular diseases, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Yi Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Chuanjiang Xia
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhuo Chen
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, Zhejiang, China
| | - Xiang Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
3
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
4
|
Jiang L, Tao W, Liu J, Yang A, Zhou J. microRNA-637/661 ameliorate hypoxic-induced pulmonary arterial hypertension by targeting TRIM29 signaling pathway. Sci Rep 2024; 14:27971. [PMID: 39543168 PMCID: PMC11564567 DOI: 10.1038/s41598-024-79769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
The pathogenesis of pulmonary arterial hypertension (PAH) is closely linked to the abnormal proliferation of pulmonary artery smooth muscle cells. Studies have demonstrated that microRNAs play pivotal roles in the progression of pulmonary hypertension. We found that microRNA-637 (miR-637) and microRNA-661 (miR-661) are expressed at low levels in the serum of PAH patients. Moreover, the overexpression of miR-637 or miR-661 inhibited human pulmonary artery smooth muscle cell (HPASMC) proliferation and migration in hypoxic culture. Mechanistically, we overexpressed these two microRNAs in HPASMCs, and the RNA-sequencing (RNA-seq) results demonstrated that TRIM29 mRNA was suppressed, indicating that TRIM29 is a substrate. TRIM29 accumulates in the serum of patients with PAH and promotes cell proliferation and migration by activating AKT/mTOR signalling. In addition, overexpression of miR-637 or miR-661 reversed TRIM29-mediated HPASMC proliferation and migration. This study revealed that miR-637 and miR-661 are able to inhibit the proliferation ability of HPASMCs under hypoxic conditions through targeting TRIM29, suggesting that the microRNA-637/661/TRIM29 axis may act as a target for PAH treatment.
Collapse
Affiliation(s)
- Liyang Jiang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Weiyi Tao
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jun Liu
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Aixiang Yang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China.
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China.
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China.
| | - Jie Zhou
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China.
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China.
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Sun X, Zhang J, Dong B, Xiong Q, Wang X, Gu Y, Wang Z, Liu H, Zhang J, He X, Liu H, Zhong Y, Yi C, Chi X, Liu Z, Pang X, Cui Y. Targeting SLITRK4 Restrains Proliferation and Liver Metastasis in Colorectal Cancer via Regulating PI3K/AKT/NFκB Pathway and Tumor-Associated Macrophage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400367. [PMID: 39499724 DOI: 10.1002/advs.202400367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Liver metastasis is the major cause of death in colorectal cancer (CRC) due to the lack of effective treatment. To explore novel drivers of CRC liver metastasis, the transcriptomes of primary paracancerous, colorectal tumors and metastases from human patients are profiled. It is found that SLIT- and NTRK-like family member 4 (SLITRK4) is the top upregulated gene in liver metastases and is associated with worse overall survival of CRC patients. Multiple in vitro and in vivo models suggested SLITRK4 promoted CRC tumorigenesis, invasion, migration, and angiogenesis, and inhibition of it restrained CRC tumor growth and liver metastasis with a more profound effect on the tumor microenvironment (TME). Mechanistically, SLITRK4 overexpression significantly activated the PI3K/AKT/NFκB pathway, regulated extracellular matrix organization, and multiple cytokines expression. Furthermore, the results from coculture models and single-cell RNA sequencing analyses suggested SLITRK4 promoted tumor-associated macrophages (TAMs) infiltration and polarization. In addition, macrophage depletion significantly inhibited SLITRK4-induced liver metastasis in CRC. Finally, pharmacological inhibition of SLITRK4 by using lipid-polymer hybrid nanoparticles (NPs) for systemic siRNA delivery can effectively inhibit CRC liver metastasis. Taken together, these results pinpoint that SLITRK4 regulates CRC tumorigenesis and liver metastasis, and siRNA delivering NPs agents validate the therapeutic potential of targeting SLITRK4 in CRC.
Collapse
Affiliation(s)
- Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yanlun Gu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Zhiqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huiyu Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Hongjin Liu
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chuxiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaocong Pang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| | - Yimin Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Beijing, Xicheng, 100034, China
- Institute of Clinical Pharmacology, Peking University, Xueyuan Road 38, Beijing, Haidian, 100191, China
| |
Collapse
|
6
|
Wang M, Yu K, Fu W, Yang L. The combination of SHP099 inhibits the malignant biological behavior of L-OHP/5-FU-resistant colorectal cancer cells by regulating energy metabolism reprogramming. Biochem Biophys Res Commun 2024; 728:150262. [PMID: 38959530 DOI: 10.1016/j.bbrc.2024.150262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is one of the most common malignancies in China. At present, there is a problem that the CRC treatment drugs SHP099, L-OHP and 5-FU are insensitive to tumor cells. Combination medication is an important means to solve the insensitivity of medication alone. The purpose of this project was to explore the effect and molecular mechanism of SHP099 combination on the malignant biological behavior of L-OHP/5-FU resistant strains of CRC. METHODS HT29 and SW480 cells were cultured in media supplemented with L-OHP or 5-FU to establish drug-resistant strains. HT29 and SW480 drug-resistant cells were subcutaneously injected into the ventral nerves of nude mice at a dose of 5 × 106 to establish CRC drug-resistant animal models. CCK-8, Western blot, flow cytometry, Transwell and kit detection were used to detect the regulatory mechanism of energy metabolism reprogramming in drug-resistant CRC cells. RESULTS Compared with nonresistant strains, L-OHP/5-FU-resistant strains exhibited greater metabolic reprogramming. Functionally, SHP099 can restrain the metabolic reprogramming of L-OHP/5-FU-resistant strains and subsequently restrain the proliferation, colony formation, migration and spheroid formation of L-OHP/5-FU-resistant strains. Downstream mechanistic studies have shown that SHP099 interferes with the metabolic reprogramming of L-OHP/5-FU drug-resistant strains by suppressing the PI3K/AKT pathway, thereby restraining the malignant biological behavior of L-OHP/5-FU drug-resistant strains and alleviating CRC. CONCLUSION The combination of SHP099 can restrain the malignant biological behavior of L-OHP/5-FU-resistant CRC cells and alleviate the progression of CRC by interfering with the reprogramming of energy metabolism. This study explored the effect of SHP099 combination on dual-resistant CRC cells for the first time, and provided a new therapeutic idea for solving the problem of SHP099 insensitivity to CRC cells.
Collapse
Affiliation(s)
- Meilian Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Kun Yu
- Department of Colorectal Surgery, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Wen Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Lihong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
7
|
Liu A, Liu C. In vitro and in vivo antineoplastic activities of solamargine in colorectal cancer through the suppression of PI3K/AKT pathway. Histol Histopathol 2024; 39:1317-1328. [PMID: 38357981 DOI: 10.14670/hh-18-717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
PURPOSE Previous research has demonstrated the efficacy of SM in inhibiting tumor growth in various cancer types. The objective of this study was to examine the antineoplastic effects and molecular mechanisms of Solamargine (SM) in colorectal cancer. METHODS Colorectal cancer (CRC) cells were treated with different concentrations of SM to evaluate the anticancer concentration for further experimental measurements. Additionally, the antitumor efficacy of SM was assessed in a subcutaneously implanted tumor model of colorectal cancer. RNA-seq and bioinformatics analyses were employed to identify differentially expressed genes (DEGs) and elucidate the underlying molecular mechanisms in LoVo cells. Subsequently, the specific mechanism of SM-mediated anti-tumor activities was analyzed by protein expression methods. RESULTS The results of in vitro assays demonstrated that SM exhibits significant inhibitory effects on cell proliferation, clone formation, and invasion, while also promoting apoptosis in SW48 and LoVo cells. In a mouse xenograft tumor model, intragastric administration of SM at doses of 5 or 10 mg/kg effectively suppressed tumor volume and weight, and induced cell apoptosis in vivo. SM treatment also down-regulated PCNA and Cyclin E protein expression, contributing to the regulation of apoptosis. Further analysis using RNA-seq, bioinformatics, and experimental measurements revealed that SM treatment upregulates PTEN expression, while significantly reducing the phosphorylation levels of Akt and mTOR in LoVo cells. CONCLUSION Our study provides further evidence to support the notion that SM primarily induces apoptosis in colorectal cancer cells through the inhibition of the PI3K/Akt signaling pathway. Additionally, our investigation demonstrated the favorable safety profile of SM in a mouse model of colorectal cancer, thereby suggesting its potential as a promising therapeutic approach for the management of CRC.
