1
|
Dyall SC, Nessel I, Sharpe JA, Yip PK, Michael-Titus AT, Shah DK. Long-chain omega-3 polyunsaturated fatty acids are reduced in neonates with substantial brain injury undergoing therapeutic hypothermia after hypoxic-ischemic encephalopathy. Front Neurol 2023; 14:1231743. [PMID: 37712085 PMCID: PMC10498768 DOI: 10.3389/fneur.2023.1231743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality. Although therapeutic hypothermia is an effective treatment, substantial chronic neurological impairment often persists. The long-chain omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, offer therapeutic potential in the post-acute phase. To understand how PUFAs are affected by HIE and therapeutic hypothermia we quantified for the first time the effects of HIE and therapeutic hypothermia on blood PUFA levels and lipid peroxidation. In a cross-sectional approach, blood samples from newborns with moderate to severe HIE, who underwent therapeutic hypothermia (sHIE group) were compared to samples from newborns with mild HIE, who did not receive therapeutic hypothermia, and controls. The sHIE group was stratified into cerebral MRI predictive of good (n = 10), or poor outcomes (n = 10; nine developed cerebral palsy). Cell pellets were analyzed for fatty acid content, and plasma for lipid peroxidation products, thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal. Omega-3 Index (% DHA + EPA) was similar between control and HIE groups; however, with therapeutic hypothermia there were significantly lower levels in poor vs. good prognosis sHIE groups. Estimated Δ-6 desaturase activity was significantly lower in sHIE compared to mild HIE and control groups, and linoleic acid significantly increased in the sHIE group with good prognosis. Reduced long-chain omega-3 PUFAs was associated with poor outcome after HIE and therapeutic hypothermia, potentially due to decreased biosynthesis and tissue incorporation. We speculate a potential role for long-chain omega-3 PUFA interventions in addition to existing treatments to improve neurologic outcomes in sHIE.
Collapse
Affiliation(s)
- Simon C. Dyall
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jennine A. Sharpe
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Ping K. Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Divyen K. Shah
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
2
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
3
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
4
|
Pizzuti V, Abruzzo PM, Chatgilialoglu A, Zia S, Marrazzo P, Petrocelli G, Zannini C, Marchionni C, Poggi P, Simonazzi G, Canaider S, Alviano F, Facchin F, Bonsi L. A Tailored Lipid Supplement Restored Membrane Fatty Acid Composition and Ameliorates In Vitro Biological Features of Human Amniotic Epithelial Cells. J Clin Med 2022; 11:jcm11051236. [PMID: 35268327 PMCID: PMC8911266 DOI: 10.3390/jcm11051236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cell culture conditions influence several biological and biochemical features of stem cells (SCs), including the membrane lipid profile, thus limiting the use of SCs for cell therapy approaches. The present study aims to investigate whether the in vitro culture may alter the membrane fatty acid signature of human Amniotic Epithelial Cells (hAECs). The analysis of the membrane fatty acid composition of hAECs cultured in basal medium showed a loss in polyunsaturated fatty acids (PUFA), in particular in omega-6 (ω-6) content, compared to freshly isolated hAECs. The addition to the basal culture medium of a chemically defined and animal-free tailored lipid supplement, namely Refeed®, partially restored the membrane fatty acid signature of hAECs. Although the amelioration of the membrane composition did not prolong hAECs culture lifespan, Refeed® influenced cell morphology, counteracted the onset of senescence, and increased the migratory capacity as well as the ability of hAECs to inhibit Peripheral Blood Mononuclear Cell (PBMC) proliferation. This study provides new information on hAEC features during culture passages and demonstrates that the maintenance of the membrane fatty acid signature preserved higher cell quality during in vitro expansion, suggesting the use of lipid supplementation for SC expansion in cell-based therapies.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Unit of Nephrology, Dialysis and Renal Transplant, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | | | | | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Giovannamaria Petrocelli
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-ELDOR Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Paola Poggi
- Remembrane S.r.l., 40026 Imola, Italy; (A.C.); (P.P.)
| | - Giuliana Simonazzi
- Obstetric Unit, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi, University of Bologna, 40126 Bologna, Italy;
| | - Silvia Canaider
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
- Correspondence:
| | - Federica Facchin
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (P.M.A.); (P.M.); (G.P.); (C.M.); (S.C.); (F.F.); (L.B.)
