1
|
Zhang H, Li X, Bai J, Zhang C. Mice with NOP2/sun RNA methyltransferase 5 deficiency die before reaching puberty due to fatal kidney damage. Ren Fail 2024; 46:2349139. [PMID: 38712768 PMCID: PMC11078075 DOI: 10.1080/0886022x.2024.2349139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.
Collapse
Affiliation(s)
- Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaohui Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jing Bai
- Jinan Maternal and Child Health Care Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
3
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Guarnacci M, Zhang PH, Kanchi M, Hung YT, Lin H, Shirokikh NE, Yang L, Preiss T. Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Sci Alliance 2024; 7:e202402613. [PMID: 38986569 PMCID: PMC11235314 DOI: 10.26508/lsa.202402613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Maps of the RNA modification 5-methylcytosine (m5C) often diverge markedly not only because of differences in detection methods, data depand analysis pipelines but also biological factors. We re-analysed bisulfite RNA sequencing datasets from five human cell lines and seven tissues using a coherent m5C site calling pipeline. With the resulting union list of 6,393 m5C sites, we studied site distribution, enzymology, interaction with RNA-binding proteins and molecular function. We confirmed tRNA:m5C methyltransferases NSUN2 and NSUN6 as the main mRNA m5C "writers," but further showed that the rRNA:m5C methyltransferase NSUN5 can also modify mRNA. Each enzyme recognises mRNA features that strongly resemble their canonical substrates. By analysing proximity between mRNA m5C sites and footprints of RNA-binding proteins, we identified new candidates for functional interactions, including the RNA helicases DDX3X, involved in mRNA translation, and UPF1, an mRNA decay factor. We found that lack of NSUN2 in HeLa cells affected both steady-state levels of, and UPF1-binding to, target mRNAs. Our studies emphasise the emerging diversity of m5C writers and readers and their effect on mRNA function.
Collapse
Affiliation(s)
- Marco Guarnacci
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pei-Hong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Madhu Kanchi
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yu-Ting Hung
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hanrong Lin
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nikolay E Shirokikh
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Thomas Preiss
- https://ror.org/019wvm592 Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
5
|
He W, Cong Z, Niu C, Cheng F, Yi T, Yao Z, Zhang Y, Jiang X, Sun X, Niu Z, Fu Q. A prognostic signature based on genes associated with m6A/m5C/m1A/m7G modifications and its immunological characteristics in clear cell renal cell carcinoma. Sci Rep 2024; 14:18708. [PMID: 39134681 PMCID: PMC11319670 DOI: 10.1038/s41598-024-69639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by a high incidence and mortality rate. Despite advancements in therapeutic interventions, the prognosis for renal cancer patients remains suboptimal. Of late, methylation modifications have emerged as promising molecular targets for tumor assessment and treatment, yet their potential has not been fully investigated in the context of ccRCC. Transcriptomic and clinical data were extracted from The Cancer Genome Atlas, Gene Expression Omnibus, and ArrayExpress databases, leading to the identification of 57 methylation-related genes (MRGs). Utilizing DESeq2 analysis, Cox regression analysis, and the LASSO regression algorithm, a Methylation-Related Risk Score (MARS) was constructed. Cluster analysis, Gene Ontology (GO) analysis, clinical feature analysis, immune infiltration analysis, and mutation analysis were further employed to evaluate the model. Our investigation identified six pivotal prognostic MRGs and established a risk score predicated on m6A/m5C/m1A/m7G regulatory factors. This score was validated across two external cohorts and can be utilized to assess individual immune infiltration statuses and predict responses to immunotherapy. Moreover, cluster analysis delineated two distinct m6A/m5C/m1A/m7G gene clusters. We have developed and validated a robust prognostic signature based on genes associated with m6A, m5C, m1A, and m7G modifications. This gene signature demonstrates significant prognostic value in assessing survival outcomes, clinical characteristics, immune infiltration, and responses to immunotherapy in ccRCC patients. This finding provides valuable insights for refining precision treatment strategies.