Collapse
Affiliation(s)
- Aihua Liu
- Department of Pathology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Chunying Liu
- Department of Pathology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Liu G, Liu X, Yin J, Zheng H, Zhu X. CircANXA4 (hsa_circ_0055087) regulates the miR-1256/PRM1 axis to promote tumor progression in colorectal cancer. Noncoding RNA Res 2024; 9:921-929. [PMID: 38660591 PMCID: PMC11039774 DOI: 10.1016/j.ncrna.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Colorectal cancer (CRC) incidence ranks third among malignant cancers with a high propensity for distant metastasis. Despite continuous efforts to improve treatment, the prognosis especially in patients with advanced distant metastasis is low. The mechanism of development and progression of CRC is not fully understood. Non-coding RNAs (ncRNAs) have emerged as essential regulators in cancer progression. Here, we aim to dissect the role of one critical ncRNA, circANXA4, in CRC progression. CircANXA4 expression was analyzed by the GEO database. Differentially expressed circRNAs were identified by the Limma package R software. Expression of circANXA4 and miR-1256 was detected by qRT-PCR. The regulation of circANXA4 on cell proliferation and progression was confirmed with the cell viability assay using cell counting kit-8 (CCK-8) and transwell migration assay. RNA pull-down assay, RNA immunoprecipitation (RIP), and western blot were used to determine the interaction between circANXA4, miR-1256, and protamine1 (PRM1). CircANXA4 was upregulated in both CRC tissues and cell lines. Knockdown of circANXA4 effectively reduced cell proliferation, progression, and migration. Additionally, silencing circANXA4 remarkably increased miR-1256 expression, while reducing PRM1 expression, thereby demonstrating that circANXA4 downregulates miR-1256 expression through a complementary binding site. Rescue experiments revealed the interactions between circANXA4, miR-1256, and PRM1. Pearson correlation analysis revealed that circANXA4 expression positively correlated with PRM1 expression and miR-1256 expression inversely correlated with PRM1 expression. In sum, we demonstrated that circANXA4 promotes cancer cell proliferation and progression by sponging miR-1256 and upregulating PRM1 in CRC.
Collapse
Affiliation(s)
- Guanglan Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Junfeng Yin
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, NO. 368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Haijian Zheng
- Department of Neurology, Ganyu District People's Hospital, No.88 Haicheng Road, Lianyungang, 222100, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| |
Collapse
|
9
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
10
|
Yu YJ, Kołat D, Kałuzińska-Kołat Ż, Liang Z, Peng BQ, Zhu YF, Liu K, Mei JX, Yu G, Zhang WH, Chen XL, Yang K, Hu JK, Zhao LY. The AP-2 Family of Transcription Factors-Still Undervalued Regulators in Gastroenterological Disorders. Int J Mol Sci 2024; 25:9138. [PMID: 39273087 PMCID: PMC11394946 DOI: 10.3390/ijms25179138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Activating enhancer-binding protein 2 (AP-2) is a family of transcription factors (TFs) that play crucial roles in regulating embryonic and oncogenic development. In addition to splice isoforms, five major family members encoded by the TFAP2A/B/C/D/E genes have been identified in humans, i.e., AP-2α/β/γ/δ/ε. In general, the first three TFs have been studied more thoroughly than AP-2δ or AP-2ε. Currently, there is a relatively limited body of literature focusing on the AP-2 family in the context of gastroenterological research, and a comprehensive overview of the existing knowledge and recommendations for further research directions is lacking. Herein, we have collected available gastroenterological data on AP-2 TFs, discussed the latest medical applications of each family member, and proposed potential future directions. Research on AP-2 in gastrointestinal tumors has predominantly been focused on the two best-described family members, AP-2α and AP-2γ. Surprisingly, research in the past decade has highlighted the importance of AP-2ε in the drug resistance of gastric cancer (GC) and colorectal cancer (CRC). While numerous questions about gastroenterological disorders await elucidation, the available data undoubtedly open avenues for anti-cancer targeted therapy and overcoming chemotherapy resistance. In addition to gastrointestinal cancers, AP-2 family members (primarily AP-2β and marginally AP-2γ) have been associated with other health issues such as obesity, type 2 diabetes, liver dysfunction, and pseudo-obstruction. On the other hand, AP-2δ has been poorly investigated in gastroenterological disorders, necessitating further research to delineate its role. In conclusion, despite the limited attention given to AP-2 in gastroenterology research, pivotal functions of these transcription factors have started to emerge and warrant further exploration in the future.
Collapse
Affiliation(s)
- Yi-Jin Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Lodzkie, Poland; (D.K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Lodzkie, Poland; (D.K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Lodzkie, Poland
| | - Zhu Liang
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Center for Medicines Discovery, Oxford OX1 2JD, UK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), University of Oxford, Oxford OX1 2JD, UK
| | - Bo-Qiang Peng
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun-Feng Zhu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy–Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-J.Y.)
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Hussen BM, Abdullah SR, Mohammed AA, Rasul MF, Hussein AM, Eslami S, Glassy MC, Taheri M. Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pathol Res Pract 2024; 260:155402. [PMID: 38885593 DOI: 10.1016/j.prp.2024.155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Colorectal cancer (CRC) stands second in terms of mortality and third among the highest prevalent kinds of cancer globally. CRC prevalence is rising in moderately and poorly developed regions and is greater in economically advanced regions. Despite breakthroughs in targeted therapy, resistance to chemotherapeutics remains a significant challenge in the long-term management of CRC. Circular RNAs (circRNAs) have been involved in growing cancer therapy resistance, particularly in CRC, according to an increasing number of studies in recent years. CircRNAs are one of the novel subclasses of non-coding RNAs, previously thought of as viroid. According to studies, circRNAs have been recommended as biological markers for therapeutic targets and diagnostic and prognostic purposes. That is particularly notable given that the expression of circRNAs has been linked to the hallmarks of CRC since they are responsible for drug resistance in CRC patients; thereby, circRNAs are significant for chemotherapy failure. Moreover, knowledge concerning circRNAs remains relatively unclear despite using all these advanced techniques. Here, in this study, we will go over the most recent published work to highlight the critical roles of circRNAs in CRC development and drug resistance and highlight the main strategies to overcome drug resistance to improve clinical outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali M Hussein
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mark C Glassy
- Translational Neuro-Oncology Laboratory, San Diego (UCSD) Moores Cancer Center, University of California, CA, United States
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Liu L, Ye G, Huang W, He Y, Xie D. Shen-Qi-Ling-Bi Decoction Inhibits Colorectal Cancer Cell Growth by Inducing Ferroptosis Through Inactivation of PI3K/AKT Signaling Pathway. DNA Cell Biol 2024; 43:315-324. [PMID: 38884168 DOI: 10.1089/dna.2023.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with poor prognosis. Shen-Qi-Ling-Bi Decoction (SQLB), a classic traditional Chinese medicine (TCM) formula, was found to exert antitumor effects in CRC. This study aimed to explore the biological functions of SQLB in CRC. Cell Counting Kit 8 (CCK-8), wound healing, and transwell invasion assays in vitro were used to evaluate the antitumor effects of SQLB in CRC cells. In addition, ferroptosis in CRC cells was determined by evaluating Fe2+ content and lipid ROS, MDA, and GSH levels. SQLB treatment partially reduced CRC cell proliferation, migration, and invasion; however, a ferroptosis inhibitor, ferrostatin-1 (Fer-1), abolished these effects. In addition, SQLB treatment triggered CRC cell ferroptosis, as evidenced by increased Fe2+, lipid ROS, and MDA levels and decreased GSH levels; conversely, these levels were reversed by Fer-1. Furthermore, SQLB notably suppressed tumor growth in nude mice in vivo. Meanwhile, SQLB decreased phosphorylated PI3K and AKT levels, downregulated Nrf2, GPX4, and SLC7A11 levels, and upregulated ACSL4 levels in CRC cells and in tumor tissues; however, these effects were reversed by Fer-1. Collectively, SQLB inhibited CRC cell proliferation, invasion, and migration by triggering ferroptosis through inactivation of the PI3K/AKT signaling pathway. These findings demonstrate a novel mechanism of action for SQLB in the treatment of CRC.
