1
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Lin W, Li H, Chang J, Huang Y. ZC3H13 may participate in the ferroptosis process of sepsis-induced cardiomyopathy by regulating the expression of Pnn and Rbm25. Gene 2025; 933:148944. [PMID: 39284557 DOI: 10.1016/j.gene.2024.148944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND N6 methyladenosine (m6A) regulates the ferroptosis in different diseases. However, there is no report about the role of the m6A regulator in the ferroptosis process of septic cardiomyopathy (SCM). This study aims to find the potential m6A regulator that participates in the ferroptosis process of SCM. METHODS Genes related to m6A were identified through bioinformatics analysis in GSE142615. Then, the expression of Rrp8, Trmt6, Trmt61a, Ythdf1, and ZC3H13 was detected in lipopolysaccharide (LPS)-treated HL-1 cells using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). After overexpression or interference with ZC3H13, Cell Counting Kit-8 measured cell proliferation, flow cytometry detected apoptosis and reactive oxygen species (ROS) accumulation was observed. Then, we identified the potential downstream genes of ZC3H13 through further bioinformatics analysis followed by qRT-PCR and western blotting validation. RESULTS There were five differentially expressed genes related to m6A, including Rrp8, Trmt6, Trmt61a, Ythdf1, and ZC3H13. The expression of Rrp8, Trmt6, Trmt61a, Ythdf1, and ZC3H13 mRNA was significantly up-regulated in the LPS-treated HL-1 cells, with ZC3H13 having the highest expression. Furthermore, overexpression of ZC3H13 inhibited the proliferation of HL-1 cells and promoted apoptosis and ROS accumulation. While, interfering with ZC3H13 promoted the proliferation of LPS-treated HL-1 cells, and reduced apoptosis and ROS accumulation. Additionally, si-ZC3H13 promoted the expression of Pnn, GPX4, and SLC7A11; while inhibiting the expression of Rbm25 and Caspase 3. CONCLUSIONS In a word, the silence of ZC3H13 increased the proliferation and ferroptosis-related protein expression, decreased apoptosis and ROS accumulation, as well as maybe by regulating Pnn and Rbm25 expression.
Collapse
Affiliation(s)
- Wenji Lin
- Emergency Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China.
| | - Haihong Li
- Emergency Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Jing Chang
- Emergency Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| | - Yan Huang
- Emergency Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China
| |
Collapse
|
3
|
Jiang X, Tan H. Mechanism of METTL3 in the proliferation, invasion, and migration of intrahepatic cholangiocarcinoma cells via m6A modification. Exp Cell Res 2025; 444:114353. [PMID: 39608479 DOI: 10.1016/j.yexcr.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary invasive malignant tumor. This study was conducted to explore the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in ICC cells and provide novel targets for ICC treatment. Levels of METTL3/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)/Nedd4 family interacting protein 1 (NDFIP1) in cells were determined. Cell viability, proliferation, invasion, and migration were evaluated. The enrichments of METTL3, YTHDF2, and m6A on NDFIP1 mRNA were analyzed. The mRNA stability was determined. Inhibition of YTHDF2 or NDFIP1 was combined with si-METTL3 to confirm the mechanism. The role of METTL3 in vivo was verified. METTL3 was overexpressed in ICC cells. METTL3 silencing suppressed ICC cell malignant behaviors, which were reversed by METTL3 overexpression. METTL3 increased m6A modification on NDFIP1 mRNA, facilitated YTHDF2 recognition of m6A, and promoted NDFIP1 mRNA degradation, thereby suppressing NDFIP1 expression. YTHDF2 inhibition increased NDFIP1 mRNA levels. NDFIP1 downregulation partially reversed the inhibitory effects of si-METTL3 on ICC cell behaviors, while NDFIP1 overexpression partially reversed the promotive effects of METTL3 on ICC cell behaviors. METTL3 downregulation suppressed ICC growth by increasing NDFIP1 expression. In conclusion, METTL3 aggravates ICC cell proliferation, invasion, and migration by promoting the degradation of NDFIP1 mRNA in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Hui Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China; Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
4
|
Wang Y, Liu J, Wang Y. YTHDF2 contributes to psoriasis by promoting proliferation and inflammatory response through regulation of the Wnt signaling pathway. Int Immunopharmacol 2025; 144:113690. [PMID: 39608173 DOI: 10.1016/j.intimp.2024.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
YT521-B homology domain family 2 (YTHDF2), a pivotal m6A-binding protein, is now understood to significantly influence a diverse array of biological functions, including cell migration, proliferation, differentiation, and inflammatory responses. Additionally, YTHDF2 participates in mRNA decay and pre-rRNA processing. This study explored the specific role of YTHDF2 in the pathogenesis of psoriasis and its underlying mechanisms. Our preliminary findings revealed upregulation of YTHDF2 expression in psoriasis. Subsequent silencing of YTHDF2 in a psoriatic cell model resulted in a marked decrease in mRNA expression of IL-17A, S100A8, and S100A9, accompanied by a reduction in cell proliferation. Conversely, overexpression of YTHDF2 led to the opposite effects. Treatment with DC-Y27-13, a YTHDF2 inhibitor, demonstrated a therapeutic effect in psoriasis mice. Next, mRNA sequencing analysis identified significant enrichment of differentially expressed genes within the Wnt signaling pathway. Further investigation revealed that deletion of YTHDF2 increased the half-life and expression of Dickkopf homolog 3 (DKK3), a potent inhibitor of the Wnt signaling pathway. Consequently, the inhibition of Wnt signaling attenuated the inflammatory response and inhibited cell proliferation.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jing Liu
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Dermatology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; General Practice Department, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Xie X, Li H, Luo B, Fan X, Li Y, Zhang Y, Cui X, Yin W, Liu B, Xu H, Cheng H, Li W, Yu H, Wu F. ALKBH5 controlled autophagy of peripheral blood mononuclear cells by regulating NRG1 mRNA stability in ankylosing spondylitis. Int Immunopharmacol 2025; 144:113670. [PMID: 39580857 DOI: 10.1016/j.intimp.2024.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease which is characterized by pathological osteogenesis. N6-methyladenosine (m6A) RNA modification is pivotal in immunity and inflammation. In this study, the peripheral blood mononuclear cells (PBMCs) were isolated from healthy or AS patients blood samples in Fuyang People's Hospital, which was utilized to clarify the role of m6A modification in AS pathogenesis. The results showed that the autophagy levels showed a decreasing trend; meanwhile, the m6A demethylase ALKBH5 expression was downregulation in AS-PBMCs. The RNA-seq analysis identified 201 significantly altered genes including NRG1, FOS, CAMKK2, NLRC4, and DAPK1; and NRG1 mRNA expression levels showed significant improvement in AS. After ALKBH5 knockdown, the autophagy levels significantly decreased through increasing NRG1 m6A modification and enhancing its mRNA stability, while ALKBH5 overexpression promoted autophagy by reduceing NRG1 mRNA stability. Additionally, the results found that the "reader" IGF2BP3 substantially enhanced NRG1 expression and mRNA stability in AS patients PBMCs. Silencing ALKBH5 increased IGF2BP3 binding to the m6A-enriched NRG1 transcript, and enhancing NRG1 mRNA stability and protein expression. However, ALKBH5 modification site mutation may increase IGF2BP3 binding to NRG1 mRNA. These finding suggested that ALKBH5 downregulation inhibited AS-PBMCs autophagy leves through regulating post-transcriptional m6A modification to upregulate NRG1 protein expression, which provided novel and effective approaches for AS clinical therapy.
Collapse
Affiliation(s)
- Xin Xie
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Haili Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Bin Luo
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Xiaolong Fan
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yuanyuan Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yadi Zhang
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Xilong Cui
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Wen Yin
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Bo Liu
- Department of Orthopedics, No. 2 Pepople's Hospital of Fuyang City, 1088 Yinghe West Road, Fuyang, Anhui 236015, PR China
| | - Haiyan Xu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Huimin Cheng
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Wenyong Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China.
| | - Fengrui Wu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| |
Collapse
|
6
|
Chen M, Yang Y, Hu G, Peng Z, Wen W. The promoting effect of the POU3F2/METTL16/PFKM cascade on glycolysis and tumorigenesis of hepatocellular carcinoma. Ann Hepatol 2025:101776. [PMID: 39756795 DOI: 10.1016/j.aohep.2025.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION AND OBJECTIVES Deregulation of m6A methylation, the most prevailing RNA modification, participates in cancer pathogenesis. METTL16, an atypical methyltransferase, functions as a pro-tumorigenic factor in hepatocellular carcinoma (HCC). Here, we explored the action of METTL16 on HCC glycolysis and the associated mechanism. MATERIALS AND METHODS Expression analysis was done by quantitative PCR, immunoblotting, or immunohistochemistry. Cell sphere formation, invasiveness, apoptosis, proliferation and viability were detected by sphere formation, transwell, flow cytometry, EdU and CCK-8 assays, respectively. Xenograft studies were performed to analyze the role in vivo. Methylated RNA immunoprecipitation (MeRIP) and RIP assays were used to verify the METTL16/PFKM relationship. PFKM mRNA stability was tested by actinomycin D treatment. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to analyze the POU3F2/METTL16 relationship. RESULTS In HCC, METTL16 expression was elevated, and increased levels of METTL16 transcript predicted poor HCC prognosis. METTL16 deficiency resulted in suppressed HCC cell growth, invasiveness and sphere formation. Moreover, METTL16 depletion diminished HCC cell glycolysis. Mechanistically, PFKM expression was positively associated with METTL16 expression. METTL16 mediated m6A methylation to stabilize PFKM mRNA via an IGF2BP3-dependent manner. Restored PFKM expression exerted a counteracting effect on METTL16 deficiency-mediated in vitro cell phenotype alterations and in vivo xenograft growth suppression. Furthermore, POU3F2 promoted the transcription of METTL16 in HCC cells. CONCLUSIONS Our findings define the crucial role of the POU3F2/METTL16/PFKM axis in HCC pathogenesis, offering the potential opportunity to combat HCC.
