1
|
Flores-López A, Guevara-Cruz M, Avila-Nava A, González-Garay AG, González-Salazar LE, Reyes-Ramírez AL, Pedraza-Chaverri J, Medina-Campos ON, Medina-Vera I, Reyes-García JG, Tovar AR, Serralde-Zúñiga AE. n-3 Polyunsaturated Fatty Acid Supplementation Affects Oxidative Stress Marker Levels in Patients with Type II Intestinal Failure: A Randomized Double Blind Trial. Antioxidants (Basel) 2023; 12:1493. [PMID: 37627489 PMCID: PMC10451159 DOI: 10.3390/antiox12081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Type II intestinal failure (IF-II) is a condition in which the gastrointestinal tract is compromised. Liver complications may occur because of the pathology and/or prolonged use of parenteral nutrition (PN); oxidative stress has been implicated as one of the causes. Lipid emulsions containing n-3 polyunsaturated fatty acids (PUFAs) have been proposed for the treatment. We aimed to evaluate the effect of 7-day n-3 PUFA supplementation on oxidative stress in IF-II patients receiving PN. This was a randomized, controlled, double-blinded, pilot trial of adult patients with IF-II, receiving either conventional PN (control) or PN enriched with n-3 PUFAs (intervention). Twenty patients were included (14 men, 49 ± 16.9 years), with the ANCOVA analysis the glucose (p = 0.003), and direct bilirubin (p = 0.001) levels reduced; whereas the high-density lipoprotein cholesterol (HDL-C) increased (p = 0.017). In the random-effect linear regression analysis, a reduction (p < 0.0001) in the malondialdehyde (MDA) level was found in the intervention group when the covariables age, HDL-C level, and alanine aminotransferase activity were considered. After 1 week of PN supplementation with n-3 PUFAs, the marker levels of some oxidative stress, blood lipids, and hepatic biomarkers improved in patients with IF-II.
Collapse
Affiliation(s)
- Adriana Flores-López
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Martha Guevara-Cruz
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Unidad de Investigación, Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida 97130, Mexico
| | | | - Luis E. González-Salazar
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Ana L. Reyes-Ramírez
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar N. Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Juan G. Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Armando R. Tovar
- Departamento Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Yu S, Xie Q, Tan W, Hu M, Xu G, Zhang X, Xie G, Mao L. Different ratios of DHA/EPA reverses insulin resistance by improving adipocyte dysfunction and lipid disorders in HFD-induced IR mice. Food Funct 2023; 14:1179-1197. [PMID: 36602027 DOI: 10.1039/d2fo02686d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: Insulin resistance (IR) is linked to the development of diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVDs). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from fish oils (FOs) were used to investigate their potential in high-fat diet (HFD)-induced IR mice under different ratios. Methods: A total of 84 male C57BL/6J (6 weeks old) mice were fed with HFD containing 45% kcal from fat for 16 weeks to establish the IR model. The IR mice were then fed with HFD or HFD + 4% DHA/EPA with different ratios (3 : 1, 1.5 : 1, 1 : 1, 1 : 1.5, 1 : 3, respectively) for another 12 weeks. During the experiment, the CON group (n = 12) was set to feed with a basic diet containing 10% kcal from fat. Results: HFD feeding for 16 weeks reduced insulin sensitivity and accelerated hypertrophy of white adipose tissue (WAT). Different ratios of DHA/EPA except for 1 : 1 decreased the HOMA-IR index, average area of adipocytes, and serum MDA, but increased the protein expression of PI3K. All ratios of DHA/EPA increased the protein expression of IRS-1, GLUT4, and adiponectin. Moreover, dietary DHA/EPA changed serum fatty acid (FA) composition by increasing the serum concentration of n-3 PUFAs. DHA/EPA supplements also improved serum lipid profiles (TG/TC/LDL-c/HDL-c, FFA) and reduced the hepatic steatosis area. Conclusions: The results indicate that an appropriate higher ratio of DHA (1.5 : 1) in DHA/EPA supplementation is recommended for IR prevention.
Collapse
Affiliation(s)
- Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Qunying Xie
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Weifeng Tan
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Guiling Xu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Xiao Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Guanghang Xie
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| |
Collapse
|
3
|
Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, atherothrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorption/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages. In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the role of CD36 and dietary fatty acids in cholesterol metabolism might be considered in medical nutrition therapy in the near future. Therefore, the novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis are discussed in this review.
Collapse
|
4
|
Wang Y, Xu H, Sun G, Xue M, Sun S, Huang T, Zhou J, Loor JJ, Li M. Transcriptome Analysis of the Effects of Fasting Caecotrophy on Hepatic Lipid Metabolism in New Zealand Rabbits. Animals (Basel) 2019; 9:ani9090648. [PMID: 31484452 PMCID: PMC6769842 DOI: 10.3390/ani9090648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Caecotrophy in small herbivores, including rabbits, is the instinctive behavior of eating soft feces. Little is known about the impact of caecotrophy on growth and metabolism. In the present study, we used an Elizabeth circle to prevent rabbits from eating soft feces and measured changes in feed intake, body weight, internal organ weight, serum biochemical indices and liver lipid droplet accumulation. Liver tissue was also used for transcriptome sequencing. Results indicated that fasting caecotrophy decreased rabbit growth and lipid synthesis in the liver. Abstract In order to investigate the effects of fasting caecotrophy on hepatic lipid metabolism in rabbits, 12 weaned female New Zealand white rabbits were randomly divided into (n = 6/group) a control and fasting caecotrophy group. Rabbits in the experimental group were treated with an Elizabeth circle to prevent them from eating their own soft feces for a 60-day period. Growth and blood biochemical indices, transcriptome sequencing and histology analysis of the liver were performed. Compared with the control group, final weight, weight gain, liver weight, growth rate and feed conversion ratio, all decreased in the experimental group (p < 0.05). RNA sequencing (RNA-seq) analysis revealed a total of 301.2 million raw reads (approximately 45.06 Gb of high-quality clean data) that were mapped to the rabbit genome. After a five-step filtering process, 14,964 genes were identified, including 444 differentially expressed genes (p < 0.05, foldchange ≥ 1). A number of differently expressed genes linked to lipid metabolism were further analyzed including CYP7A1, SREBP, ABCA1, GPAM, CYP3A1, RBP4 and RDH5. The KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation of the differentially expressed genes indicated that main pathways affected were pentose and glucuronide interactions, starch and sucrose metabolism, retinol metabolism and PPAR signaling. Overall, the present study revealed that preventing caecotrophy reduced growth and altered lipid metabolism, both of which will help guide the development of new approaches for rabbits’ feeding and production. These data also provide a reference for studying the effects of soft feces in other small herbivores.