Collapse
Affiliation(s)
- Lin Liu
- Department of Pharmacy, Dahua Hospital, Shanghai, P.R. China
| | - Guanlong Ye
- Department of Pharmacy, Dahua Hospital, Shanghai, P.R. China
| | - Wei Huang
- Internal Medicine of TCM, Dahua Hospital, Shanghai, P.R. China
| | - Yang He
- Department of Interventional Oncology, Dahua Hospital, Shanghai, P.R. China
| | - Donghao Xie
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
15
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
17
|
Chen HZ, Zeng YY, Cai GX, Gu WD, Yang Y. Differential analysis of serum immunology and gut microbiota in patients with gastrointestinal diseases. Front Microbiol 2024; 15:1323842. [PMID: 38751718 PMCID: PMC11094713 DOI: 10.3389/fmicb.2024.1323842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Gastric and intestinal diseases possess distinct characteristics although they are interconnected. The primary objective of this study was to investigate the pathogenesis of gastrointestinal diseases through different analyses of clinical characteristics, serum immunology, and gut microbiota in patients with gastrointestinal diseases. Methods We collected serum samples from 89 patients with gastrointestinal diseases and 9 healthy controls for immunological assessment, stool samples for DNA extraction, library construction, sequencing, as well as clinical data for subsequent analysis. Results Regarding clinical characteristics, there were significant differences between the disease group and the healthy control (HC) group, particularly in terms of age, cancer antigen 125 (CA125), cancer antigen 199 (CA199), alpha-fetoprotein (AFP), total bilirubin (TBIL) and indirect bilirubin (IBIL). The intestinal disease (ID) group exhibited the highest IL-6 level, which significantly differed from the stomach disease (SD) group (p < 0.05). In comparing the HC with the ID groups, significant differences in abundance were detected across 46 species. The HC group displayed a greater abundance of Clostridiales, Clostridia, Firmicutes, Bifidobacterium, Bifidobacteriaceae, Bifidobacteriales, Actinobacteria, Veillonellaceae, Longum, Copri, Megamonas and Callidus than other species. Similarly, when comparing the HC with the SD groups, significant differences in abundance were identified among 49 species, with only one species that the Lachnospiraceae in the HC group exhibited a higher abundance than others. Furthermore, certain clinical characteristics, such as CA125, CA199, glucose (Glu), creatine kinase-MB (CKMB) and interleukin-22 (IL-22), displayed positive correlations with enriched gut species in the ID and SD groups, while exhibiting a negative correlation with the HC group. Conclusion The disturbance in human gut microbiota is intimately associated with the development and progression of gastrointestinal diseases. Moreover, the gut microbiota in the HC group was found more diverse than that in the ID and SD groups, and there were significant differences in microbial species among the three groups at different classification levels. Notably, a correlation was identified between specific clinical characteristics (e.g., CA125, CA199, Glu, CKMB and IL-22) and gut microbiota among patients with gastrointestinal diseases.
Collapse
Affiliation(s)
- Huan Zhu Chen
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
| | - Yu Yang Zeng
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
| | - Guo Xiong Cai
- Laboratory Department of the Affiliated Hospital of the Medical College of Jiaying University, Meizhou, China
| | - Wei Dan Gu
- Laboratory Department of the Affiliated Hospital of the Medical College of Jiaying University, Meizhou, China
| | - YaLi Yang
- Biochemistry Teaching and Research Office of the Basic Department of the Medical College of Jiaying University, Meizhou, China
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Meizhou, China
| |
Collapse
|
18
|
Song W, Fu J, Wu J, Ren J, Xiang R, Kong C, Fu T. CircFBXW4 Suppresses Colorectal Cancer Progression by Regulating the MiR-338-5p/SLC5A7 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300129. [PMID: 38461489 PMCID: PMC11095154 DOI: 10.1002/advs.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/04/2024] [Indexed: 03/12/2024]
Abstract
Dysregulated circular RNAs (circRNAs) contribute to tumourigenesis and cancer progression. However, the expression patterns and biological functions of circRNAs in colorectal cancer (CRC) remain elusive. Here, RNA sequencing and bioinformatics analyses are applied to screen for aberrantly expressed circRNAs. The expression of circFBXW4 in CRC tissues and cell lines is determined by quantitative real-time PCR. A series of in vitro and in vivo biological function assays are implemented to assess the functions of circFBXW4. The regulatory mechanisms linking circFBXW4, miR-338-5p, and SLC5A7 are explored by western blotting, dual luciferase reporter assays, and RNA pull-down assays. CircFBXW4 is dramatically downregulated in CRC tissues and cell lines. circFBXW4 downregulation is clearly correlated with malignant features and patient overall survival in CRC. Functionally, ectopic expression of circFBXW4 strikingly impairs the proliferation, migration, and invasion capacities of CRC cells in vitro and in vivo, whereas circFBXW4 knockdown has the opposite effects. Mechanistically, circFBXW4 competitively binds to miR-338-5p and prevents it from interacting with and repressing its target SLC5A7, thus suppressing the progression of CRC. This study reveals the specific critical role of circFBXW4 in inhibiting CRC progression via the miR-338-5p/SLC5A7 axis and provides an additional target for eradicating CRC.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jincheng Fu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| | - Jing Wu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Rensheng Xiang
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Can Kong
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Tao Fu
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| |
Collapse
|
19
|
Huang W, Hu X, He X, Pan D, Huang Z, Gu Z, Huang G, Wang P, Cui C, Fan Y. TRIM29 facilitates gemcitabine resistance via MEK/ERK pathway and is modulated by circRPS29/miR-770-5p axis in PDAC. Drug Resist Updat 2024; 74:101079. [PMID: 38518727 DOI: 10.1016/j.drup.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Chemotherapy based on gemcitabine (GEM) remains the first-line drug for patients with advanced PDAC. However, GEM resistance impairs its therapeutic effectiveness. Therefore, identifying effective therapeutic targets are urgently needed to overcome GEM resistance. METHODS The clinical significance of Tripartite Motif Containing 29 (TRIM29) was identified by exploring GEO datasets and TCGA database and its potential biological functions were predicted by GSEA analysis. The regulatory axis was established by bioinformatics analysis and validated by mechanical experiments. Then, in vitro and in vivo assays were performed to validate the roles of TRIM29 in PDAC GEM resistance. RESULTS High TRIM29 expression was associated with poor prognosis of PDAC and functional experiments demonstrated that TRIM29 promoted GEM resistance in PDAC GEM-resistant (GR) cells. Furthermore, we revealed that circRPS29 promoted TRIM29 expression via competitive interaction with miR-770-5p and then activated MEK/ERK signaling pathway. Additionally, both in vitro and in vivo functional experiments demonstrated that circRPS29/miR-770-5p/TRIM29 axis promoted PDAC GEM resistance via activating MEK/ERK signaling pathway. CONCLUSION Our results identify the significance of the signaling axis, circRPS29/miR-770-5p/TRIM29-MEK/ERK, in PDAC GEM resistance, which will provide novel therapeutic targets for PDAC treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Drug Resistance, Neoplasm/genetics
- Gemcitabine
- Gene Expression Regulation, Neoplastic/drug effects
- MAP Kinase Signaling System/drug effects
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Circular/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenjie Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China; Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Xiaojun Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Xiang He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Dongyue Pan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Zhaorong Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Zhanfeng Gu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Guobing Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510120, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China.