Collapse
Affiliation(s)
- Ming Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan, China
| | - Yuan Yang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan, China
| | - Guangsheng Hu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan, China
| | - Zhong Peng
- Department of Gastroenterology and Hepatology, Yiyang Central Hospital, Yiyang City, 413099, Hunan, China
| | - Wu Wen
- Department of Hepato-Biliary-Pancreatic Surgery, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan, China.
| |
Collapse
|
7
|
Tang J, Liu Z, Xie G, Wang C, Jiang Y. POU4F1 enhances lung cancer gemcitabine resistance by regulating METTL3-dependent TWF1 mRNA N6 adenosine methylation. 3 Biotech 2025; 15:7. [PMID: 39676891 PMCID: PMC11638459 DOI: 10.1007/s13205-024-04161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
This study aimed to investigate the role of POU Class 4 Homeobox 1 (POU4F1) in regulating gemcitabine (GEM) resistance in lung cancer cells. The mRNA and protein expressions were assessed using RT-qPCR, western blot, immunofluorescence, and immunohistochemistry. Cell viability and proliferation were assessed by CCK-8 assay and EdU assay. TUNEL staining and flow cytometry were employed to detect cell apoptosis. The m6A modification of TWF1 was detected using MeRIP assay. The interactions between molecules were validated using dual luciferase reporter gene, ChIP, and RIP assays. POU4F1 knockdown inhibited GEM resistance and autophagy in lung cancer cells. Mechanistically, POU4F1 transcriptionally activated methyltransferase-like protein 3 (METTL3) in GEM-resistant cells by binding to the METTL3 promoter. METTL3 promoted the N6-methyladenosine (m6A) modification and expression level of twinfilin-1 (TWF1). Overexpression of METTL3 and TWF1 weakened the effects of POU4F1 knockdown on GEM resistance and autophagy. Moreover, knockdown POU4F1 also enhanced GEM anti-tumor sensitivity in vivo. In conclusion, POU4F1 upregulation promoted GEM resistance in lung cancer cells by promoting autophagy through increasing METTL3-mediated TWF1 m6A modification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04161-w.
Collapse
Affiliation(s)
- Jianfeng Tang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Zhijian Liu
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Guanghui Xie
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Chenbin Wang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Yongjun Jiang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| |
Collapse
|
8
|
Feng S, Zhang Q, Liu Q, Huang C, Zhang H, Wang F, Zhu Y, Jian Q, Chen X, Jiang Q, Yan B. N 6-Methyladenosine Demethylase FTO Controls Macrophage Homeostasis in Diabetic Vasculopathy. Diabetes 2025; 74:82-95. [PMID: 39446524 DOI: 10.2337/db24-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Diabetic vasculopathy, encompassing complications such as diabetic retinopathy, represents a significant source of morbidity, with inflammation playing a pivotal role in the progression of these complications. This study investigates the influence of N6-methyladenosine demethylase (m6A) modification and the m6A demethylase fat mass and obesity-associated (FTO) protein on macrophage polarization and its subsequent effects on diabetic microvasculopathy. We found that diabetes induces a shift in macrophage polarization toward a proinflammatory M1 phenotype, which is associated with a reduction in m6A modification levels. Notably, FTO emerges as a critical regulator of m6A under diabetic conditions. In vitro experiments reveal that FTO not only modulates macrophage polarization but also mediates their interactions with vascular endothelial cells. In vivo experiments demonstrate that FTO deficiency exacerbates retinal inflammation and microvascular dysfunction in diabetic retinas. Mechanistically, FTO stabilizes mRNA through an m6A-YTHDF2-dependent pathway, thereby activating the PI3K/AKT signaling cascade. Collectively, these findings position FTO as a promising therapeutic target for the management of diabetic vascular complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fengsheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Meng W, Li L. N6-methyladenosine modification of SPOP relieves ferroptosis and diabetic cardiomyopathy by enhancing ubiquitination of VDAC3. Free Radic Biol Med 2025; 226:216-229. [PMID: 39549880 DOI: 10.1016/j.freeradbiomed.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Understanding the pathogenesis of diabetic cardiomyopathy (DCM), a common microvascular complication affecting the heart, is crucial for identifying new therapeutic targets and intervention strategies for DCM. Our study revealed a significant downregulation in Speckle-type POZ protein (SPOP) expression in DCM, while the overexpression of SPOP improved DCM-induced myocardial dysfunction, injury, fibrosis, hypertrophy, and ferroptosis. Mechanistically, SPOP facilitated the degradation of voltage-dependent anion channel 3 (VDAC3) by enhancing its ubiquitination. M6A demethylase AlkB homolog 5 (ALKBH5) reduced the mRNA stability of SPOP by decreasing m6A modification in its 3'UTR. The m6A reader insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced the stability of SPOP mRNA through recognition of m6A-modified SPOP 3'UTR. Furthermore, ALKBH5 promoted ferroptosis by inhibiting SPOP-induced VDAC3 degradation, while IGF2BP2 inhibited ferroptosis via activation of SPOP-induced VDAC3 degradation in high glucose-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Overall, our study has unveiled a novel role of SPOP in the pathogenesis of ferroptosis and DCM, thereby significantly advancing our understanding of the involvement of ferroptosis during the progression of DCM. Moreover, this discovery offers promising potential therapeutic interventions targeting DCM.
Collapse
Affiliation(s)
- Wei Meng
- Department of Geriatric, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, 646000, China
| | - Linghua Li
- Department of Electrocardiography and Electroencephalography, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, 646000, China.
| |
Collapse
|
10
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
11
|
Qiu X, Yang Z, Zhang C, Ma A, Zong X, Chen C, Zhou Y, Han J, Yu Y, Li B, Xu C, Zhang J, Zhu X. Integration of eQTL and multi-omics comprehensive analysis of triacylglycerol synthase 1 (TGS1) as a prognostic and immunotherapeutic biomarker across pan-cancer. Int J Biol Macromol 2025; 284:137862. [PMID: 39581398 DOI: 10.1016/j.ijbiomac.2024.137862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
An increasing number of expression quantitative trait loci (eQTLs) have been linked to tumorigenesis. In this study, we used Mendelian randomization (MR) to identify a novel cancer susceptibility gene, Trimethylguanosine Synthase 1 (TGS1). TGS1-induced hypermethylation at the 5' end of human telomerase RNA (hTR) impedes hTR accumulation, decreasing telomerase assembly factor levels and thus limiting telomere elongation, a crucial factor in tumor progression. Despite its significant role in cancer development, the TGS1-cancer relationship requires further experimental validation and bioinformatics analysis. To bridge this knowledge gap, we performed a comprehensive pan-cancer study using MR to evaluate TGS1's involvement in cancer progression. Leveraging data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we analyzed TGS1's role in 33 tumor types. The results indicated higher TGS1 expression in most tumors, with a significant correlation to patient prognosis. We also noted variations in TGS1 phosphorylation at different sites and a strong link between TGS1 expression and the infiltration of various immune cells. In addition, our enrichment analysis of TGS1-associated genes shed light on the molecular mechanisms involved. The study also highlighted TGS1's significant role in cellular apoptosis. Overall, our findings offer an in-depth analysis of TGS1's oncogenic roles across multiple tumor types and underscore its potential as an oncogene, biomarker, and gene therapy target in diverse cancers.
Collapse
Affiliation(s)
- Xinhui Qiu
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Ziqing Yang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Chengyuan Zhang
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Anquan Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Xiaoyang Zong
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Chaojun Chen
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Yanhan Zhou
- School of Mechanical Engineering, Shandong University, Jinan, PR China
| | - Jinghong Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Yingzhe Yu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Bingsong Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chunming Xu
- Xinjiang Medical University, Urumqi, PR China
| | - Jun Zhang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China.
| | - Xiaobo Zhu
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
12
|
Zhang P, Xiang H, Peng Q, Ma L, Weng C, Liu G, Lu L. METTL14 attenuates cancer stemness by suppressing ATF5/WDR74/β-catenin axis in gastric cancer. Cancer Sci 2025; 116:112-127. [PMID: 39497511 PMCID: PMC11711053 DOI: 10.1111/cas.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 01/04/2025] Open
Abstract
Stemness is a key factor contributing to treatment failure in gastric cancer (GC). Methyltransferase-like 14 (METTL14) has been linked to various cancers, though its specific role in regulating stemness in GC remains undefined. In this study, we assessed METTL14 expression levels in GC tissues using public datasets and clinical specimens and investigated its impact on cell proliferation, metastasis, and stemness both in vitro and in vivo. Through m6A RNA immunoprecipitation (MeRIP) and luciferase reporter assays, we identified downstream targets of METTL14. Rescue assays were performed to examine whether METTL14 overexpression could reverse stemness in GC. We also explored the underlying mechanisms using chromatin immunoprecipitation (ChIP) and western blot analysis, focusing on the role of ATF5 and the upstream regulation of METTL14. Our findings show that lower METTL14 expression is associated with poorer overall survival in GC patients. Functionally, METTL14 knockdown enhanced stemness traits in GC cells. Mechanistically, METTL14 facilitated m6A modification, promoting the degradation of ATF5 mRNA. Overexpression of ATF5 reversed the stemness inhibition caused by METTL14 overexpression by increasing WDR74 transcription and enhancing β-catenin nuclear translocation. Furthermore, histone H3 lactylation at Lys18 was found to upregulate METTL14 expression. In conclusion, METTL14 knockdown promotes stemness in GC by mediating m6A modification of ATF5 mRNA, which activates the WDR74/β-catenin axis, making METTL14 a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
| | - Hong Xiang
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
| | - Qian Peng
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
| | - Lujuan Ma
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
| | - Chengyin Weng
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
- Department of Medical OncologyGuangzhou First People's Hospital, Guangzhou Medica University
| | - Guolong Liu
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
- Department of Medical OncologyGuangzhou First People's Hospital, Guangzhou Medica University
| | - Lin Lu
- Department of Medical OncologyGuangzhou First People's Hospital, South China University of TechnologyGuangzhouChina
- Department of Medical OncologyGuangzhou First People's Hospital, Guangzhou Medica University
| |
Collapse
|
13
|
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang X, Yang W, Asadikaram G, Li Z, Zhang K, Peng J, Li J, He J, Wang H. N 6-Methyladenosine Regulates Cilia Elongation in Cancer Cells by Modulating HDAC6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408488. [PMID: 39535388 DOI: 10.1002/advs.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Primary cilia are microtubule-based organelles that function as cellular antennae to address multiple metabolic and extracellular cues. The past decade has seen significant advances in understanding the pro-tumorigenic role of N6-methyladenosine (m6A) modification in tumorigenesis. Nevertheless, whether m6A modification modulates the cilia dynamics during cancer progression remains unclear. Here, the results show that m6A methyltransferase METTL3 regulates cilia length in cancer cells via HDAC6-dependent deacetylation of axonemal α-tubulin, thereby controlling cancer development. Mechanically, METTL3 positively regulates the translation of HDAC6 in an m6A-dependent manner, while m6A methylation of A3678 in the coding sequence (CDS) of HDAC6 ameliorates its translation efficiency via facilitating the binding with YTHDF3. The upregulation of HDAC6 induced by METTL3 over-expression is capable of inhibiting cilia elongation and acetylation of α-tubulin, thereby shortening cilia length and accelerating the progression of cervical cancer both in vitro and in vivo. Collectively, depletion of METTL3-mediated m6A modification leads to abnormally elongated cilia via suppressing HDAC6-dependent deacetylation of axonemal α-tubulin, ultimately attenuating cell growth and cervical cancer development.