Collapse
Affiliation(s)
- Yadong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Mingming Xue
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shuaijie Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Tao Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jianshe Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Champaign, IL 61801, USA.
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Wang X, Zheng Y, Ma Y, Du L, Chu F, Gu H, Dahlgren RA, Li Y, Wang H. Lipid metabolism disorder induced by up-regulation of miR-125b and miR-144 following β-diketone antibiotic exposure to F0-zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:243-252. [PMID: 30121499 DOI: 10.1016/j.ecoenv.2018.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
β-Diketone antibiotics (DKAs) are widely used in human and veterinary medicine to prevent and treat a large variety of infectious diseases. Long-term DKA exposure to zebrafish can result in lipid metabolism disorders and liver function abnormalities. Based on our previous miRNA-seq analyses, miR-144 and miR-125b were identified as target genes regulating lipid metabolism. DKA-exposure at 12.5 and 25 mg/L significantly increased the expressions of miR-144 and miR-125b. The expression levels for the two miRNAs exhibited an inverse relationship with their lipid-metabolism-related target genes (ppardb, bcl2a, pparaa and pparda). Over-expression and inhibition of miR-144 and miR-125b were observed by micro-injection of agomir-144, agomir-125b, antagomir-144 and antagomir-125b. The over-expression of miR-144 and miR-125b enhanced lipid accumulation and further induced lipid-metabolism-disorder syndrome in F1-zebrafish. The expression of ppardb and bcl2a in whole-mount in situ hybridization was in general agreement with results from qRT-PCR and was concentration-dependent. Oil red O and H&E staining, as well as related physiological and biochemical indexes, showed that chronic DKA exposure resulted in lipid-metabolism-disorder in F0-adults, and in F1-larvae fat accumulation, increased lipid content, abnormal liver function and obesity. The abnormal levels of triglyceride (TG) and total cholesterol (TCH) in DKA-exposed zebrafish increased the risk of hyperlipidemia, atherosclerosis and coronary heart disease. These observations improve our understanding of mechanisms leading to liver disease from exposure to environmental pollution, thereby having relevant practical significance in health prevention, early intervention, and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuansi Zheng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yan Ma
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liyang Du
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fangyu Chu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haidong Gu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Yanyan Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem 2018; 58:1-16. [PMID: 29621669 DOI: 10.1016/j.jnutbio.2018.02.012] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shaikh Mizanoor Rahman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Jacalyn Robert-McComb
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
7
|
Pizzini A, Lunger L, Demetz E, Hilbe R, Weiss G, Ebenbichler C, Tancevski I. The Role of Omega-3 Fatty Acids in Reverse Cholesterol Transport: A Review. Nutrients 2017; 9:nu9101099. [PMID: 28984832 PMCID: PMC5691715 DOI: 10.3390/nu9101099] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/31/2023] Open
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on cardiovascular disease have been studied extensively. However, it remains unclear to what extent n-3 PUFAs may impact Reverse Cholesterol Transport (RCT). RCT describes a mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. The aim of this review is to summarize the literature and to provide an updated overview of the effects of n-3 PUFAs on key players in RCT, including apoliprotein AI (apoA-I), ATP-binding cassette transporter A1 (ABCA1), ABCG1, apoE, scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr), cholesterol 7 alpha-hydroxylase (CYP7A1) and ABCG5/G8. Based on current knowledge, we conclude that n-3 PUFAs may beneficially affect RCT, mainly by influencing high-density lipoprotein (HDL) remodeling and by promoting hepatobiliary sterol excretion.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Lukas Lunger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Egon Demetz
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Christoph Ebenbichler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Yu J, Ma Y, Sun J, Ran L, Li Y, Wang N, Yu T, Gao W, Jia W, Jiang R, Guo M, Bi Y, Wu Y. Microalgal Oil fromSchizochytriumsp. Prevents HFD-Induced Abdominal Fat Accumulation in Mice. J Am Coll Nutr 2017; 36:347-356. [DOI: 10.1080/07315724.2017.1302366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jinhui Yu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Shandong Centre of Crop Germplasm Resources, Jinan, Shandong, China
| | - Yong Ma
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Youwei Li
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Tao Yu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Wenting Gao
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Wenbin Jia
- Shandong Centre of Crop Germplasm Resources, Jinan, Shandong, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuping Bi
- Biotechnology Research Center, Shang Dong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats. J Food Drug Anal 2017; 25:919-930. [PMID: 28987369 PMCID: PMC9328862 DOI: 10.1016/j.jfda.2016.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes.
Collapse
|