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
20
|
Jiang M, Han J, Ma Q, Chen X, Xu R, Wang Q, Zheng J, Wang W, Song J, Huang Y, Chen Y. Nicotine-derived NNK promotes CRC progression through activating TMUB1/AKT pathway in METTL14/YTHDF2-mediated m6A manner. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133692. [PMID: 38341886 DOI: 10.1016/j.jhazmat.2024.133692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cigarette smoking substantially promotes tumorigenesis and progression of colorectal cancer; however, the underlying molecular mechanism remains unclear. Among 662 colorectal cancer patients, our investigation revealed a significant correlation between cigarette smoking and factors, such as large tumor size, poor differentiation, and high degree of invasion. Among the nicotine-derived nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) emerged as the most critical carcinogen, which significantly promoted the malignant progression of colorectal cancer both in vivo and in vitro. The results of methylated RNA immunoprecipitation and transcriptome sequencing indicated that NNK upregulated transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) via N6-adenosine methylation, which was regulated by methyltransferase-like 14 (METTL14) and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Elevated TMUB1 levels were associated with a higher risk of cancer invasion and metastasis, leading to a high mortality risk in patients with colorectal cancer. Additionally, TMUB1 promoted lysine63-linked ubiquitination of AKT by interacting with AMFR, which led to the induction of malignant proliferation and metastasis in colorectal cancer cells exposed to NNK. In summary, this study provides a new insight, indicating that targeting TMUB1 expression via METTL14/YTHDF2 mediated N6-adenosine methylation may be a potential therapeutic and prognostic target for patients with colorectal cancer who smoke.
Collapse
Affiliation(s)
- Min Jiang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jingyi Han
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qun Ma
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xue Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Renjie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qing Wang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jia Zheng
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, PR China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
21
|
Mao Y, Miao J, Xi L, Tong H, Shen X, Li Q, Yu C. circSKA3 promotes colorectal cancer metastases through miR-1238 and methylation. Mol Cell Biochem 2024; 479:941-950. [PMID: 37256443 PMCID: PMC11015993 DOI: 10.1007/s11010-023-04773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Colorectal cancer (CRC) is becoming one of the most common cancers overworld, which causes a high rate of death in patients. circRNAs are non-coding RNAs(ncRNAs), which have been reported to be involved in the development of many cancers, including CRC. However, the exact mechanism that how circRNAs function through in CRC remains unclear. In this study, we firstly used GEO database and bioinformatic methods to identify the significant changed circRNAs, with circSKA3 being the most significantly upregulated circRNAs in CRC tissues. PCR results further confirmed higher expression of circSKA3 in CRC patients. CCK-8, scratch, and transwell assays indicated that circSKA3 could promote the proliferation, migration, and invasion of CRC cell lines for cell detection. Dual-luciferase assays were carried out to detect the downstream targets of circSKA3, and a binding site between circSKA3 and miR-1238 was identified and miR-1238 could also combine with YTHDF2. Overexpression of YTHDF2 rescued the decreased cell proliferation, migration, and invasion caused by miR-1238 overexpression. RIP assay further indicated that YTHDF2 could decrease the methylation of STAT5A. In summary, our study found that circSKA3 was upregulated in CRC tissues comparing with normal tissues. circSKA3 could increase the expression ofYTHDF2 through sponging miR-1238 to decrease the methylation of STAT5A, which could provide a novel target for CRC treatment.
Collapse
Affiliation(s)
- Yonghuan Mao
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Ling Xi
- Department of Gerontology, Jiangsu Province Official Hospital, Nanjing, 210009, China
| | - Hanwen Tong
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| | - Qiang Li
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| | - Chunzhao Yu
- Department of General Surgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211112, China.
| |
Collapse
|
22
|
Zhang X, Zhu R, Jiao Y, Simayi H, He J, Shen Z, Wang H, He J, Zhang S, Yang F. Expression profiles and gene set enrichment analysis of the transcriptomes from the cancer tissue, white adipose tissue and paracancer tissue with colorectal cancer. PeerJ 2024; 12:e17105. [PMID: 38563016 PMCID: PMC10984182 DOI: 10.7717/peerj.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Affiliated XiaoShan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Halizere Simayi
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialing He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houdong Wang
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Yu X, Bu C, Yang X, Jiang W, He X, Sun R, Guo H, Shang L, Ou C. Exosomal non-coding RNAs in colorectal cancer metastasis. Clin Chim Acta 2024; 556:117849. [PMID: 38417779 DOI: 10.1016/j.cca.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chiwen Bu
- Department of General Surgery, People's Hospital of Guanyun County, Lianyungang 222200, Jiangsu, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Xichang 637000, Sichuan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Li Shang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
24
|
Saleh RO, Al-Hawary SIS, Jasim SA, Bokov DO, Hjazi A, Oudaha KH, Alnajar MJ, Jumaa SS, Alawadi A, Alsalamy A. A therapeutical insight into the correlation between circRNAs and signaling pathways involved in cancer pathogenesis. Med Oncol 2024; 41:69. [PMID: 38311682 DOI: 10.1007/s12032-023-02275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024]
Abstract
Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs' involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | | | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Sally Salih Jumaa
- College of Pharmacy/National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah,, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
25
|
Shi H, Luo J, Ye L, Duan C, Zhang M, Ran H, Li C, Wu Q, Shao Y. SH2D4A inhibits esophageal squamous cell carcinoma progression through FAK/PI3K/AKT signaling pathway. Cell Signal 2024; 114:110997. [PMID: 38043670 DOI: 10.1016/j.cellsig.2023.110997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most common malignant tumors, is now afflicting approximately 80% of patients diagnosed with esophageal cancers. The therapeutic effect and prognosis of ESCC remain inadequate due to the unusual early symptoms and rapid malignant progression. SH2 Domain containing 4 A (SH2D4A) is downregulated in malignancies and is closely associated with tumor progression. However, neither the biological functions nor the fundamental mechanisms of SH2D4A on ESCC are known. In this study, it was found that SH2D4A is downregulated in ESCC tissues and cell lines. Incorporating immunohistochemistry and clinicopathological findings, we determined that decreased SH2D4A expression was substantially associated with adverse clinical outcomes. Overexpression of SH2D4A inhibited cell proliferation and migration, whereas suppressing SH2D4A has the opposite effect. SH2D4A mechanistically inhibited cells from proliferating and migrating through the FAK/PI3K/AKT signaling pathway. Furthermore, the results of xenograft tumor growth confirmed the preceding findings. In conclusion, our findings reveal that SH2D4A is a gene which can serve as a cancer suppressor in ESCC and may inhibits the ESCC progression by interfering with the FAK/PI3K/AKT signaling pathway. SH2D4A could act as a target for diagnostic or therapeutic purpose in ESCC.