Collapse
Affiliation(s)
- Yalan Rui
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kangning Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shiyao Qiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chenglin Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman, 7616913555, Iran
| | - Zigang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Seventh People's Hospital, Affiliated Cancer Hospital of Chengdu Medical College, School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junming He
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Fu H, Ding Z, Wang W. Trans-m5C: A transformer-based model for predicting 5-methylcytosine (m5C) sites. Methods 2024; 234:178-186. [PMID: 39742984 DOI: 10.1016/j.ymeth.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
5-Methylcytosine (m5C) plays a pivotal role in various RNA metabolic processes, including RNA localization, stability, and translation. Current high-throughput sequencing technologies for m5C site identification are resource-intensive in terms of cost, labor, and time. As such, there is a pressing need for efficient computational approaches. Many existing computational methods rely on intricate hand-crafted features, requiring unavailable features, often leading to suboptimal prediction accuracy. Addressing these challenges, we introduce a novel deep-learning method, Trans-m5C. We first categorize m5C sites into NSUN2-dependent and NSUN6-dependent types for independent feature extraction. Subsequently, meticulously crafted transformer neural networks are employed to distill global features. The prediction of m5C sites is then accomplished using a discriminator built from a multi-layer perceptron. A rigorous evaluation for the performance of Trans-m5C on experimentally validated m5C data from human and mouse species reveals that our method offers a competitive edge over both baseline and existing methodologies.
Collapse
Affiliation(s)
- Haitao Fu
- School of Artificial Intelligence, Hubei University, Wuhan, 430062, China
| | - Zewen Ding
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH89XD, United Kingdom
| | - Wen Wang
- University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH164TJ, United Kingdom.
| |
Collapse
|
15
|
Zhang S, Dou T, Li H, Yu H, Zhang W, Sun L, Yang J, Wang Z, Yang H. Knockdown of IGF2BP2 overcomes cisplatin-resistance in lung cancer through downregulating Spon2 gene. Hereditas 2024; 161:55. [PMID: 39731162 DOI: 10.1186/s41065-024-00360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear. RESULTS In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted to identify the potential mRNAs regulated by IGF2BP2, an N6-methyladenosine (m6A) regulator, in the tumor tissues of mice. Compared to normal tissues, IGF2BP2 levels were increased in LC tissues and in relapsed/resistant LC tissues. Most importantly, IGF2BP2 levels were significantly higher in relapsed/resistant LC tissues than in LC tissues. Significantly, knockdown of IGF2BP2 or DDP treatment inhibited A549 cell viability, migration, and cell cycle progression. Consistently, DDP treatment suppressed the viability and migration and triggered cell cycle arrest in A549/DDP cells in vitro, as well as reduced tumor volume and weight of A549/DDP tumor-bearing mice; meanwhile, the combination of DDP and IGF2BP2 siRNA further significantly inhibited A549/DDP cell growth in vitro and in vivo compared to DDP treatment alone. Furthermore, MeRIP-seq data showed that IGF2BP2 downregulation remarkably elevated m6A levels of spondin 2 (Spon2) and reduced mRNA levels of Spon2 in tumor tissues from A549 tumor-bearing mice. Meanwhile, the combination of DDP and IGF2BP2 siRNA notably reduced Spon2 levels, as well as inhibited the viability and induced apoptosis in A549/DDP cells; however, these effects were reversed by Spon2 overexpression. CONCLUSION Collectively, downregulation of IGF2BP2 could overcome DDP resistance in LC through declining the Spon2 gene expression in an m6A-dependent manner. These results may provide a new strategy for overcoming DDP resistance in LC.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Department of Oncology, Xilingol League Central Hospital, Xilingol, 026000, China
| | - Ting Dou
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010020, China
| | - Hong Li
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Hongfang Yu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Wei Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Liping Sun
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Jingwen Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010000, China.
| |
Collapse
|
16
|
Liu J, Liu X, Zeng Y, Qiao D, Dai B, Wu Y, Wang M, Wang Q. RASGEF1C as a novel prognostic biomarker for LUAD. Discov Oncol 2024; 15:825. [PMID: 39714713 DOI: 10.1007/s12672-024-01718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a common histologic lung cancer with high morbidity and mortality, and most patients have distant metastases at diagnosis. RasGEF Domain Family Member 1C (RASGEF1C) could regulated Alzheimer's disease. However, its function in various cancers, including LUAD, is poorly understood. In the present study, we discovered that high expression of RASGEF1C in LUAD was associated with poorer prognosis, unfavorable histological features, and poorer pathological staging. In addition, RASGEF1C expression was an independent predictor of overall survival, disease specific survival, and progress free interval in patients with LUAD. High expression of RASGEF1C was linked to signaling pathways that are involved in the immune response and cell proliferation, according to KEGG enrichment analysis. Additionally, we verified that RASGEF1C was highly expressed in LUAD cell lines and that RASGEF1C knockdown dramatically decreased the capacity of LUAD cell lines to invade, migrate, and proliferate. Our research provides mechanistic insights into the function of RASGEF1C in the progression of LUAD and suggests that RASGEF1C is a prospective target for future therapy.