Collapse
Affiliation(s)
- Wei He
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zixiang Cong
- Department of Urology, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| | - Chengtao Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tinghai Yi
- Department of Urology, Traditional Chinese Hospital of Yiyuan County, Zibo, Shandong, China
| | - Zhongshun Yao
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yiming Zhang
- Department of Urology, People's Hospital of Changle County, Weifang, Shandong, China
| | - Xue Jiang
- Medical School, Shandong Xiehe University, Jinan, Shandong, China
| | - Xintong Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Santos-Pujol E, Quero-Dotor C, Esteller M. Clinical Perspectives in Epitranscriptomics. Curr Opin Genet Dev 2024; 87:102209. [PMID: 38824905 DOI: 10.1016/j.gde.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Epitranscriptomics, the study of reversible and dynamic chemical marks on the RNA, is rapidly emerging as a pivotal field in post-transcriptional gene expression regulation. Increasing knowledge about epitranscriptomic landscapes implicated in disease pathogenesis proves an invaluable opportunity for the identification of epitranscriptomic biomarkers and the development of new potential therapeutic drugs. Hence, recent advances in the characterization of these marks and associated enzymes in both health and disease blaze a trail toward the use of epitranscriptomics approaches for clinical applications. Here, we review the latest studies to provide a wide and comprehensive perspective of clinical epitranscriptomics and emphasize its transformative potential in shaping future health care paradigms.
Collapse
Affiliation(s)
- Eloy Santos-Pujol
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. https://twitter.com/@EloySantosPujol
| | - Carlos Quero-Dotor
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
7
|
Harada N, Asada S, Jiang L, Nguyen H, Moreau L, Marina RJ, Adelman K, Iyer DR, D'Andrea AD. The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway. Mol Cell 2024; 84:2618-2633.e10. [PMID: 39025073 PMCID: PMC11321822 DOI: 10.1016/j.molcel.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.
Collapse
Affiliation(s)
- Naoya Harada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuhei Asada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lige Jiang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya R Iyer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Cui Y, Lv P, Zhang C. NSUN6 mediates 5-methylcytosine modification of METTL3 and promotes colon adenocarcinoma progression. J Biochem Mol Toxicol 2024; 38:e23749. [PMID: 38800929 DOI: 10.1002/jbt.23749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Colon adenocarcinoma (COAD) is a common and fatal malignant tumor of digestive system with complex etiology. 5-Methylcytosine (m5C) modification of RNA by the NSUN gene family (NSUN1-NSUN7) and DNMT2 reshape cell biology and regulate tumor development. However, the expression profile, prognostic significance and function of these m5C modifiers in COAD remain largely unclear. By mining multiple integrated tumor databases, we found that NSUN1, NSUN2, NSUN5, and NSUN6 were overexpressed in COAD tumor samples relative to normal samples. Clinically, high expression of NSUN6 was significantly associated with shorter survival (including both disease-free survival and overall survival) in COAD patients. NSUN6 was further confirmed to be upregulated at both tissue and cellular levels of COAD, suggesting that NSUN6 plays a critical role in disease progression. Through comprehensive gene enrichment analysis and cell-based functional validation, it was revealed that NSUN6 promoted the cell cycle progression and cell proliferation of COAD. Mechanistically, NSUN6 upregulates the expression of oncogenic METTL3 and catalyzes its m5C modification in COAD cells. Overexpression of METTL3 significantly relieved the cell cycle inhibition of COAD caused by NSUN6 deficiency. Furthermore, NSUN6 was negatively associated with the abundance of infiltrating immune cells in COAD tumors, such as activated B cells, natural killer cells, effector memory CD8 T cells, and regulatory T cells. Importantly, pan-cancer analysis further uncovered that NSUN6 was dysregulated and heterogeneous in various tumors. Thus our findings extend the role of m5C transferase in COAD and suggest that NSUN6 is a potential biomarker and target for this malignancy.
Collapse
Affiliation(s)
- Yuanbo Cui
- Department of Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Guarnacci M, Preiss T. The je ne sais quoi of 5-methylcytosine in messenger RNA. RNA (NEW YORK, N.Y.) 2024; 30:560-569. [PMID: 38531644 PMCID: PMC11019750 DOI: 10.1261/rna.079982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
The potential presence of 5-methylcytosine as a sparse internal modification of mRNA was first raised in 1975, and a first map of the modification was also part of the epitranscriptomics "big bang" in 2012. Since then, the evidence for its presence in mRNA has firmed up, and initial insights have been gained into the molecular function and broader biological relevance of 5-methylcytosine when present in mRNA. Here, we summarize the status quo of the field, outline some of its current challenges, and suggest how to address them in future work.