Collapse
Affiliation(s)
- Haoming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changzhu Duan
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016 Chongqing, China..
| | - Min Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changying Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| |
Collapse
|
26
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
27
|
JIang W, Dong J, Zhang W, Huang Z, Guo T, Zhang K, Jiang X, Du T. Development and Validation of a Prognostic Model based on 11 E3-related Genes for Colon Cancer Patients. Curr Pharm Des 2024; 30:935-951. [PMID: 38898815 DOI: 10.2174/0113816128292398240306160051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.
Collapse
Affiliation(s)
- Wanju JIang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth Peoples Hospital, Tongji University, Shanghai 200072, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kehui Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Chen J, Feng H, Wang Y, Bai X, Sheng S, Li H, Huang M, Chu X, Lei Z. The involvement of E3 ubiquitin ligases in the development and progression of colorectal cancer. Cell Death Discov 2023; 9:458. [PMID: 38104139 PMCID: PMC10725464 DOI: 10.1038/s41420-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
To date, colorectal cancer (CRC) still has limited therapeutic efficacy and poor prognosis and there is an urgent need for novel targets to improve the outcome of CRC patients. The highly conserved ubiquitination modification mediated by E3 ubiquitin ligases is an important mechanism to regulate the expression and function of tumor promoters or suppressors in CRC. In this review, we provide an overview of E3 ligases in modulating various biological processes in CRC, including proliferation, migration, stemness, metabolism, cell death, differentiation and immune response of CRC cells, emphasizing the pluripotency of E3 ubiquitin ligases. We further focus on the role of E3 ligases in regulating vital cellular signal pathways in CRC, such as Wnt/β-catenin pathway and NF-κB pathway. Additionally, considering the potential of E3 ligases as novel targets in the treatment of CRC, we discuss what aspects of E3 ligases can be utilized and exploited for efficient therapeutic strategies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Huiyu Li
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical university, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
29
|
Verma J, Sandhu A, Popli R, Kumar R, Khullar V, Kansal I, Sharma A, Garg K, Kashyap N, Aurangzeb K. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology. Open Life Sci 2023; 18:20220777. [PMID: 38152577 PMCID: PMC10751997 DOI: 10.1515/biol-2022-0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/29/2023] Open
Abstract
Prognostic survival prediction in colorectal cancer (CRC) plays a crucial role in guiding treatment decisions and improving patient outcomes. In this research, we explore the application of deep learning techniques to predict survival outcomes based on histopathological images of human colorectal cancer. We present a retrospective multicenter study utilizing a dataset of 100,000 nonoverlapping image patches from hematoxylin & eosin-stained histological images of CRC and normal tissue. The dataset includes diverse tissue classes such as adipose, background, debris, lymphocytes, mucus, smooth muscle, normal colon mucosa, cancer-associated stroma, and colorectal adenocarcinoma epithelium. To perform survival prediction, we employ various deep learning architectures, including convolutional neural network, DenseNet201, InceptionResNetV2, VGG16, VGG19, and Xception. These architectures are trained on the dataset using a multicenter retrospective analysis approach. Extensive preprocessing steps are undertaken, including image normalization using Macenko's method and data augmentation techniques, to optimize model performance. The experimental findings reveal promising results, demonstrating the effectiveness of deep learning models in prognostic survival prediction. Our models achieve high accuracy, precision, recall, and validation metrics, showcasing their ability to capture relevant histological patterns associated with prognosis. Visualization techniques are employed to interpret the models' decision-making process, highlighting important features and regions contributing to survival predictions. The implications of this research are manifold. The accurate prediction of survival outcomes in CRC can aid in personalized medicine and clinical decision-making, facilitating tailored treatment plans for individual patients. The identification of important histological features and biomarkers provides valuable insights into disease mechanisms and may lead to the discovery of novel prognostic indicators. The transparency and explainability of the models enhance trust and acceptance, fostering their integration into clinical practice. Research demonstrates the potential of deep learning models for prognostic survival prediction in human colorectal cancer histology. The findings contribute to the understanding of disease progression and offer practical applications in personalized medicine. By harnessing the power of deep learning and histopathological analysis, we pave the way for improved patient care, clinical decision support, and advancements in prognostic prediction in CRC.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Computer Science and Engineering, Punjabi University, Patiala, India
| | - Archana Sandhu
- MM Institute of Computer Technology and Business Management Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala, Haryana, 134007, India
| | - Renu Popli
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Rajeev Kumar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Vikas Khullar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Isha Kansal
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Ashutosh Sharma
- Department of Informatics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun248007, Uttarakhand, India
| | - Kanwal Garg
- Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Neeru Kashyap
- Department of ECE, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Ambala, Haryana 134007, India
| | - Khursheed Aurangzeb
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh11543, Saudi Arabia
| |
Collapse
|
30
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
31
|
Wang L, Chen S, Gao X, Liang X, Lv W, Zhang D, Jin X. Recent progress in chemistry and bioactivity of monoterpenoid indole alkaloids from the genus gelsemium: a comprehensive review. J Enzyme Inhib Med Chem 2023; 38:2155639. [PMID: 36629436 PMCID: PMC9848241 DOI: 10.1080/14756366.2022.2155639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Monoterpenoid indole alkaloids (MIAs) represent a major class of active ingredients from the plants of the genus Gelsemium. Gelsemium MIAs with diverse chemical structures can be divided into six categories: gelsedine-, gelsemine-, humantenine-, koumine-, sarpagine- and yohimbane-type. Additionally, gelsemium MIAs exert a wide range of bioactivities, including anti-tumour, immunosuppression, anti-anxiety, analgesia, and so on. Owing to their fascinating structures and potent pharmaceutical properties, these gelsemium MIAs arouse significant organic chemists' interest to design state-of-the-art synthetic strategies for their total synthesis. In this review, we comprehensively summarised recently reported novel gelsemium MIAs, potential pharmacological activities of some active molecules, and total synthetic strategies covering the period from 2013 to 2022. It is expected that this study may open the window to timely illuminate and guide further study and development of gelsemium MIAs and their derivatives in clinical practice.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Siyu Chen
- China Medical University-Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Liang
- School of Pharmacy, Liaoning University, Shenyang, China
| | - Weichen Lv
- Department of Clinical Medicine, Dalian University, Dalian, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang, China,CONTACT Dongfang Zhang
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, China,Xin Jin School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
32
|
Li X, Dong H, Zheng Y, Ding S, Li Y, Li H, Huang H, Zhong C, Xie T, Xu Y. AKAP12 inhibits esophageal squamous carcinoma cell proliferation, migration, and cell cycle via the PI3K/AKT signaling pathway. Mol Cell Probes 2023; 72:101939. [PMID: 37879503 DOI: 10.1016/j.mcp.2023.101939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) consistently ranks as one of the most challenging variants of squamous cell carcinomas, primarily due to the lack of effective early detection strategies. We herein aimed to elucidate the underlying mechanisms and biological role associated with A-kinase anchoring protein 12 (AKAP12) in the context of ESCC. Bioinformatic analysis had revealed significantly lower expression level of AKAP12 in ESCC tissue samples than in their non-cancerous counterparts. To gain deeper insights into the potential role of AKAP12 in the progression of ESCC, we conducted a single-gene set enrichment analysis of AKAP12 on ESCC datasets. Our findings suggested that AKAP12 exhibits functions inhibiting cell cycle progression, tumor proliferation, and epithelial-mesenchymal transition. To further validate our findings, we subjected ESCC cell lines to AKAP12 overexpression using CRISPR/Cas9-SAM. In vitro analyses demonstrated that increased expression of AKAP12 significantly reduced cell proliferation, migration, and cell cycle progression. Simultaneously, genes associated with this biological role undergo corresponding regulatory shifts. These observations provided valuable insights into the biological role played by AKAP12 in ESCC progression. In summary, AKAP12 shows promise as a new potential biomarker for early ESCC diagnosis, offering potential advantages for subsequent therapeutic intervention and disease management.