Collapse
Affiliation(s)
- Jinlong Liu
- Xinxiang Medical University, Xinxiang, Henan, China
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Xiaoying Liu
- Xinxiang Medical University, Xinxiang, Henan, China
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Yingou Zeng
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Di Qiao
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Bin Dai
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Yunlong Wu
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Meng Wang
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
17
|
Wang M, Qin Y, Ai X, Liu X. RBM15-dependent m6A modification mediates progression of non-small cell lung cancer cells. Mol Med 2024; 30:267. [PMID: 39716068 DOI: 10.1186/s10020-024-01018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer, contributing significantly to global health and economic challenges. This study elucidated the role of RBM15 in NSCLC progression through its involvement in m6A modifications. METHODS RBM15 levels in NSCLC tissues and cells were assessed via RT-qPCR and Western blotting. The impact of RBM15 knockdown on NSCLC proliferation, invasion, and migration was evaluated using CCK-8, colony formation, and Transwell assays. Expression levels of KLF1, TRIM13, and ANXA8 were determined by RT-qPCR and Western blot. m6A methylation levels were analyzed, while RIP and MeRIP assays were employed to explore the interaction between YTHDF1/YTHDF2/m6A and KLF1/TRIM13, as well as KLF1 binding to the ANXA8 promoter. The ubiquitination of ANXA8 was examined through ubiquitination assays. Xenograft and metastasis models were utilized to assess RBM15's role in vivo. RESULTS RBM15 was found to be overexpressed in NSCLC. Silencing RBM15 led to decreased cell proliferation, invasion, and migration of NSCLC cells. RBM15 upregulated KLF1 and downregulated TRIM13 via YTHDF1/YTHDF2, resulting in the promotion of ANXA8 expression. KLF1 overexpression or TRIM13 downregulation partially reversed the suppressive effects of RBM15 knockdown on NSCLC cell proliferation. ANXA8, upregulated in NSCLC, mitigated the inhibitory effects of RBM15 silencing on malignant behaviors. In vivo, RBM15 downregulation hindered NSCLC cell proliferation and metastasis by modulating the KLF1-TRIM13/ANXA8 axis. CONCLUSION RBM15-mediated m6A methylation enhances KLF1 expression and suppresses TRIM13 via YTHDF1/YTHDF2, thereby promoting ANXA8 and facilitating NSCLC progression. These findings provide novel insights and potential therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Man Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yujiao Qin
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaoqi Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiuhua Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
18
|
Huang C, Zhang X, Wu SX, Chang Q, Zheng ZK, Xu J. METTL3, m6A modification, and EGR1: interplay affecting myocardial I/R injury outcomes. Cell Biol Toxicol 2024; 41:7. [PMID: 39707117 PMCID: PMC11662061 DOI: 10.1007/s10565-024-09937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of severe myocardial ischemia/reperfusion (I/R) injury is associated with the clinical application of reestablishment technique for heart disease, and understanding its underlying mechanisms is currently an urgent issue. Prior investigations have demonstrated the potential enhancement of MIRI through EGR1 suppression, although the precise underlying regulatory pathways require further elucidation. The core focus of this investigation is to examine the molecular pathways through EGR1 regulates mitophagy-mediated myocardial cell pyroptosis and its impact on MIRI. Cardiomyocyte hypoxia/reoxygenation (H/R) injury models and mouse models of myocardial I/R injury were used to investigate the involvement of EGR1 in regulating mitophagy-mediated myocardial cell pyroptosis in myocardial I/R injury. The research outcomes demonstrated that under H/R conditions, EGR1 expression was upregulated and inhibited the JAK2/STAT3 pathway, leading to enhanced mitophagy and disrupted mitochondrial fusion/fission dynamics, ultimately resulting in myocardial cell pyroptosis. Further research revealed that the upregulation of EGR1 expression was mediated by methyltransferase like 3 (METTL3)-mediated m6A modification of EGR1 mRNA and depended on the binding of insulin like growth factor 2 mrna binding protein 2 (IGF2BP2) to the N6-methyladenosine (m6A) modification site to enhance mRNA stability. In vivo animal experiments confirmed that METTL3 upregulated EGR1 expression through IGF2BP2 and suppressed activation of the janus kinase 2 (JAK2) /signal transducer and activator of transcription 3 (STAT3) pathway, thereby inhibiting mitophagy, disrupting mitochondrial dynamics, promoting myocardial cell pyroptosis, and exacerbating I/R injury.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shi-Xiong Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Chang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhi-Kun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Jin Z, Yun L, Cheng P. Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell growth in ovarian cancer. Int J Biol Macromol 2024; 291:139072. [PMID: 39710022 DOI: 10.1016/j.ijbiomac.2024.139072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Salvia miltiorrhiza, the anticancer properties of these components are multifaceted, encompassing the inhibition of tumor growth, prevention of the metastatic spread of cancer cells, enhancement of the sensitivity of cancer cells to chemotherapy and radiation therapy, and the suppression of angiogenesis, which is crucial for tumor growth and survival. In the context of our recent study, we have discovered that tanshinone I, one of the active components of Salvia miltiorrhiza, possesses the ability to inhibit the proliferation of ovarian cancer cells, both in laboratory settings and within living organisms. To further understand the molecular mechanisms behind this effect, we conducted a comprehensive transcriptomic analysis. Our findings indicated that tanshinone I exerts its inhibitory action by downregulating the expression of genes associated with glycolysis. Specifically, tanshinone I decreased the expression of glycolysis-related genes such as HK2 (hexokinase 2), PFK (phosphofructokinase), ENO2 (enolase 2), and LDHA (lactate dehydrogenase A). Inhibiting lactate production by tanshinone I application reduced the level of histone H3 lysine 18 lactylation (H3K18la), which reduced the expression of tumor-associated genes, such as TTK, PDGFRβ, YTHDF2 and RUBCNL. In addition, tanshinone I alleviated the immunosuppressive tumor microenvironment. In summary, tanshinone I blocks glycolysis to regulate histone H3 lysine 18 lactylation (H3K18la), which inhibits ovarian cancer cell growth, revealing the anticancer mechanism of tanshinone I.
Collapse
Affiliation(s)
- Zhou Jin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Yun
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
20
|
Li X, Peng L, Yang X, Luo J, Wang J, Mou K, Zhou H, Luo Y, Xiang L. N6-methyladenosine RNA methylation, a new hallmark of metabolic reprogramming in the immune microenvironment. Front Immunol 2024; 15:1464042. [PMID: 39759516 PMCID: PMC11695279 DOI: 10.3389/fimmu.2024.1464042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways. Meanwhile, m6A modifications and related regulators are key targets in the regulation of immune effects. We further summarize how m6A modifications contribute to tumor metabolism, and how these events affect the tumor immune microenvironment, with a specific focus on different cell types. Finally, we focus on the specific applications of this field to tumor immunotherapy. We review the potential role of m6A in metabolic reprogramming of tumor immune microenvironment and its regulatory mechanism, with the aim of providing new targets for tumor metabolic regulation and immunotherapy.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuelian Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Wei L, Xie Y, Yu P, Zhu Q, Lan X, Xiao J. Bioinformatics analysis and validation of RNA methylation-related genes in osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2024; 739:150570. [PMID: 39181069 DOI: 10.1016/j.bbrc.2024.150570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The regulatory mechanisms of RNA methylation during the processes of osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) have yet to be fully understood. The objective of our study was to analyze and validate the contribution of RNA methylation regulators to the mechanisms underlying the osteogenic and adipogenic differentiation of rat BMSCs. METHODS We downloaded the GSE186026 from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened using the DESeq2 package in R software (version 3.6.3). A total of 50 RNA methylation genes obtained from literature review and summary were intersected with the previous DEGs to obtain RNA methylation genes, which have different expressions (RM-DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to reveal the functional enrichment. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate RM-DEGs. Protein-protein interaction network (PPI) analysis and visual analysis were performed using STRING and Cytoscape. RM-DEGs regulatory network was constructed to analyze the top 10 hub genes. The relationship between RM-DEGs, some enriched GO and pathways was also been analyzed. The miRNAs and RM-DEGs regulatory networks were established by using miRWalk and TargetScan. RESULTS As part of our research, we detected varying levels of expression for m6A regulators Mettl3 and Rbm15, as well as m7G regulators Mettl1 and Wdr4, in relation to osteogenic differentiation, along with m6A regulator Fmr1 in adipogenic differentiation. The protein-protein interaction (PPI) networks were constructed for 49 differentially expressed genes (DEGs) related to RNA methylation during the process of osteogenic differentiation, and 13 DEGs for adipogenic differentiation. Moreover, top10 hub genes were calculated. In osteogenic differentiation, Mettl3 regulated the Wnt pathway and Hippo pathway by regulating Smad3, Rbm15 regulated the Notch pathway by Notch1, Mettl1 regulated the PI3K-Akt pathway by Gnb4. In adipogenic differentiation, Fmr1 regulated the PI3K-Akt pathway by Egfr. M6A methylation sites of Smad3, Notch1 and Gnb4 were predicted, and the results showed that all three genes were possibly methylated by m6A, and more than 9 sites per gene were possibly methylated. Finally, we constructed the regulatory networks of Mettl3, Rbm15, Mettl1, and Wdr4 and 109 miRNAs in osteogenic differentiation, Fmr1 and 118 miRNAs in adipogenic differentiation. CONCLUSIONS Mettl3(m6A), Rbm15(m6A), Wdr4 and Mettl1(m7G) were differentially expressed in osteogenic differentiation, while Fmr1(m6A) was differentially expressed in adipogenic differentiation. These findings offered potential candidates for further research on the involvement of RNA methylation in the osteogenic and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Li Wei
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Peiyang Yu
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Zhu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
22
|
Xiao MZ, Fu JY, Bo LT, Li YD, Lin ZW, Chen ZS. ALKBH1: emerging biomarker and therapeutic target for cancer treatment. Discov Oncol 2024; 15:816. [PMID: 39704856 DOI: 10.1007/s12672-024-01696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
As neoplastic cells proliferate, disseminate, and infiltrate, they undergo substantial alterations in their epigenetic configuration. Among the pivotal enzymes implicated in this phenomenon is the AlkB family of demethylases, notably AlkB homolog 1 (ALKBH1), which demonstrates conspicuous upregulation across various malignancies. The heightened expression of ALKBH1 renders it a compelling candidate for the development of multifaceted anticancer modalities. Despite the commendable progress achieved by investigators in elucidating the perturbations associated with ALKBH1 in malignant tissues, a comprehensive mechanism remains elusive. The present study endeavors to address this lacuna by synthesizing recent advancements pertaining to ALKBH1's involvement in oncogenesis over the preceding decade. Therefore, this research not only furnishes novel insights but also establishes a foundation for prospective initiatives aimed at cancer prophylaxis and therapeutics that exploit epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- Ming Zhu Xiao
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jin Yin Fu
- Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Le Tao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Yi Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Zhong Wei Lin
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhe Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
23
|
Yang Q, Xiao J, Liu Y, Yang Z, Wang C, Sun J, Wang H, Liu H, Wang X, Ma L, Huang X, Cao Z. METTL3-mediated m6A modifications of NLRP3 accelerate alveolar bone resorption through enhancing macrophage pyroptosis. Cell Signal 2024; 127:111572. [PMID: 39708895 DOI: 10.1016/j.cellsig.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis (PD) is twice as prevalent in diabetics compared to nondiabetics, and diabetes-associated PD is characterized by increased inflammation and aggravated tissue damage. Pyroptosis has recently been implicated in diabetes-associated PD; however, the underlying mechanisms remain largely unknown, resulting in a lack of effective treatments. In this study, we investigated the role of methyltransferase-like 3 (METTL3) in macrophage pyroptosis and found that it inhibits the osteogenic differentiation of osteoblasts via pyroptotic macrophages in a diabetes-associated periodontitis mouse model. Further analysis and validation revealed that nod-like receptor family pyrin domain-containing 3 (NLRP3) is a target of METTL3, with its mRNA stability regulated through a binding of insulin-like growth factor 2 binding protein 3 (IGF2BP3)-dependent pathway. Additionally, local injection of adeno-associated virus 9 (AAV9) demonstrated that METTL3 deficiency in macrophages significantly ameliorates periodontal inflammation and alveolar bone loss in diabetes-associated PD mice. Collectively, our findings indicate that METTL3-mediated modulation of NLRP3 expression is a crucial factor in macrophage pyroptosis during diabetes-associated PD progression. This suggests that the METTL3/IGF2BP3/NLRP3 axis is a novel and promising target for the improvement of periodental inflammation and alveolar bone loss in diabetes-associated PD.