| |
Collapse
|
5
|
Dakroub H, Nowak M, Benoist JF, Noël B, Vedie B, Paul JL, Fournier N. Eicosapentaenoic acid membrane incorporation stimulates ABCA1-mediated cholesterol efflux from human THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159016. [PMID: 34332075 DOI: 10.1016/j.bbalip.2021.159016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
A high intake in polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. Dietary PUFAs incorporate into membrane phospholipids, which may modify the function of membrane proteins. We investigated the consequences of the membrane incorporation of several PUFAs on the key antiatherogenic ABCA1-mediated cholesterol efflux pathway. Human THP-1 macrophages were incubated with EPA, arachidonic acid (AA) (C20:4 n-6) or docosahexaenoic acid (DHA) (C22:6 n-3) for a long time to mimic a chronic exposure. EPA 70 μM, but not AA 50 μM or DHA 15 μM, increased ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 28% without altering aqueous diffusion. No variation in ABCA1 expression or localization was observed after EPA treatment. EPA incorporation did not affect the phenotype of THP-1 macrophages. The membrane phospholipids composition of EPA cells displayed higher levels of both EPA and its elongation product docosapentaenoic acid, which was associated with drastic lower levels of AA. Treatment by EPA increased the ATPase activity of the transporter, likely through a PKA-dependent mechanism. Eicosanoids were not involved in the stimulated ABCA1-mediated cholesterol efflux from EPA-enriched macrophages. In addition, EPA supplementation increased the apo AI binding capacity from macrophages by 38%. Moreover, the increased apo AI binding in EPA-enriched macrophages can be competed. In conclusion, EPA membrane incorporation increased ABCA1 functionality in cholesterol-normal human THP-1 macrophages, likely through a combination of different mechanisms. This beneficial in vitro effect may partly contribute to the cardioprotective effect of a diet enriched with EPA highlighted by several recent clinical trials.
Collapse
Affiliation(s)
- Hani Dakroub
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie métabolique, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Necker, 75015 Paris, France
| | - Benoît Noël
- Allergie, Immunotoxicologie et Immunopathologie, INSERM UMR 996, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Natalie Fournier
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
6
|
Santamarina AB, Pisani LP, Baker EJ, Marat AD, Valenzuela CA, Miles EA, Calder PC. Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: effects on monocyte and macrophage responses and the NF-κB pathway. Food Funct 2021; 12:7909-7922. [PMID: 34250536 DOI: 10.1039/d1fo01304a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocyte recruitment and activation of macrophages are essential for homeostasis but are also related to the development and progression of cardiometabolic diseases. The management of inflammation with dietary components has been widely investigated. Two components that may influence inflammation are unsaturated fatty acids such as oleic acid (OA; 18:1cis-9) and antioxidant compounds like anthocyanins. Molecular and metabolic effects of such bioactive compounds are usually investigated in isolation, whereas they may be present in combination in foods or the diet. Considering this, we aimed to analyze the effects of OA and the anthocyanin keracyanin (AC) alone and in combination on toll-like receptor-mediated inflammatory responses in monocytes and macrophages. For this, THP-1-derived macrophages and monocytes were exposed to 3 treatments: OA, AC, or the combination (OAAC) and then stimulated with lipopolysaccharide. Inflammation-related gene expression and protein concentrations of IL-1β, TNF-α, IL-6, MCP-1, and IL-10 were assessed. Also, NFκBp65, IκBα, and PPAR-γ protein expression were determined. OA, AC, and OAAC decreased pNFκBp65, PPARγ, IκBα, TNF-α, IL-1β, IL-6, and MCP-1 and increased IL-10. MCP-1 protein expression was lower with OAAC than with either OA and AC alone. Compared to control, OAAC decreased mRNA for TLR4, IκKα, IκBα, NFκB1, MCP-1, TNF-α, IL-6, and IL-1β more than OA or AC did alone. Also, IL-10 mRNA was increased by OAAC compared with control, OA, and AC. In summary, OA and AC have anti-inflammatory effects individually but their combination (OAAC) exerts a greater effect.