Collapse
Affiliation(s)
- Marco Guarnacci
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| |
Collapse
|
11
|
Chen B, Qiu M, Gong R, Liu Y, Zhou Z, Wen Q, Wei X, Liang X, Jiang Y, Chen P, Wei Y, Huang Q, Mo Q, Lin Q, Yu H. Genetic variants in m5C modification genes are associated with survival of patients with HBV-related hepatocellular carcinoma. Arch Toxicol 2024; 98:1125-1134. [PMID: 38438738 DOI: 10.1007/s00204-024-03687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high mortality rate. The 5-methylcytosine (m5C), a type of RNA modification, plays crucial regulatory roles in HCC carcinogenesis, metastasis, and prognosis. However, a few studies have investigated the effect of genetic variants in m5C modification genes on survival of patients with hepatitis B virus (HBV)-related HCC. In the present study, we evaluated associations between 144 SNPs in 15 m5C modification genes and overall survival (OS) in 866 patients with the HBV-related HCC. Expression quantitative trait loci (eQTL) analysis and differential expression analysis were conducted to investigate biological mechanisms. As a result, we identified that two SNPs (NSUN7 rs2437325 A > G and TRDMT1 rs34434809 G > C) were significantly associated with HBV-related HCC OS with adjusted allelic hazards ratios of 1.25 (95% confidence interval = 1.05-1.48 and P = 0.011) and 1.19 (1.02-1.38 and P = 0.027), respectively, with a trend of combined risk genotypes (Ptrend < 0.001). Moreover, the results of eQTL analyses showed that both NSUN7 rs2437325 G and TRDMT1 rs34434809 C alleles were associated with a reduced mRNA expression level in 208 normal liver tissues (P = 0.007 and P < 0.001, respectively). Taken together, genetic variants in the m5C modification genes may be potential prognostic biomarkers of HBV-related HCC after hepatectomy, likely through mediating the mRNA expression of corresponding genes.
Collapse
Affiliation(s)
- Bowen Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Moqin Qiu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Rongbin Gong
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiaoxia Wei
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yanji Jiang
- Department of Scientific Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Peiqin Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
- Editorial Department of Chinese Journal of Oncology Prevention and Treatment, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yuying Wei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Qiongguang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuyan Mo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
- Key Cultivated Laboratory of Cancer Molecular Medicine of Guangxi Health Commission, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
12
|
Lin S, Kuang M. RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nat Rev Gastroenterol Hepatol 2024; 21:267-281. [PMID: 38243019 DOI: 10.1038/s41575-023-00884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/21/2024]
Abstract
Malignant liver cancer is characterized by rapid tumour progression and a high mortality rate, whereas the molecular mechanisms underlying liver cancer initiation and progression are still poorly understood. The dynamic and reversible RNA modifications have crucial functions in gene expression regulation by modulating RNA processing and mRNA translation. Emerging evidence has revealed that alterations in RNA modifications facilitate the selective translation of oncogenic transcripts and promote the diverse tumorigenic processes of liver cancer. In this Review, we first highlight the current progress on the functions and mechanisms underlying RNA modifications in the regulation of mRNA translation and then summarize the exciting discoveries on aberrant RNA modification-mediated mRNA translation in the regulation of tumour initiation, metastasis, metabolism, tumour microenvironment, and drug and radiotherapy resistance in liver cancer. Finally, we discuss the diagnostic and therapeutic potentials of targeting RNA modifications and mRNA translation for the clinical management of liver cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
13
|
Zou S, Huang Y, Yang Z, Zhang J, Meng M, Zhang Y, Feng J, Sun R, Li W, Wang W, López JG, Fang L. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization. Clin Transl Med 2024; 14:e1621. [PMID: 38468490 PMCID: PMC10928349 DOI: 10.1002/ctm2.1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND NOP2/Sun domain 2 (NSUN2) is one of the important RNA methyltransferases catalyzing 5-methylcytosine (m5C) formation and participates in many critical bioprocesses. However, the roles and underlying molecular mechanisms of NSUN2-mediated m5C modification in colorectal cancer (CRC) remain unclear. METHODS To explore the NSUN2 expression in CRC, fresh tissue samples were collected and Nsun2 knockout mouse was constructed. In vitro and in vivo functional assays were conducted to assess the role of NSUN2. RNA array and bisulfite sequencing were used to investigate the potential targets. The mechanisms of NSUN2 function on SKIL were identified by m5C-methylated-RNA immunoprecipitation and RNA stability assays. Additionally, tissue microarray analysis was conducted and patient-derived tumour xenograft mouse (PDX) models