Collapse
Affiliation(s)
- Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yuqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Jiahui Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Benak D, Sevcikova A, Holzerova K, Hlavackova M. FTO in health and disease. Front Cell Dev Biol 2024; 12:1500394. [PMID: 39744011 PMCID: PMC11688314 DOI: 10.3389/fcell.2024.1500394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
Collapse
Affiliation(s)
| | | | | | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
25
|
Tang W, Kong X, He S, Deng J, Mao M, Peng S, Song C. WTAP Regulates SOX1 Expression to Affect the Tumorigenicity of Colorectal Cancer via an m 6A-YTHDF2-Dependent Manner. Dig Dis Sci 2024:10.1007/s10620-024-08780-4. [PMID: 39681745 DOI: 10.1007/s10620-024-08780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Wilms tumor 1-associated protein (WTAP) plays a critical role in various cancers, including colorectal cancer (CRC). However, the biological function and molecular mechanisms of WTAP in CRC remain to be elucidated. METHODS We determined the expression of WTAP and its correlation with unfavorable prognosis of CRC using RNA-seq and the UALCAN dataset. And we investigated the effects of WTAP on CRC cells using cell proliferation assay, colony formation, cell migration and invasion, and subcutaneous xenograft experiments. We then knockdown of WTAP to identify candidate targets of WTAP. Moreover, the mRNA stability of SRY-box transcription factor 1 (SOX1) was assessed by overexpressing YTHDF2. Finally, we investigated the regulatory mechanism of WTAP in CRC by MeRIP assay, RNA pulldown, dual-luciferase reporter assay, and RIP assay. RESULTS We demonstrated that CRC patients with a high expression of WTAP have a risk prognosis. Additionally, WTAP expression can serve as a predictor of survival in CRC. WTAP promoted the proliferation and tumor growth of CRC cells. Moreover, WTAP has been recognized as the upstream regulator of SOX1. WTAP regulated the m6A modification, resulting in the post-transcriptional inhibition of SOX1. YTHDF2 plays a role in promoting mRNA degradation. Then, SOX1 can hinder the progression of CRC. Furthermore, WTAP can regulate the proliferation, migration, and invasion of CRC cells by SOX1 via an m6A-YTHDF2-dependent manner. CONCLUSION Our findings demonstrate that WTAP-mediated m6A modification facilitated the progression of CRC through the YTHDF2-SOX1 axis and could serve as a potential therapeutic targeting for CRC.
Collapse
Affiliation(s)
- Wei Tang
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China
| | - Xian Kong
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China
| | - Shoushu He
- Department of Oncology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China
| | - Jing Deng
- Centre for Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha City, Hunan Province, China
| | - Min Mao
- Centre for Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha City, Hunan Province, China
| | - Siyuan Peng
- Centre for Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha City, Hunan Province, China
| | - Cheng Song
- Centre for Integrated Traditional Chinese and Western Medicine, Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha City, Hunan Province, China.
| |
Collapse
|
26
|
Yu H, Dou S, Wang H, Sun Y, Qu J, Liu T, Liu X, Wei C, Gao H. Role of m 6A methyltransferase METTL3 in keratoconus pathogenesis. Exp Eye Res 2024; 251:110207. [PMID: 39681235 DOI: 10.1016/j.exer.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Keratoconus (KC) is the most common ectatic corneal disease with unknown pathogenesis. This study aimed to investigate the role of methyltransferase-like enzyme 3 (METTL3) in KC pathogenesis. In the present study, we examined the levels of METTL3 and other N6-methyladenosine (m6A) modification-related proteins in KC samples and human stromal keratocyte (HTK) cells stimulated by mechanical stretch (MS) using Western blotting and immunohistochemistry. The level of m6A RNA methylation was quantified using the m6A RNA methylation assay kit. Genetic (Mettl3 knockdown mice) and pharmacological (STM2457) approaches were employed to investigate the effect of METTL3 on the expression of metalloproteinases (MMPs) in MS-treated corneal stromal cells (CSCs) via Western blotting and real-time polymerase chain reaction. Moreover, YAP signaling activity was assessed to explore the relationship between METTL3 and MMPs in MS-treated CSCs. Increased expression of METTL3 and decreased expression of METTL14, WTAP, and YTHDF2 were detected in KC samples and MS-stimulated HTK cells. Correspondingly, the m6A levels in KC specimens and MS-stimulated CSCs were significantly higher than those in controls but were significantly reduced when METTL3 activity was genetically and pharmacologically blocked. Inhibition of METTL3 significantly reduced the expression of MMP1 and MMP3 in mechanically stretched CSCs and reduced YAP activity. Furthermore, pharmacologically inhibiting YAP signaling in MS-stimulated HTK cells significantly reduced MMP1 and MMP3 expression. Our findings highlight the pathogenic role of METTL3 in KC. Further investigation is required to investigate the underlying mechanism.
Collapse
Affiliation(s)
- Huimin Yu
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Huijin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Yaru Sun
- Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Junpeng Qu
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China; Eye Hospital of Shandong First Medical University, Eye Institute of Shandong First Medical University, Jinan, 250021, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, 250000, Shandong, China; School of Public Health, Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
27
|
Wu Y, Lin S, Chen H, Zheng X. Cross-regulation of RNA methylation modifications and R-loops: from molecular mechanisms to clinical implications. Cell Mol Life Sci 2024; 82:1. [PMID: 39656315 PMCID: PMC11631829 DOI: 10.1007/s00018-024-05536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
R-loops, RNA-DNA hybrid structures, are integral to key cellular processes such as transcriptional regulation, DNA replication, and repair. However, aberrant accumulation of R-loops can compromise genomic integrity, leading to the development of various diseases. Emerging evidence underscores the pivotal role of RNA methylation modifications, particularly N6-methyladenosine (m6A) and 5-methylcytosine (m5C), in orchestrating the formation, resolution, and stabilization of R-loops. These modifications dynamically regulate R-loop metabolism, exerting bidirectional control by either facilitating or resolving R-loop structures during gene expression regulation and DNA damage repair. Dysregulation of RNA methylation and the resultant imbalance in R-loop homeostasis are closely linked to the pathogenesis of diseases such as cancer and neurodegenerative disorders. Thus, deciphering the cross-talk between RNA methylation and R-loops is essential for understanding the mechanisms underlying genomic stability and identifying novel therapeutic targets. This review provides a comprehensive analysis of the role of RNA methylation in R-loop dynamics, examines their physiological and pathological implications, and proposes future directions for therapeutic intervention targeting these processes.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shen Lin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Urology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, 322000, Yiwu, People's Republic of China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Xia R, Yin X, Huang J, Chen K, Ma J, Wei Z, Su J, Blake N, Rigden DJ, Meng J, Song B. Interpretable deep cross networks unveiled common signatures of dysregulated epitranscriptomes across 12 cancer types. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102376. [PMID: 39618823 PMCID: PMC11605186 DOI: 10.1016/j.omtn.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 01/12/2025]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by uncontrolled cell growth that leads to the formation of malignant tumors. Recent studies suggest that N6-methyladenosine (m6A) RNA methylation plays pivotal roles in cancer pathology by influencing various cellular processes. However, the degree to which these mechanisms are shared across different cancer types remains unclear. In this study, we analyze an expansive array of 167 m6A epitranscriptome profiles covering 12 distinct cancer types and their originating normal tissues. We trained 12 distinct, cancer type-specific interpretable deep cross network models, which successfully distinguish between specific pairs of normal and cancer m6A contexts using integrated information from both the sequences and curated genomic knowledge. Interestingly, cross-cancer type testing indicated the existence of shared genomic patterns across various cancers at the epitranscriptome level. A pan-cancer model was subsequently developed to identify these shared patterns that could not be observed in a single cancer type. Our analysis uncovered, for the first time, a common epitranscriptome signature shared across multiple cancer types, particularly associated with RNA hybridization process and aberrant splicing. This highlights the importance of a comprehensive understanding of the pan-cancer epitranscriptome and holding potential implications in the development of RNA methylation-based therapeutics for various cancers.
Collapse
Affiliation(s)
- Rong Xia
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xiangyu Yin
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jiaming Huang
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Jiongming Ma
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhen Wei
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, L7 8TX Liverpool, UK
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Neil Blake
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Daniel J. Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Jia Meng
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Department of Biological Sciences, School of Science, Suzhou Key Laboratory of Cancer Biology and Chronic Disease, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L7 8TX Liverpool, UK
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
29
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2024:S1525-0016(24)00802-5. [PMID: 39659016 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
30
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
31
|
Tang D, Cao C, Li W, Wang A. FTO-mediated demethylation of MTUS1/ATIP1 promotes tumor progression in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:1489. [PMID: 39627705 PMCID: PMC11613461 DOI: 10.1186/s12885-024-13253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) has been recognized as the seventh most prevalent malignant tumor globally. It is a malignant neoplasm that arises from the mucosal epithelium of head and neck region. In our previous research, we have demonstrated that MTUS1/ATIP1 exhibits anti-cancer properties in HNSCC. Nevertheless, the underlying mechanism responsible for the reduction of MTUS1/ATIP1 expression has not been investigated. METHODS HNSCC and adjacent normal tissues were collected and examined using m6A MeRIP-seq, qRT-PCR, and IHC to investigate the relationship between MTUS1/ATIP1 and FTO. MeRIP-qPCR, m6A dot blot, RNA and protein stability assays, and RNC-qRT-PCR were employed to elucidate the mechanism by which FTO mediates demethylation of MTUS1/ATIP1 in HNSCC. Functional assays, subcutaneous tumorigenesis, and in situ tongue cancer models were conducted to assess the impact of the FTO-MTUS1/ATIP1 pathway on proliferative capacity of HNSCC tumors. RESULTS FTO was observed to be markedly upregulated and showed a negative correlation with MTUS1/ATIP1 expression in HNSCC. FTO was responsible for mediating m6A demethylation in the 3'UTR of MTUS1/ATIP1, leading to its degradation. Additionally, silencing MTUS1/ATIP1 successfully reversed the tumor-promoting effects on HNSCC triggered by FTO in in vitro and in vivo. CONCLUSIONS Our research elucidated the functional importance of FTO-mediated m6A demethylation of MTUS1/ATIP1, suggesting that targeting the FTO-MTUS1/ATIP1 axis could be a prospective novel approach for treating HNSCC.