Collapse
Affiliation(s)
- Aline B Santamarina
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Chaudhary N, Que Nguyen TN, Maguire A, Wynne C, Meade AD. Comparison of sample preparation methodologies towards optimisation of Raman spectroscopy for peripheral blood mononuclear cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1019-1032. [PMID: 33538723 DOI: 10.1039/d0ay02040k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exquisite sensitivity of Raman spectroscopy to the molecular composition of biological samples has been a particular strength in its development towards clinical applicates. Its strength in this regard also presents challenges in the development of its diagnostic capabilities owing to its sensitivity, not only to the sample biochemistry, but also the preparation methodology employed prior to analysis. Here we have examined and optimised several approaches to the preparation of peripheral blood mononuclear cells (PBMCs), or immune cell subtypes of whole blood, for Raman spectroscopic analysis. Two approaches to the elimination of haemoglobin contamination, and two approaches to the purification of the lymphocyte portion of whole blood were investigated. It was found that a peroxide treatment of PBMCs prior to spectroscopic analysis was required for elimination of haemoglobin, while a negative selection approach involving magnetically labelled monoclonal antibodies was preferred for purification of individual leucocyte subpopulations in comparison to the plastic adherence method using an ex vivo culture. Further spectral fitting analysis has identified spectral features of interest which may be useful in the identification of individual leucocytes spectrally and warrant further investigation.
Collapse
Affiliation(s)
- Neha Chaudhary
- School of Physics, Technological University Dublin, Kevin Street, Dublin 8, Ireland.
| | | | | | | | | |
Collapse
|
8
|
Lippert AH, Dimov IB, Winkel AK, Humphrey J, McColl J, Chen KY, Santos AM, Jenkins E, Franze K, Davis SJ, Klenerman D. Soft Polydimethylsiloxane-Supported Lipid Bilayers for Studying T Cell Interactions. Biophys J 2021; 120:35-45. [PMID: 33248128 PMCID: PMC7820804 DOI: 10.1016/j.bpj.2020.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Much of what we know about the early stages of T cell activation has been obtained from studies of T cells interacting with glass-supported lipid bilayers that favor imaging but are orders of magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing "soft bilayers" with physiological levels of mechanical resistance (Young's modulus of 4 kPa). Comparisons of T cell behavior on soft and glass-supported bilayers revealed that whereas late stages of T cell activation are thought to be substrate-stiffness dependent, early calcium signaling was unaffected by substrate rigidity, implying that early steps in T cell receptor triggering are not mechanosensitive. The exclusion of large receptor-type phosphatases was observed on the soft bilayers, however, even though it is yet to be demonstrated at authentic cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Ivan B Dimov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Y Chen
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana M Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Edward Jenkins
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Kitte R, Tretbar M, Dluczek S, Beckmann L, Marquardt P, Duenkel A, Schubert A, Fricke S, Tretbar US. Chemical and Cytotoxic Activity of three main Sesquiterpenoids from Warburgia ugandensis. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
10
|
Abstract
Influenza A virus (IAV) causes annual epidemics and sporadic pandemics of respiratory disease. Secondary bacterial coinfection by organisms such as Staphylococcus aureus is the most common complication of primary IAV infection and is associated with high levels of morbidity and mortality. Here, we report the first identified S. aureus factor (lipase 1) that enhances IAV replication during infection via positive modulation of virus budding. The effect is observed in vivo in embryonated hen’s eggs and greatly enhances the yield of a vaccine strain, a finding that could be applied to address global shortages of influenza vaccines. Influenza A virus (IAV) causes annual epidemics of respiratory disease in humans, often complicated by secondary coinfection with bacterial pathogens such as Staphylococcus aureus. Here, we report that the S. aureus secreted protein lipase 1 enhances IAV replication in vitro in primary cells, including human lung fibroblasts. The proviral activity of lipase 1 is dependent on its enzymatic function, acts late in the viral life cycle, and results in increased infectivity through positive modulation of virus budding. Furthermore, the proviral effect of lipase 1 on IAV is exhibited during in vivo infection of embryonated hen’s eggs and, importantly, increases the yield of a vaccine strain of IAV by approximately 5-fold. Thus, we have identified the first S. aureus protein to enhance IAV replication, suggesting a potential role in coinfection. Importantly, this activity may be harnessed to address global shortages of influenza vaccines.