Collapse
Affiliation(s)
- Xingyi Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China; Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Huzhou Teachers College, The First Hospital of Huzhou, 313000, Huzhou, China
| | - Hao Dong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yifan Zheng
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yan Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Hefei Li
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Nantong University, The Third People's Hospital of Nantong, 226001, Nantong, China
| | - HaiTao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Congjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Tian Xie
- Department of Cardiothoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China.
| |
Collapse
|
33
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
34
|
Xiao B, Ge Y, Zhao R, Zhang Y, Guo Y, Zhang S, Li B, Qiu P, Chao Z, Zuo S. NAP1L5 facilitates pancreatic ductal adenocarcinoma progression via TRIM29-mediated ubiquitination of PHLPP1. Biochem Pharmacol 2023; 217:115811. [PMID: 37717692 DOI: 10.1016/j.bcp.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid tumours in humans. Despite its high mortality rate, effective targeted therapeutic strategies remain limited due to incomplete understanding of the underlying biological mechanisms. The NAP1L gene family has been implicated in the development and progression of various human tumours. However, the specific function and role of NAP1L5 (nucleosome assembly protein-like 5) in PDAC have not been fully elucidated. Therefore, in this study, we aimed to investigate the role of NAP1L5 in PDAC and explore the regulatory relationship between NAP1L5 and its potential downstream molecule PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) in PDAC. Our study revealed that NAP1L5 is notably upregulated in PDAC. Moreover, both in vivo and in vitro experiments demonstrated that knockdown of NAP1L5 suppressed the proliferation of PDAC cells. Mechanistically, NAP1L5 was found to promote PDAC progression by activating the AKT/mTOR signalling pathway in a PHLPP1-dependent manner. Specifically, NAP1L5 binds to PHLPP1 and facilitates the ubiquitination-mediated degradation of PHLPP1, ultimately resulting in reduced PHLPP1 expression. Notably, TRIM29, recruited by NAP1L5, was found to be involved in facilitating K48-linked ubiquitination of PHLPP1. Our findings indicate that NAP1L5 overexpression promotes the proliferation of PDAC cells by inhibiting PHLPP1 expression. These novel insights suggest that NAP1L5 may serve as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Benli Xiao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuzhen Ge
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Guo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shilong Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China; Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
35
|
Xia Y, Zhang L, Ocansey DKW, Tu Q, Mao F, Sheng X. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1242991. [PMID: 37881499 PMCID: PMC10595037 DOI: 10.3389/fendo.2023.1242991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.
Collapse
Affiliation(s)
- Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Ying P, Chen C, Lu Z, Chen S, Zhang M, Cai Y, Zhang F, Huang J, Fan L, Ning C, Li Y, Wang W, Geng H, Liu Y, Tian W, Yang Z, Liu J, Huang C, Yang X, Xu B, Li H, Zhu X, Li N, Li B, Wei Y, Zhu Y, Tian J, Miao X. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat Commun 2023; 14:5958. [PMID: 37749132 PMCID: PMC10520073 DOI: 10.1038/s41467-023-41690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.
Collapse
Grants
- Distinguished Young Scholars of China (NSFC-81925032), Key Program of National Natural Science Foundation of China (NSFC-82130098), the Fundamental Research Funds for the Central Universities (2042022rc0026, 2042023kf1005),Knowledge Innovation Program of Wuhan (2023020201010060).
- Youth Program of National Natural Science Foundation of China (NSFC-82003547), Program of Health Commission of Hubei Province (WJ2023M045) and Fundamental Research Funds for the Central Universities (WHU: 2042022kf1031).
- The National Science Fund for Excellent Young Scholars (NSFC-82322058), Program of National Natural Science Foundation of China (NSFC-82103929, NSFC-82273713), Young Elite Scientists Sponsorship Program by cst(2022QNRC001), National Science Fund for Distinguished Young Scholars of Hubei Province of China (2023AFA046), Fundamental Research Funds for the Central Universities (WHU:2042022kf1205) and Knowledge Innovation Program of Wuhan (whkxjsj011, 2023020201010073).
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Sun L, Wang D, Chen Z, Zhu X. TRIM29 knockdown prevented the colon cancer progression through decreasing the ubiquitination levels of KRT5. Open Life Sci 2023; 18:20220711. [PMID: 37671092 PMCID: PMC10476480 DOI: 10.1515/biol-2022-0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
To investigate the specific role of TRIM29 in colon cancer progression, bioinformatic analysis was performed on TRIM29. Colon cancer tissues were collected and colon cancer cells were cultured for further experiments. Cell viability and proliferation were determined using CCK-8, colony formation, and EDU staining assays. The mRNA and protein levels of TRIM29 and KRT5 were determined using quantitative real-time PCR and western blotting, respectively. The interaction between TRIM29 and KRT5 was detected using a co-immunoprecipitation (CO-IP) assay. Cycloheximide treatment was performed to analyse the stability of KRT5. TRIM29 was upregulated in colon cancer tissues and cells. TRIM29 knockdown decreased the cell viability and proliferation and ubiquitination levels of KRT5 and enhanced the protein stability and expression of KRT5. The CO-IP assay confirmed that TRIM29 and KRT5 binded to each other. KRT5 knockdown neutralises the inhibitory effect of sh-TRIM29 on colon cancer cell growth and TRIM29 knockdown prevented the proliferation of colon cancer cells by decreasing ubiquitination of KRT5, which enhanced the protein stability and expression of KRT5 in cancer cells. Thus, targeting TRIM29-mediated ubiquitination levels of KRT5 might be a new direction for colon cancer therapy.
Collapse
Affiliation(s)
- Lihui Sun
- The Fifth Department of General Surgery, The Third Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Heping Road, Jinzhou, Liaoning 121000, China
| | - Dawei Wang
- The Second Department of General Surgery, Dalian Fifth People’s Hospital, Dalian, Liaoning 116081, China
| | - Zhenyu Chen
- The Fifth Department of General Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xu Zhu
- The Fifth Department of General Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
38
|
Yue L, Xu X, Dai S, Xu F, Zhao W, Gu J, Dai X, Qian X. Orosomucoid 1 promotes colorectal cancer progression and liver metastasis by affecting PI3K/AKT pathway and inducing macrophage M2 polarization. Sci Rep 2023; 13:14092. [PMID: 37640741 PMCID: PMC10462626 DOI: 10.1038/s41598-023-40404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Approximately 25-30% of those affected by colorectal cancer (CRC), the most prevalent gastrointestinal malignancy, develop metastases. The survival rate of patients with liver metastasis of CRC (CRLM) remains low owing to its unpredictability and a lack of biomarkers that can be applied to distinguish groups at higher risk for CRLM among patients with CRC. Therefore, our study aimed to find biomarkers that can predict the risk of CRLM. Screening of the Gene Expression Omnibus database, supported by an analysis of clinically obtained tissue and serum data using qPCR and ELISA, in an attempt to identify relevant biomarkers, enabled us to determine that orosomucoid 1 (ORM1) was differentially expressed in liver metastases and primary tumors of patients with CRC. Functionally, overexpression of ORM1 promoted the epithelial-mesenchymal transition and the proliferative, migratory, and invasive activities of MC38 cells and activated the PI3K/AKT signaling pathway. Moreover, MC38 cells overexpressing ORM1 enhanced the tumor immune microenvironment by promoting macrophage M2 polarization and elevating interleukin-10 (IL-10) expression. In vivo experiments further confirmed in vitro results, indicating that liver metastases elevated by ORM1 were partially attenuated by the depletion of macrophages or IL-10. Considered together, ORM1 promotes CRC progression and liver metastasis by regulating tumor cell growth and inducing macrophage M2 polarization, which mediates tumor immune tolerance, and thus acts as a potential predictive marker and therapeutic target in CRLM.