Collapse
Affiliation(s)
- Dongxiao Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
32
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
33
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
34
|
Xu Q, Yang C, Wang L, Zhou J. Unveiling the role of RNA methylation in glioma: Mechanisms, prognostic biomarkers, and therapeutic targets. Cell Signal 2024; 124:111380. [PMID: 39236835 DOI: 10.1016/j.cellsig.2024.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Gliomas, the most prevalent malignant brain tumors in the central nervous system, are marked by rapid growth, high recurrence rates, and poor prognosis. Glioblastoma (GBM) stands out as the most aggressive subtype, characterized by significant heterogeneity. The etiology of gliomas remains elusive. RNA modifications, particularly reversible methylation, play a crucial role in regulating transcription and translation throughout the RNA lifecycle. Increasing evidence highlights the prevalence of RNA methylation in primary central nervous system malignancies, underscoring its pivotal role in glioma pathogenesis. This review focuses on recent findings regarding changes in RNA methylation expression and their effects on glioma development and progression, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G). Given the extensive roles of RNA methylation in gliomas, the potential of RNA methylation-related regulators as prognostic markers and therapeutic targets was also explored, aiming to enhance clinical management and improve patient outcomes.
Collapse
Affiliation(s)
- Qichen Xu
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Zhejiang, China.
| |
Collapse
|
35
|
Zhu Y, Yang B, Chen S, Chen G, Zeng X, Min H, Xu L. M6A RNA Methylation-Mediated TUG1 Stability Maintains Mitochondrial Homeostasis during Kidney Aging by Epigenetically Regulating PGC1-α Expression. Antioxid Redox Signal 2024; 41:993-1013. [PMID: 39135383 DOI: 10.1089/ars.2024.0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Background: Aging is a significant risk factor for the increased incidence of acute kidney injury and chronic kidney disease, posing significant challenges to global public health. The role of N6-methyladenosine (m6A) in the development of chronic kidney disease has been reported, but the regulatory mechanism of m6A in kidney aging remains unclear. Results: In this study, we identified a long noncoding RNA (lncRNA), called taurine up-regulated 1 (TUG1), which exhibited a significantly decreased level of m6A modification in human aged kidney through the m6A-lncRNA epitranscriptome microarray. Bioinformatics analysis and machine learning predicted that TUG1 had potentially strong interaction with PGC1-α. RNA immunoprecipitation and chromatin immunoprecipitation analysis showed that TUG1 promoted proliferator-activated receptor γ coactivator-1α (PGC1-α) expression by directly interacting with its TUG-1 binding element region, thereby impacting mitochondrial quality control (MQC), cellular senescence, and renal fibrosis. Silencing the RNA m6A methylase methyltransferase 14 (METTL14) or the reader protein insulin-like growth factor 2 mRNA-binding proteins (IGF2BP2) resulted in the weakened stability of lncRNA TUG1, contributing to an imbalance in MQC. Conclusion: Our study demonstrated that the m6A modification and stability of TUG1 were mediated by METTL14 in an IGF2BP2-dependent manner, and modulate the mitochondrial homeostasis in kidney aging by direct targeting PGC-1α. These findings provide a new perspective on potential therapeutic targets for kidney aging. Antioxid. Redox Signal. 41, 993-1013.
Collapse
Affiliation(s)
- Yonghong Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bowen Yang
- Department of Medical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Suyun Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guanqing Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaobian Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
36
|
Wu H, Huang Q, Xu T, Zhang J, Zeng J, Wang Q, Zhang Y, Yu Z. LncRNA OIP5-AS1 Upregulates the Cyclin D2 Levels to Promote Metastasis of Breast Cancer by Targeting miR-150-5p. Appl Biochem Biotechnol 2024; 196:8627-8644. [PMID: 38888699 DOI: 10.1007/s12010-024-04992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE Breast cancer (BC) is a cancer that seriously affects women's health. BC cell migration increases the mortality of BC patients. Current studies have shown that long noncoding RNAs (LncRNAs) are related to the metastasis mechanism of BC. This study aimed to explore the function and role of LncRNA OIP5-AS1 in BC. And we analyzed its regulatory mechanism and related modification process. METHODS Our study analyzed the expression pattern of OIP5-AS1 in BC tissues and cell lines by qRT-PCR. The effects of OIP5-AS1 on the function of BC cells were detected by CCK-8 and transwell experiments. Bioinformatics analysis and double luciferase reporter gene detection were used to confirm the correlation between OIP5-AS1 and miR-150-5p and between miR-150-5p and Cyclin D2 (CCND2). The rescue test analyzed the effect of miR-150-5p regulating OIP5-AS1. In addition, the N6-methyladenosine (m6A) modification process of OIP5-AS1 was analyzed by RNA m6A dot blot, RIP assay, and double luciferase report experiment. RESULTS OIP5-AS1 was significantly upregulated in BC tissues and cell lines. OIP5-AS1 knockdown inhibited BC cell viability, migration and invasion. OIP5-AS1 upregulated CCND2 by binding with miR-150-5p. This process affected the metastasis of BC. Higher degree of m6A methylation was confirmed in BC cell lines. There were some binding sites between methyltransferase like 3 (METTL3) and OIP5-AS1. Moreover, the silencing of METTL3 inhibited the OIP5-AS1 expression through decreasing the m6A methylation levels. CONCLUSIONS LncRNA OIP5-AS1 promoted cell viability and metastasis of BC cells by targeting miR-150-5p/CCND2 axis. This process was modified by m6A methylation of METTL3.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Tai Xu
- Department of Breast Surgery, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Jinfeng Zhang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Juanzi Zeng
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Qiuming Wang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Yunuo Zhang
- Department of Medical Oncology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, No. 63 Huangtang Road, Meijiang District, Meizhou, People's Republic of China.
| |
Collapse
|
37
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. DKK3 promotes renal fibrosis by increasing MFF-mediated mitochondrial dysfunction in Wnt/β-catenin pathway-dependent manner. Ren Fail 2024; 46:2343817. [PMID: 38682264 PMCID: PMC11060011 DOI: 10.1080/0886022x.2024.2343817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) lacks effective treatments and renal fibrosis (RF) is one of CKD's outcomes. Dickkopf 3 (DKK3) has been identified as an agonist in CKD. However, the underlying mechanisms of DKK3 in CKD are not fully understood. METHODS H2O2-treated HK-2 cells and ureteric obstruction (UUO) mice were used as RF models. Biomarkers, Masson staining, PAS staining, and TUNEL were used to assess kidney function and apoptosis. Oxidative stress and mitochondria function were also evaluated. CCK-8 and flow cytometry were utilized to assess cell viability and apoptosis. Western blotting, IHC, and qRT-PCR were performed to detect molecular expression levels. Immunofluorescence was applied to determine the subcellular localization. Dual luciferase assay, MeRIP, RIP, and ChIP were used to validate the m6A level and the molecule interaction. RESULTS DKK3 was upregulated in UUO mouse kidney tissue and H2O2-treated HK-2 cells. Knockdown of DKK3 inhibited oxidative stress, maintained mitochondrial homeostasis, and alleviated kidney damage and RF in UUO mice. Furthermore, DKK3 silencing suppressed HK-2 cell apoptosis, oxidative stress, and mitochondria fission. Mechanistically, DKK3 upregulation was related to the high m6A level regulated by METTL3. DKK3 activated TCF4/β-catenin and enhanced MFF transcriptional expression by binding to its promoter. Overexpression of MFF reversed in the inhibitory effect of DKK3 knockdown on cell damage. CONCLUSION Upregulation of DKK3 caused by m6A modification activated the Wnt/β-catenin pathway to increase MFF transcriptional expression, leading to mitochondrial dysfunction and oxidative stress, thereby promoting RF progression.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
38
|
Bai J, Wang Z, Yang M, Xiang J, Liu Z. Disrupting CENP-N mediated SEPT9 methylation as a strategy to inhibit aerobic glycolysis and liver metastasis in colorectal cancer. Clin Exp Metastasis 2024; 41:971-988. [PMID: 39424682 DOI: 10.1007/s10585-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with a high mortality rate, primarily due to liver metastasis. This study explores the role of centromere protein N (CENP-N) in mediating the methylation of septin 9 (SEPT9) and its subsequent effects on aerobic glycolysis and liver metastasis in CRC. We employed in vitro and in vivo experiments, including single-cell RNA sequencing, methylation-specific PCR (MSP), ChIP assays, and various functional assays to assess the impact of CENP-N and SEPT9 on CRC cell proliferation, migration, invasion, and metabolic reprogramming. Our data reveal that CENP-N directly interacts with SEPT9, enhancing its methylation at specific lysine residues. This modification significantly upregulates key glycolytic enzymes, thereby promoting aerobic glycolysis, CRC cell proliferation, and migration. In vivo studies further demonstrate that the CENP-N/SEPT9 axis facilitates liver metastasis of CRC, as confirmed by fluorescence imaging and histological analysis. This study identifies a novel pathway where CENP-N-mediated methylation of SEPT9 drives metabolic reprogramming and metastasis in CRC. These findings suggest potential therapeutic targets for inhibiting CRC progression and liver metastasis, offering new insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Junge Bai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Zhexue Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jun Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
39
|
Gao C, Chen L, Xie XY, He XF, Shen J, Zheng L. Bone marrow mesenchymal stem cells-derived exosomal miR-381 alleviates lung ischemia-reperfusion injury by activating Treg differentiation through inhibiting YTHDF1 expression. Cell Signal 2024; 124:111440. [PMID: 39357613 DOI: 10.1016/j.cellsig.2024.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
AIM Our study aimed to investigate whether BMSCs-derived exosomal miR-381 promotes Treg cell differentiation in lung ischemia-reperfusion injury (LIRI), and the underlying mechanism. METHODS The in vitro and in vivo models of LIRI were established by hypoxia/reoxygenation (H/R) treatment and lung ischemia/reperfusion (I/R) surgery, respectively. BMSCs-derived exosomes were isolated and identified by western blot, nanoparticle tracking analysis, and transmission electron microscopy. Cell viability, proliferation, and apoptosis were assessed by CCK-8, EdU, and flow cytometry assay, respectively. IL-18 secretion level in lung microvascular endothelial cells (LMECs) and lung tissue homogenate was examined by ELISA. Treg cell differentiation was determined using flow cytometry. The relationships between miR-381, YTHDF1, and IL-18 were investigated using dual-luciferase reporter gene, RIP, and/or RNA pull-down assays. MeRIP assay was employed to determine m6A modification of IL-18 mRNA in LMECs. The ubiquitination level of Foxp3 protein in CD4+ T cells was analyzed by Co-IP assay. RESULTS BMSCs-derived exosomes reduced LMECs injury and increased Treg cell differentiation in LIRI, whereas miR-381 inhibition in BMSCs weakened these impacts. Mechanistically, miR-381 inhibited IL-18 translation in LMECs by inhibiting YTHDF1 expression via binding to its 3'-UTR. As expected, YTHDF1 overexpression in LMECs abolished the effects of miR-381-overexpressed exosomes on LMECs injury and Treg cell differentiation. Moreover, LMECs-secreted IL-18 inhibited Treg cell differentiation by promoting the ubiquitination degradation of Foxp3 protein. CONCLUSION BMSCs-derived exosomal miR-381 suppressed IL-18 translation in LMECs through binding to YTHDF1 3'-UTR, thus suppressing the ubiquitination degradation of Foxp3 in CD4+ T cells, which promoted Treg cell differentiation and mitigated LIRI development.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Lei Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xiang-Yu Xie
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Xiao-Feng He
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Jiang Shen
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China.