Collapse
|
11
|
Makkos A, Szántai Á, Pálóczi J, Pipis J, Kiss B, Poggi P, Ferdinandy P, Chatgilialoglu A, Görbe A. A Comorbidity Model of Myocardial Ischemia/Reperfusion Injury and Hypercholesterolemia in Rat Cardiac Myocyte Cultures. Front Physiol 2020; 10:1564. [PMID: 31992989 PMCID: PMC6962358 DOI: 10.3389/fphys.2019.01564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction The use of comorbidity models is crucial in cardioprotective drug development. Hypercholesterolemia causes endothelial and myocardial dysfunction, as well as aggravates ischemia/reperfusion (I/R)-induced myocardial injury. Endogenous cardioprotective mechanisms against I/R are impaired in hyperlipidemic and hyperglycemic in vivo animal models. Therefore, our aim was to develop a medium throughput comorbidity cell-based test system of myocardial I/R injury, hypercholesterolemia and hyperglycemia that mimics comorbidity conditions. Methods Cardiac myocytes isolated from neonatal or adult rat hearts were cultured in control or in three different hypercholesterolemic media with increasing cholesterol content (hiChol) or hiChol + hyperglycemic medium, respectively. Each group was then subjected to simulated ischemia/reperfusion (SI/R) or corresponding normoxic condition, respectively. Cholesterol uptake was tested by Filipin staining in neonatal cardiac myocytes. Cell viability, total cell count and oxidative stress, i.e., total reactive oxygen species (ROS) and superoxide level were measured by fluorescent assays. Results Neonatal cardiac myocytes took up cholesterol from the different hiChol media at a concentration-dependent manner. In normoxia, viability of hiChol neonatal cardiac myocytes was not significantly changed, however, superoxide levels were increased as compared to vehicle. After SI/R, the viability of hiChol neonatal cardiac myocytes was decreased and total ROS level was increased as compared to vehicle. HiChol combined with hyperglycemia further aggravated cell death and oxidative stress in normoxic as well as in SI/R conditions. Viability of hiChol adult cardiac myocytes was significantly decreased and superoxide level was increased in normoxia and these changes were further aggravated by SI/R. HiChol combined with hyperglycemia further aggravated cell death, however level of oxidative stress increased only in normoxic condition. Conclusion HiChol rat cardiac myocytes showed reduction of cell viability and increased oxidative stress, which were further aggravated by SI/R and with additional hyperglycemia. This is the first demonstration that the combination of the current hypercholesterolemic medium and SI/R in cardiac myocytes mimics the cardiac pathology of the comorbid heart with I/R and hypercholesterolemia.
Collapse
Affiliation(s)
- András Makkos
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Ágnes Szántai
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - János Pálóczi
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | - Bernadett Kiss
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | - Péter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | | | - Anikó Görbe
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
12
|
Else PL. The highly unnatural fatty acid profile of cells in culture. Prog Lipid Res 2019; 77:101017. [PMID: 31809755 DOI: 10.1016/j.plipres.2019.101017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
The fatty acid profile of cells in culture are unlike those of natural cells with twice the monounsaturated (MUFA) and half the polyunsaturated fatty acids (PUFA) level (Mol%). This is not due to cell lines primarily being derived from cancers but is due to limited access to lipid and an inability to make PUFA de novo as vertebrate cells. Classic culture methods use media with 10% serum (the only exogenous source of lipid). Fetal bovine serum (FBS), the serum of choice has a low level of lipid and cholesterol compared to other sera and at 10% of media provides 2-3% of the fatty acid and cholesterol, 1% of the PUFA and 0.3% of the essential fatty acid linoleic acid (18:2n-6) available to cells in the body. Since vertebrate cell lines cannot make PUFA they synthesise MUFA, offsetting their PUFA deficit and reducing their fatty acid diversity. Stem and primary cells in culture appear to be similarly affected, with a rapid loss of their natural fatty acid compositions. The unnatural lipid composition of cells in culture has substantial implications for examining natural stems cell in culture, and for investigations of cellular mechanisms using cell lines based on the pervasive influence of fats.