Collapse
Affiliation(s)
- Lei Yue
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xiaozhang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Shipeng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Fan Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xinzheng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China.
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Xiaofeng Qian
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, Jiangsu Province, China.
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
39
|
Li M, Zhi Z, Jiang X, Duan GC, Zhu WN, Pang Z, Wang L, Ge R, Dai X, Liu JM, Chen TY, Jia JJ, Li JM, Sun LN. METTL9 derived circular RNA circ-METTL9 sponges miR-551b-5p to accelerate colorectal cancer progression by upregulating CDK6. Carcinogenesis 2023; 44:463-475. [PMID: 37158456 DOI: 10.1093/carcin/bgad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Circular RNAs (circRNAs) have been accepted to play key roles in the development and progression of mutiple cancers including colorectal cancer (CRC). Here, we identified circ-METTL9, derived from 2 to 4 exons of METTL9 gene, may promote CRC progression by accelerating cell cycle progression. However, the role and mechanism of circ-METTL9 in CRC remains unclear. Based on our data, the expression of circ-METTL9 was significantly upregulated in CRC tissues and markedly increased in advanced tumors in CRC patients. Functional experiments demonstrated that circ-METTL9 overexpression promoted CRC cells proliferation and migration in vitro, and simultaneously enhanced CRC tumor growth and metastasis in vivo. Mechanistically, RNA immunoprecipitation (RIP) assays proved that circ-METTL9 might be a miRNA sponge, and RNA pulldown assays showed the interaction between circ-METTL9 and miR-551b-5p. Notably, cyclin-dependent kinase 6 (CDK6), a key regulator in cell cycle, is a conserved downstream target of miR-551b-5p. Taken together, our findings highlight a novel oncogenic function of circ-METTL9 in CRC progression via circ-METTL9/miR-551b-5p/CDK6 axis, which may serve as a prognostic biomarker and therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Xuan Jiang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Guo-Cai Duan
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Wei-Na Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, People's Republic of China
| | - Zheng Pang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Lian Wang
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Rui Ge
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Xin Dai
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou 215163, People's Republic of China
| | - Jia-Meng Liu
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Ting-Yue Chen
- Department of Pathology, Suzhou Municipal Hospital affiliated to Nanjing Medical University, Suzhou 215008, People's Republic of China
| | - Jin-Jing Jia
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian-Ming Li
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | - Li-Na Sun
- Department of Pathology and Pathophysiology, Suzhou Medical College, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
40
|
Zheng Z, Song Y. Synaptopodin-2: a potential tumor suppressor. Cancer Cell Int 2023; 23:158. [PMID: 37544991 PMCID: PMC10405370 DOI: 10.1186/s12935-023-03013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Initially identified as an actin-binding protein containing a PSD95-DLG-ZO1 Domain (PZD domain), Synaptopodin 2 (SYNPO2) has long been considered a structural protein ubiquitously expressed in muscular tissues. However, emerging evidence suggests that SYNPO2 performs diverse functions in cancers in addition to its role in microfilament assembly. In most cancers, high SYNPO2 expression is positively correlated with a good prognosis, suggesting its role as a novel tumor suppressor. Abnormal SYNPO2 expression affects autophagy generation, particularly mitophagy induced by low oxidation or viral infection, as well as chaperone-mediated autophagy triggered by microfilament damage. Mechanically, SYNPO2 regulates tumor growth, metastasis, and invasion via activating the PI3K/AKT/mTOR signal and Hippo signaling pathways. Moreover, the subcellular localization, promoter methylation and single nucleotide polymorphism (SNP) of SYNPO2 have been associated with cancer progression and clinical outcomes, highlighting its potential as a prognostic or diagnostic target for this patient population. This review focuses on the role of SYNPO2 in cancer, including its generation, epigenetic modification, subcellular localization, and biological function.
Collapse
Affiliation(s)
- Zequn Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315048, Zhejiang, People's Republic of China
- Department of Cardiology, Shantou University Medical College, Shantou, 515063, Guangzhou, People's Republic of China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315048, Zhejiang, People's Republic of China.
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Medical College, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
41
|
Wang L, Shan Y, Zheng S, Li J, Zhu A. Exosomal circ-CTNNB1 derived from colorectal cancer cells induces N2 polarization of neutrophils to promote colorectal cancer cell growth and immune escape. Biomed Signal Process Control 2023; 85:104960. [DOI: 10.1016/j.bspc.2023.104960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
43
|
Liu Y, Liu Q, Zhang Z, Yang Y, Zhou Y, Yan H, Wang X, Li X, Zhao J, Hu J, Yang S, Tian Y, Yao Y, Qiu Z, Song Y, Yang Y. The regulatory role of PI3K in ageing-related diseases. Ageing Res Rev 2023; 88:101963. [PMID: 37245633 DOI: 10.1016/j.arr.2023.101963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Ageing is a physiological/pathological process accompanied by the progressive damage of cell function, triggering various ageing-related disorders. Phosphatidylinositol 3-kinase (PI3K), which serves as one of the central regulators of ageing, is closely associated with cellular characteristics or molecular features, such as genome instability, telomere erosion, epigenetic alterations, and mitochondrial dysfunction. In this review, the PI3K signalling pathway was firstly thoroughly explained. The link between ageing pathogenesis and the PI3K signalling pathway was then summarized. Finally, the key regulatory roles of PI3K in ageing-related illnesses were investigated and stressed. In summary, we revealed that drug development and clinical application targeting PI3K is one of the focal points for delaying ageing and treating ageing-related diseases in the future.
Collapse
Affiliation(s)
- Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhe Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yaru Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Huanle Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jingyan Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Shulin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yifan Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Yanbin Song
- Department of Cardiology, Affiliated Hospital, Yan'an University, 43 North Street, Yan'an 716000, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
44
|
Zhang Y, Luo J, Yang W, Ye WC. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023; 14:353. [PMID: 37296107 PMCID: PMC10250185 DOI: 10.1038/s41419-023-05881-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Globally, colorectal cancer (CRC) is the third most prevalent cancer and the second leading cause of cancer-related deaths. Circular RNAs (circRNAs) are single-stranded RNA with covalently closed-loop structures and are highly stable, conserved, and abundantly expressed in various organs and tissues. Recent research found abnormal circRNA expression in CRC patients' blood/serum, cells, CRC tissues, and exosomes. Furthermore, mounting data demonstrated that circRNAs are crucial to the development of CRC. CircRNAs have been shown to exert biological functions by acting as microRNA sponges, RNA-binding protein sponges, regulators of gene splicing and transcription, and protein/peptide translators. These characteristics make circRNAs potential markers for CRC diagnosis and prognosis, potential therapeutic targets, and circRNA-based therapies. However, further studies are still necessary to improve the understanding of the roles and biological mechanisms of circRNAs in the development of CRC. In this review, up-to-date research on the role of circRNAs in CRC was examined, focusing on their potential application in CRC diagnosis and targeted therapy, which would advance the knowledge of the functions of circRNAs in the development and progression of CRC.