were used to define the potential therapeutic targets. RESULTS NSUN2 was highly expressed in CRC and correlated with poor CRC patient survival. Moreover, silencing NSUN2 suppressed CRC tumourigenesis and progression in Nsun2 knockout mouse models. In vitro and in vivo studies suggested that NSUN2 promoted colorectal cancer cell growth. Mechanistically, SKI-like proto-oncogene (SKIL) is positively regulated by NSUN2, and the NSUN2-SKIL axis is clinically relevant to CRC. NSUN2 induced m5C modification of SKIL and stabilized its mRNA, which was mediated by Y-box binding protein 1 (YBX1). Elevated SKIL levels increased transcriptional coactivator with PDZ-binding motif (TAZ) activation. CONCLUSIONS Our findings highlight the importance of NSUN2 in the initiation and progression of CRC via m5C-YBX1-dependent stabilization of the SKIL transcript, providing a promising targeted therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Shaomin Zou
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yizhi Huang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Ziqing Yang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jieping Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Manqi Meng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yijing Zhang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junyan Feng
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rui Sun
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Weiyao Li
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wencong Wang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | | | - Lekun Fang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
Chen SJ, Zhang J, Zhou T, Rao SS, Li Q, Xiao LY, Wei ST, Zhang HF. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m 5C modification of SLC7A11 mRNA. Redox Biol 2024; 69:102975. [PMID: 38042059 PMCID: PMC10711489 DOI: 10.1016/j.redox.2023.102975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Endometrial cancer (EC) is a prevalent gynecological malignancy worldwide, and 5-methylcytosine (m5C) modification of mRNA is a crucial epigenetic modification associated with the development and occurrence of several cancers. However, the precise function of m5C modification in EC remains elusive. This study aimed to investigate the expression and clinical significance of the primary m5C modification writer, NSUN2, in EC. Our findings indicated that NSUN2 exhibited a substantial up-regulation in EC as a result of an epigenetic augmentation in H3K4me3 levels within the promoter region, which was triggered by the down-regulation of KDM5A. Moreover, gain- and loss-of-function experiments revealed the role of NSUN2 in enhancing m5C modification of mRNA, thereby promoting EC cell proliferation. RNA bisulfite sequencing and transcriptomic sequencing were employed to elucidate the involvement of NSUN2 in the regulation of ferroptosis. Subsequent in vitro experiments confirmed that the knockdown of NSUN2 significantly up-regulated the levels of lipid peroxides and lipid ROS in EC cells, thereby augmenting the susceptibility of EC to ferroptosis. Mechanistically, NSUN2 stimulated the m5C modification of SLC7A11 mRNA, and the m5C reader YBX1 exhibited direct recognition and binding to the m5C sites on SLC7A11 mRNA via its internal cold shock domain (CSD), leading to an increase in SLC7A11 mRNA stability and elevated levels of SLC7A11. Additionally, rescue experiments showed that NSUN2 functioned as a suppressor of ferroptosis, which was dependent on SLC7A11. Overall, targeting the NSUN2/SLC7A11 axis inhibited tumor growth by increasing lipid peroxidation and ferroptosis of EC cells both in vitro and in vivo. Therefore, our study provides new insight into the role of NSUN2, suggesting that NSUN2 may serve as a prognostic biomarker and therapeutic target in patients with EC.
Collapse
Affiliation(s)
- Shuai-Jun Chen
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan-Shan Rao
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Yan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si-Tian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hong-Feng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
15
|
Crespo-García E, Bueno-Costa A, Esteller M. Single-cell analysis of the epitranscriptome: RNA modifications under the microscope. RNA Biol 2024; 21:1-8. [PMID: 38368619 PMCID: PMC10877985 DOI: 10.1080/15476286.2024.2315385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.
Collapse
Affiliation(s)
- Eva Crespo-García
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Alberto Bueno-Costa
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
16
|
Zheng L, Duan Y, Li M, Wei J, Xue C, Chen S, Wei Q, Tang F, Xiong W, Zhou M, Deng H. Deciphering the vital roles and mechanism of m5C modification on RNA in cancers. Am J Cancer Res 2023; 13:6125-6146. [PMID: 38187052 PMCID: PMC10767349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors. Finally, we summed up the interaction network, potential application, and value in clinical diagnosis and treatment of tumors. Taken together, this review benefits revealing the mechanism of m5C modification in tumor progression and provides new strategies for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
17
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|