Collapse
Affiliation(s)
- Paul L Else
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia.
| |
Collapse
|
13
|
Sibbons CM, Irvine NA, Pérez-Mojica JE, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. Polyunsaturated Fatty Acid Biosynthesis Involving Δ8 Desaturation and Differential DNA Methylation of FADS2 Regulates Proliferation of Human Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:432. [PMID: 29556240 PMCID: PMC5844933 DOI: 10.3389/fimmu.2018.00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important for immune function. Limited evidence indicates that immune cell activation involves endogenous PUFA synthesis, but this has not been characterised. To address this, we measured metabolism of 18:3n-3 in quiescent and activated peripheral blood mononuclear cells (PBMCs), and in Jurkat T cell leukaemia. PBMCs from men and women (n = 34) were incubated with [1-13C]18:3n-3 with or without Concanavalin A (Con. A). 18:3n-3 conversion was undetectable in unstimulated PBMCs, but up-regulated when stimulated. The main products were 20:3n-3 and 20:4n-3, while 18:4n-3 was undetectable, suggesting initial elongation and Δ8 desaturation. PUFA synthesis was 17.4-fold greater in Jurkat cells than PBMCs. The major products of 18:3n-3 conversion in Jurkat cells were 20:4n-3, 20:5n-3, and 22:5n-3. 13C Enrichment of 18:4n-3 and 20:3n-3 suggests parallel initial elongation and Δ6 desaturation. The FADS2 inhibitor SC26196 reduced PBMC, but not Jurkat cell, proliferation suggesting PUFA synthesis is involved in regulating mitosis in PBMCs. Con. A stimulation increased FADS2, FADS1, ELOVL5 and ELOVL4 mRNA expression in PBMCs. A single transcript corresponding to the major isoform of FADS2, FADS20001, was detected in PBMCs and Jurkat cells. PBMC activation induced hypermethylation of a 470bp region in the FADS2 5'-regulatory sequence. This region was hypomethylated in Jurkat cells compared to quiescent PBMCs. These findings show that PUFA synthesis involving initial elongation and Δ8 desaturation is involved in regulating PBMC proliferation and is regulated via transcription possibly by altered DNA methylation. These processes were dysregulated in Jurkat cells. This has implications for understanding the regulation of mitosis in normal and transformed lymphocytes.
Collapse
Affiliation(s)
- Charlene M Sibbons
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - J Eduardo Pérez-Mojica
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
14
|
Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
Collapse
|
15
|
Bowen EE, Coward RJ. Advances in our understanding of the pathogenesis of hemolytic uremic syndromes. Am J Physiol Renal Physiol 2017; 314:F454-F461. [PMID: 29167171 DOI: 10.1152/ajprenal.00376.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is major global health care issue as it is the leading cause of acute kidney injury in children. It is a triad of acute kidney injury, microangiopathic hemolytic anemia, and thrombocytopenia. In recent years, major advances in our understanding of complement-driven inherited rare forms of HUS have been achieved. However, in children 90% of cases of HUS are associated with a Shiga toxin-producing enteric pathogen. The precise pathological mechanisms in this setting are yet to be elucidated. The purpose of this review is to discuss advances in our understanding of the pathophysiology underlying HUS and identify the key questions yet to be answered by the scientific community.
Collapse
Affiliation(s)
- E E Bowen
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| | - R J Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
16
|
Chatgilialoglu A, Rossi M, Alviano F, Poggi P, Zannini C, Marchionni C, Ricci F, Tazzari PL, Taglioli V, Calder PC, Bonsi L. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta. Stem Cell Res Ther 2017; 8:31. [PMID: 28173875 PMCID: PMC5297199 DOI: 10.1186/s13287-017-0487-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/12/2017] [Accepted: 01/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Methods Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. Results A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Conclusions Culturing hFM-MSCs alters their fatty acid composition. A tailored lipid supplement is able to improve in vitro hFM-MSC functional properties by recreating a membrane environment more similar to the physiological counterpart. This approach should be considered in cell therapy applications in order to maintain a higher cell quality during in vitro passaging and to influence the outcome of cell-based therapeutic approaches when cells are administered to patients.
Collapse
Affiliation(s)
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.
| | - Paola Poggi
- Remembrane Srl, Imola, Italy.,Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Chiara Zannini
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, Unit of Nephrology, Dialysis and Renal Transplant, St, Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Cosetta Marchionni
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | - Francesca Ricci
- Service of Immunohematology and Transfusion Medicine, St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Pier Luigi Tazzari
- Service of Immunohematology and Transfusion Medicine, St. Orsola-Malpighi University Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Valentina Taglioli
- Laboratory of Molecular Biology, Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, St. Orsola - Malpighi University Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,National Institute of Biostructures and Biosystems at Ettore Sansavini Health Science Foundation ONLUS - Lab SWITH, Corso Garibaldi 11, 48022, Lugo (RA), Italy
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| |
Collapse
|