| |
Collapse
|
40
|
Cai M, Li X, Luan X, Zhao P, Sun Q. Exploring m6A methylation in skin Cancer: Insights into molecular mechanisms and treatment. Cell Signal 2024; 124:111420. [PMID: 39304098 DOI: 10.1016/j.cellsig.2024.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
N6-methyladenosine (m6A) is the most common and prevalent internal mRNA modification in eukaryotes. m6A modification is a dynamic and reversible process regulated by methyltransferases, demethylases, and m6A binding proteins. Skin cancers, including melanoma and nonmelanoma skin cancers (NMSCs), are among the most commonly diagnosed cancers worldwide. m6A methylation is involved in the regulation of RNA splicing, translation, degradation, stability, translocation, export, and folding. Aberrant m6A modification participates in the pathophysiological processes of skin cancers and is associated with tumor cell proliferation, invasion, migration, and metastasis during cancer progression. In this review, we provide a comprehensive summary of the biological functions of m6A and the most up-to-date evidence related to m6A RNA modification in skin cancer. We also emphasize the potential clinical applications in the diagnosis and treatment of skin cancers.
Collapse
Affiliation(s)
- Mingjun Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueyu Luan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Pengyuan Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
41
|
Yari AH, Aghbash PS, Bayat M, Lahouti S, Jalilzadeh N, Zadeh LN, Yari AM, Tabrizi-Nezhadi P, Nahand JS, MotieGhader H, Baghi HB. Novel bioinformatic approaches show the role of driver genes in the progression of cervical cancer: An in-silico study. Heliyon 2024; 10:e40179. [PMID: 39634417 PMCID: PMC11616557 DOI: 10.1016/j.heliyon.2024.e40179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background The goal of this bioinformatics research is to get a comprehensive understanding of the driver genes and their function in the development, progression, and treatment of cervical cancer. This study constitutes a pioneering attempt, adding to our knowledge of genetic diversity and its ramifications. Material and methods In this project, we use bioinformatics and systems biology methods to identify candidate transcription factors and the genes they regulate in order to identify microRNAs and LncRNAs that regulate these transcription factors and lead to the discovery of new medicines for the treatment of cervical cancer. From the differentially expressed genes available via GEO's GSE63514 accession, we use driver genes to choose these candidates. We then used the WGCNA tool in R to rebuild the co-expression network and its modules. The hub genes of each module were determined using CytoHubba, a Cystoscope plugin. The biomarker potential of hub genes was analyzed using the UCSC Xena browser and the GraphPad prism program. The TRRUST database is used to locate the TFs that regulate the expression of these genes. In order to learn how drugs, MicroRNAs, and LncRNAs interact with transcription factors, we consulted the Drug Target Information Database (DGIDB), the miRWalk database, and the LncHub database. Finally, the online database Enrichr is utilized to analyze the enrichment of Gene Ontology and KEGG pathways. Results By combining the mRNA expression levels of 2041 driver genes from 14 early-stage Cervical cancer and 24 control samples, a co-expression network was built. The cluster analysis shows that the collection of shared genes may be broken down into seven distinct groups, or "modules." According to the average linkage hierarchical clustering and Summary smaller than 2, we found five modules (represented by the colors blue, brown, red, green, and grey) in our research. Then, we identify 5 high-degree genes from these modules that may serve as diagnostic biomarkers (ZBBX, PLCH1, TTC7B, DNAH7, and ZMYND10). In addition, we identify four transcription factors (SRF, RELA, NFKB1, and SP1) that regulate the expression of genes in the co-expression module. Drugs, microRNAs, and long noncoding RNAs are then shown to cooperate with transcription factors. At last, the KEGG database's pathways were mined for information on how the co-expression module fits within them. More clinical trials are required for more trustworthy outcomes, and we collected this data using bioinformatics methods. Conclusion The major goal of this research was to identify diagnostic and therapeutic targets for cervical cancer by learning more about the involvement of driver genes in cancer's earliest stages.
Collapse
Affiliation(s)
- Amir Hossein Yari
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Lahouti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nariman Zadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammad Yari
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Software Engineering, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Shen J, Zhang Q, Lan Y, Peng Q, Ji Z, Wu Y, Liu H. Identification and Characterisation of Potential Targets for N6-methyladenosine (m6A) Modification during Intervertebral Disc Degeneration. FRONT BIOSCI-LANDMRK 2024; 29:405. [PMID: 39735982 DOI: 10.31083/j.fbl2912405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD). METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression. Bioinformatics was used to identify enriched gene pathways in IDD. m6A-RIP-qPCR was used to validate potential targets and markers. RESULTS AND CONCLUSION Human IDD samples exhibited a distinct m6A modification pattern that allowed associated genes and pathways to be identified. These genes had functions such as "nuclear factor kappa-B (NF-κB) binding" and "extracellular matrix components", which are crucial for IDD pathogenesis. ANXA2 showed increased m6A modification in IDD, while SLC3A2 and PBX3 showed decreased m6A methylation. The results of this study offer novel insights for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
- Central Laboratory, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
| | - Qiang Zhang
- Central Laboratory, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Ziyu Ji
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yanjiao Wu
- Department of Orthopaedics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 528308 Foshan, Guangdong, China
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
43
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2024:10.1007/s12035-024-04624-4. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
44
|
Li H, Li Y, Zheng X, Chen F, Zhang S, Xu S, Mu Y, Shen W, Tong J, Chen H, Hu Z, Zhang J, Qiu K, Chen W, Cheng X, Xu G. RBM15 facilitates osimertinib resistance of lung adenocarcinoma through m6A-dependent epigenetic silencing of SPOCK1. Oncogene 2024:10.1038/s41388-024-03220-z. [PMID: 39528815 DOI: 10.1038/s41388-024-03220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Lung cancer is the leading cause of cancer-related mortality globally. N6-methyladenosine (m6A) is the most abundant modification in mammalian mRNA and is involved in the biological regulation of tumors, including lung cancer. However, the role of m6A-related proteins, such as RNA-binding motif protein 15 (RBM15), in lung cancer progression remains largely unknown. Our study indicated that RBM15 is significantly overexpressed in lung adenocarcinoma, serving as an independent prognostic factor for poor outcomes and facilitating tumor cell proliferation and migration. RBM15 was markedly elevated in patients with EGFR mutations, correlating with a poorer prognosis, while it had negligible prognostic value in EGFR wild-type patients. As EGFR-tyrosine kinase inhibitors (TKIs) are the standard treatment for patients with EGFR mutations, we subsequently determined that RBM15 drives osimertinib resistance via a novel mechanism: enhancing m6A modification of cwcv- and kazal-like domains proteoglycan 1 (SPOCK1) mRNA, promoting epithelial-mesenchymal transition-mediated osimertinib resistance through a bypass activation pathway. These findings were validated in osimertinib-resistant H1975 cells and organoids from patients with osimertinib-resistant lung adenocarcinoma. Furthermore, the RBM15-SPOCK1 axis was activated in drug-tolerant persister cells, indicating that early targeting of RBM15 during EGFR-TKI treatment could dramatically extend the patient response and benefit from TKI therapy. Our results emphasize the critical role of RBM15 in reversing EGFR-TKI resistance and propose it as a promising therapeutic target for prolonging TKI treatment benefits in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Hongxiang Li
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fangqian Chen
- Department of Gastrointestinal Surgery, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuguang Xu
- Department of Respiratory, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yinyu Mu
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wei Shen
- Department of Pulmonary and Critical Care Medicine, The Third People's Hospital of Cixi, Ningbo, Zhejiang, China
| | - Jingtao Tong
- Department of Respiratory, The Lihuili Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Hang Chen
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zeyang Hu
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaheng Zhang
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Keyue Qiu
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory for Accurate Diagnosis and Treatment of Abdominal Infection in Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinghua Cheng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guodong Xu
- Department of Thoracic Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
45
|
Sun Y, Sun Y, He X, Li S, Xu X, Feng Y, Yang J, Xie R, Sun G. Transcriptome-wide methylated RNA immunoprecipitation sequencing profiling reveals m6A modification involved in response to heat stress in Apostichopus japonicus. BMC Genomics 2024; 25:1071. [PMID: 39528936 PMCID: PMC11556200 DOI: 10.1186/s12864-024-10972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism. RESULTS In this study, m6A-modified whole transcriptome profiles of the respiratory tree tissues of A. japonicus in the control (T18) and high-temperature stress (T32) groups were obtained using MeRIP-seq technology. The results showed that 7,211 common m6A peaks, and 9,459 genes containing common m6A were identified in three replicates T18 and T32 groups. The m6A peaks were found to be highly enriched in the 3' untranslated region, and the common sequence of the m6A peak was also enriched, which was shown as RRACH (R = G or A; H = A, C, or U). A total of 1,200 peaks were identified as significantly differentially enriched in the T32 group compared with the T18 group. Among them, 245 peaks were upregulated and 955 were downregulated, which indicated that high temperature stress significantly altered the methylation pattern of m6A, and there were more demethylation sites in the T32 group. Conjoint analysis of the m6A methylation modification and the transcript expression level (the MeRIP-seq and RNA-seq data) showed co-differentiated 395 genes were identified, which were subsequently divided into four groups with a predominant pattern that more genes with decreased m6A modification and up-regulated expression, including HSP70IV, EIF2AK1, etc. GO enrichment and KEGG analyses of differential m6A peak related genes and co-differentiated genes showed the genes were significantly associated with transcription process and pathways such as protein processing in the endoplasmic reticulum, Wnt signaling pathway, and mTOR signaling pathway, etc. CONCLUSION: The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification was involved in the regulation of heat stress-responsive genes and important functional pathways in A. japonicus in response to high-temperature stress. The study will contribute to elucidate the regulatory mechanism of m6A modification in the response of A. japonicus to environmental stress, as well as the conservation and utilization of sea cucumber resources in the context of environmental changes.