Collapse
Affiliation(s)
- Yuying Zhang
- Central Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Jingyan Luo
- Forevergen Biosciences Centre, Guangzhou International Biotech Island, Guangzhou, 510300, China
| | - Weikang Yang
- Department of Prevention and Healthcare, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, China
| | - Wen-Chu Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
45
|
Jin C, Luo Y, Liang Z, Li X, Kołat D, Zhao L, Xiong W. Crucial role of the transcription factors family activator protein 2 in cancer: current clue and views. J Transl Med 2023; 21:371. [PMID: 37291585 PMCID: PMC10249218 DOI: 10.1186/s12967-023-04189-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Chinese Academy for Medical Sciences Oxford Institute, Oxford, UK
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Linyong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Pal A, Ghosh PK, Das S. The "LINC" between Δ40p53-miRNA Axis in the Regulation of Cellular Homeostasis. Mol Cell Biol 2023; 43:335-353. [PMID: 37283188 PMCID: PMC10348045 DOI: 10.1080/10985549.2023.2213147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Previous research has shown that Δ40p53, the translational isoform of p53, can inhibit cell growth independently of p53 by regulating microRNAs. Here, we explored the role of Δ40p53 in regulating the long noncoding RNA-micro-RNA-cellular process axis, specifically focusing on LINC00176. Interestingly, LINC00176 levels were predominantly affected by the overexpression/stress-mediated induction and knockdown of Δ40p53 rather than p53 levels. Additional assays revealed that Δ40p53 transactivates LINC00176 transcriptionally and could also regulate its stability. RNA immunoprecipitation experiments revealed that LINC00176 sequesters several putative microRNA targets, which could further titrate several mRNA targets involved in different cellular processes. To understand the downstream effects of this regulation, we ectopically overexpressed and knocked down LINC00176 in HCT116 p53-/- (harboring only Δ40p53) cells, which affected their proliferation, cell viability, and expression of epithelial markers. Our results provide essential insights into the pivotal role of Δ40p53 in regulating the novel LINC00176 RNA-microRNA-mRNA axis independent of FL-p53 and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pritam Kumar Ghosh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
47
|
Qian H, Lu Z, Hao C, Zhao Y, Bo X, Hu Y, Zhang Y, Yao Y, Ma G, Chen L. TRIM44 aggravates cardiac fibrosis after myocardial infarction via TAK1 stabilization. Cell Signal 2023:110744. [PMID: 37271349 DOI: 10.1016/j.cellsig.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction (MI) is one of the most dangerous cardiovascular events. Cardiac fibrosis is a common pathological feature of remodeling after injury that is related to adverse clinical results with no effective treatment. Previous studies have confirmed that TRIM44, an E3 ligase, can promote the proliferation and migration of various tumor cells. However, the role of TRIM44 in cardiac fibrosis remains unknown. Models of TGF-β1 stimulation and MI-induced fibrosis were established to investigate the role and potential underlying mechanism of TRIM44 in cardiac fibrosis. The results showed that cardiac fibrosis was significantly inhibited after TRIM44 knockdown in a mouse model of MI, while it was enhanced when TRIM44 was overexpressed. Furthermore, in vitro studies showed that fibrosis markers were significantly reduced in cardiac fibroblasts (CFs) with TRIM44 knockdown, whereas TRIM44 overexpression promoted the expression of fibrosis markers. Mechanistically, TRIM44 maintains TAK1 stability by inhibiting the degradation of k48-linked polyubiquitination-mediated ubiquitination, thereby increasing phosphorylated TAK1 expression in the fibrotic environment and activating MAPKs to promote fibrosis. Pharmacological inhibition of TAK1 phosphorylation reversed the fibrogenic effects of TRIM44 overexpression. Combined, these results suggest that TRIM44 is a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengri Lu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiangwei Bo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ya Hu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 211200, China.
| |
Collapse
|
48
|
Li J, Li F, Zhao Y, Jin D. Integrating network pharmacology and experimental validation to explore the effect and mechanism of AD-1 in the treatment of colorectal cancer. Front Pharmacol 2023; 14:1159712. [PMID: 37284306 PMCID: PMC10239872 DOI: 10.3389/fphar.2023.1159712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
20 (R)-25-methoxyl-dammarane-3β, 12β, 20-triol (AD-1), a novel ginsenoside isolated from stem and leaf of Panax Notoginseng, has anticancer activity against a variety of malignant tumors. However, the pharmacological mechanism of AD-1 on colorectal cancer (CRC) remains unclear. The purpose of this study was to verify the potential mechanism of action of AD-1 against CRC through network pharmacology and experiments. A total of 39 potential targets were obtained based on the intersection of AD-1 and CRC targets, and key genes were analyzed and identified from the PPI network using Cytoscape software. 39 targets were significantly enriched in 156 GO terms and 138 KEGG pathways, among which PI3K-Akt signaling pathway was identified as one of the most enriched pathways. Based on experimental results, AD-1 can inhibit the proliferation and migration of SW620 and HT-29 cells, and induce their apoptosis. Subsequently, the HPA and UALCAN databases showed that PI3K and Akt were highly expressed in CRC. AD-1 also decreased the expressions of PI3K and Akt. In summary, these results suggest that AD-1 can play an anti-tumor role by inducing cell apoptosis and regulating PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jiawei Li
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
| | - Fangfang Li
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Dan Jin
- Immunology Biology Key Laboratory, Yanbian University, Yanji, China
| |
Collapse
|
49
|
Wang Y, Bai H, Jiang M, Zhou C, Gong Z. Emerging role of long non-coding RNA JPX in malignant processes and potential applications in cancers. Chin Med J (Engl) 2023; 136:757-766. [PMID: 37027401 PMCID: PMC10150895 DOI: 10.1097/cm9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 04/08/2023] Open
Abstract
ABSTRACT Long non-coding RNAs (lncRNAs) reportedly function as important modulators of gene regulation and malignant processes in the development of human cancers. The lncRNA JPX is a novel molecular switch for X chromosome inactivation and differentially expressed JPX has exhibited certain clinical correlations in several cancers. Notably, JPX participates in cancer growth, metastasis, and chemoresistance, by acting as a competing endogenous RNA for microRNA, interacting with proteins, and regulating some specific signaling pathways. Moreover, JPX may serve as a potential biomarker and therapeutic target for the diagnosis, prognosis, and treatment of cancer. The present article summarizes our current understanding of the structure, expression, and function of JPX in malignant cancer processes and discusses its molecular mechanisms and potential applications in cancer biology and medicine.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Huihui Bai
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Meina Jiang
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Chengwei Zhou
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, China
| | - Zhaohui Gong
- Department of Clinical Medicine, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
- Zhejiang Province Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| |
Collapse
|
50
|
Mezher M, Abdallah S, Ashekyan O, Shoukari AA, Choubassy H, Kurdi A, Temraz S, Nasr R. Insights on the Biomarker Potential of Exosomal Non-Coding RNAs in Colorectal Cancer: An In Silico Characterization of Related Exosomal lncRNA/circRNA–miRNA–Target Axis. Cells 2023; 12:cells12071081. [PMID: 37048155 PMCID: PMC10093117 DOI: 10.3390/cells12071081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types, ranking third after lung and breast cancers. As such, it demands special attention for better characterization, which may eventually result in the development of early detection strategies and preventive measures. Currently, components of bodily fluids, which may reflect various disease states, are being increasingly researched for their biomarker potential. One of these components is the circulating extracellular vesicles, namely, exosomes, which are demonstrated to carry various cargo. Of importance, the non-coding RNA cargo of circulating exosomes, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs), may potentially serve as significant diagnostic and prognostic/predictive biomarkers. In this review, we present existing evidence on the diagnostic and prognostic/predictive biomarker value of exosomal non-coding RNAs in CRC. In addition, taking advantage of the miRNA sponging functionality of lncRNAs and circRNAs, we demonstrate an experimentally validated CRC exosomal non-coding RNA-regulated target gene axis benefiting from published miRNA sponging studies in CRC. Hence, we present a set of target genes and pathways downstream of the lncRNA/circRNA–miRNA–target axis along with associated significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may collectively serve to better characterize CRC and shed light on the significance of exosomal non-coding RNAs in CRC diagnosis and prognosis/prediction.
Collapse
Affiliation(s)
- Maria Mezher
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ohanes Ashekyan
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hayat Choubassy
- Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Sally Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|