Collapse
Affiliation(s)
- Yanan Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Youmei Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohua He
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Siyi Li
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Rubiao Xie
- Shandong Huachun Fishery Co., Ltd, Dongying, 257093, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
46
|
Jiang N, Li Y, Yin L, Yuan S, Wang F. The Intricate Functional Networks of Pre-mRNA Alternative Splicing in Mammalian Spermatogenesis. Int J Mol Sci 2024; 25:12074. [PMID: 39596142 PMCID: PMC11594017 DOI: 10.3390/ijms252212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Spermatogenesis is a highly coordinated process that requires the precise expression of specific subsets of genes in different types of germ cells, controlled both temporally and spatially. Among these genes, those that can exert an indispensable influence in spermatogenesis via participating in alternative splicing make up the overwhelming majority. mRNA alternative-splicing (AS) events can generate various isoforms with distinct functions from a single DNA sequence, based on specific AS codes. In addition to enhancing the finite diversity of the genome, AS can also regulate the transcription and translation of certain genes by directly binding to their cis-elements or by recruiting trans-elements that interact with consensus motifs. The testis, being one of the most complex tissue transcriptomes, undergoes unparalleled transcriptional and translational activity, supporting the dramatic and dynamic transitions that occur during spermatogenesis. Consequently, AS plays a vital role in producing an extensive array of transcripts and coordinating significant changes throughout this process. In this review, we summarize the intricate functional network of alternative splicing in spermatogenesis based on the integration of current research findings.
Collapse
Affiliation(s)
| | | | | | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (N.J.); (Y.L.); (L.Y.)
| |
Collapse
|
47
|
Chang KJ, Shiau LY, Lin SC, Cheong HP, Wang CY, Ma C, Liang YW, Yang YP, Ko PS, Hsu CH, Chiou SH. N 6-methyladenosine and its epitranscriptomic effects on hematopoietic stem cell regulation and leukemogenesis. Mol Med 2024; 30:196. [PMID: 39497033 PMCID: PMC11536562 DOI: 10.1186/s10020-024-00965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
N6-methyladenosine (m6A) RNA modification orchestrates cellular epitranscriptome through tuning the homeostasis of transcript stability, translation efficiency, and the transcript affinity toward RNA-binding proteins (RBPs). An aberrant m6A deposition on RNA can lead toward oncogenic expression profile (mRNA), impaired mitochondrial metabolism (mtRNA), and translational suppression (rRNA) of tumor suppressor genes. In addition, non-coding RNAs (ncRNAs), such as X-inactive specific transcript (XIST), miRNAs, and α-ketoglutarate-centric metabolic transcripts are also regulated by the m6A epitranscriptome. Notably, recent studies had uncovered a myriad of m6A-modified transcripts the center of hematopoietic stem cell (HSC) regulation, in which m6A modification act as a context dependent switch to the on and off of hematopoietic stem cell (HSC) maintenance, lineage commitment and terminal differentiation. In this review, we sequentially unfold the m6A mediated epithelial-to-hematopoietic transition in progenitor blood cell production, lymphocytic lineage expansion (T cells, B cells, NK cells, and non-NK ILCs), and the m6A crosstalk with the onco-metabolic prospects of leukemogenesis. Together, an encompassing body of evidence highlighted the emerging m6A significance in the regulation of HSC biology and leukemogenesis.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yang Shiau
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taipei, Taiwan
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Wen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Hsu
- The Fourth Affiliated Hospital, and Department of Environmental Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
48
|
Memon F, Nadeem M, Sulaiman M, Arain MI, Hani UE, Yuan S. Unraveling molecular and clinical aspects of ALKBH5 as dual role in colorectal cancer. J Pharm Pharmacol 2024; 76:1393-1403. [PMID: 39321327 DOI: 10.1093/jpp/rgae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.
Collapse
Affiliation(s)
- Furqan Memon
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Momina Nadeem
- Faculty of Pharmacy, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Muhammad Sulaiman
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mudassar Iqbal Arain
- San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92035, United States
- School of Pharmacy, University of Kansas, 2010 Becker Dr., Lawrenece, KS 66047, United States
- Pharmacy Practice, University of Sindh, Jamshoro, 76080 Sindh, Pakistan
| | - Umm-E- Hani
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
49
|
Tan YT, Li T, Wang RB, Liu ZK, Ma MY, Huang RZ, Mo HY, Luo SY, Lin JF, Xu RH, Ju HQ. WTAP weakens oxaliplatin chemosensitivity of colorectal cancer by preventing PANoptosis. Cancer Lett 2024; 604:217254. [PMID: 39270768 DOI: 10.1016/j.canlet.2024.217254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
As the most abundant post-transcriptional modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in cancer cell proliferation, invasion and chemoresistance. However, its specific effects on chemosensitivity to oxaliplatin-based regimens and the impact of these drugs on m6A methylation levels in colorectal cancer (CRC) remain largely unexplored. In this study, we demonstrated that the m6A methyltransferase Wilms tumor 1-associating protein (WTAP) weakens oxaliplatin chemosensitivity in HCT116 and DLD1 cells. Mechanistically, oxaliplatin treatment upregulated WTAP expression, preventing multiple forms of cell death simultaneously, a process known as PANoptosis, by decreasing intracellular oxidative stress through maintaining the expression of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element, in an m6A-dependent manner. In addition, high WTAP expression in CRC patients is associated with a poor prognosis and reduced benefit from standard chemotherapy by clinical data analysis of The Cancer Genome Atlas (TCGA) database and patient cohort study. These findings suggest that targeting WTAP-NRF2-PANoptosis axis could enhance the antitumor efficacy of oxaliplatin-based chemotherapy in CRC treatment.
Collapse
Affiliation(s)
- Yue-Tao Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ting Li
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, PR China
| | - Ruo-Bing Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ze-Kun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ren-Ze Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shu-Yu Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jin-Fei Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, PR China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
50
|
Li X, Wang Y, Cheng J, Qiu L, Wang R, Zhang Y, Wang H. METTL3 -mediated m6A modification of circ_0000620 regulates cisplatin sensitivity and apoptosis in lung adenocarcinoma via the MiR-216b-5p/KRAS axis. Cell Signal 2024; 123:111349. [PMID: 39153585 DOI: 10.1016/j.cellsig.2024.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Circular RNAs (circRNAs) are stable non-coding RNAs characterized by the absence of the conventional 5' cap and 3' polyadenylated tail structure. Its involvement in various aspects of cancers underscores its significance in oncology. Elevated expression of circ_0000620 was observed in both lung adenocarcinoma (LUAD) tissues and cell lines. In vitro, experiments demonstrated that the downregulation of circ_0000620 increased cisplatin sensitivity and promoted cell apoptosis while suppressing malignant characteristics such as cell migration and proliferation. Further investigation into the mechanism underlying the increased expression of circ_0000620 revealed that Methyltransferase 3, N6-Adenosine-Methyltransferase Complex Catalytic Subunit (METTL3) mediates the m6A methylation modification of circ_0000620, thereby promoting its stability and expression. Furthermore, circ_0000620 modulates the miR-216b-5p/KRAS axis to influence apoptosis and cisplatin sensitivity in both A549 and H1299 cell lines. These findings were corroborated by in vivo nude mouse experiments, which showed that knockdown of circ_0000620 inhibited tumor growth and proliferation. In summary, METTL3 plays a role in regulating the stability of circ_0000620 expression, and circ_0000620 exerts its effects on LUAD apoptosis and cisplatin sensitivity through the miR-216b-5p/KRAS signaling pathway.
Collapse
Affiliation(s)
- Xiangmei Li
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yinlu Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Liliang Qiu
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Ruiyang Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yuping Zhang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Huaqi Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China.
| |
Collapse
|