1
|
Camacho-Morales A, Noriega LG, Sánchez-García A, Torre-Villalvazo I, Vázquez-Manjarrez N, Maldonado-Ruiz R, Cárdenas-Tueme M, Villegas-Romero M, Alamilla-Martínez I, Rodriguez-Rocha H, Garcia-Garcia A, Corona JC, Tovar AR, Saville J, Fuller M, Gonzalez-Gonzalez JG, Rivas-Estilla AM. Plasma C24:0 ceramide impairs adipose tissue remodeling and promotes liver steatosis and glucose imbalance in offspring of rats. Heliyon 2024; 10:e39206. [PMID: 39640709 PMCID: PMC11620212 DOI: 10.1016/j.heliyon.2024.e39206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Fetal programming by exposure to high-energy diets increases the susceptibility to type 2 diabetes mellitus (T2DM2) in the offspring. Glucose imbalance during fetal programming might be associated to still unknown selective lipid species and their characterization might be beneficial for T2DM diagnosis and treatment. We aim to characterize the effect of the lipid specie, C24:0 ceramide, on glucose imbalance and metabolic impairment in cellular and murine models. A lipidomic analysis identified accumulation of C24:0 ceramide in plasma of offspring rats exposed to high-energy diets during fetal programing, as well as in obese-T2DM subjects. In vitro experiments in 3T3L-1, hMSC and HUH7 cells and in in vivo models of Wistar rats and C57BL/6 mice demonstrated that C24:0 ceramide disrupted glucose balance, and differentiation and lipid accumulation in adipocytes, whereas promoted liver steatosis. Mechanistically, C24:0 ceramide impaired mitochondrial fatty acid oxidation in adipocytes and hepatic cells, tentatively by favoring reactive oxygen species accumulation and calcium overload in the mitochondria; and also, activates endoplasmic reticulum (ER) stress in hepatocytes. We propose that C24:0 ceramide accumulation in the offspring followed a prenatal diet exposure, impair lipid allocation into adipocytes and enhances liver steatosis associated to mitochondrial dysfunction and ER stress, leading to glucose imbalance.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Lilia G. Noriega
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Adriana Sánchez-García
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Natalia Vázquez-Manjarrez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Roger Maldonado-Ruiz
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Marcela Cárdenas-Tueme
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Mariana Villegas-Romero
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Itzayana Alamilla-Martínez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Humberto Rodriguez-Rocha
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Juan Carlos Corona
- Neuroscience Laboratory, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - José Gerardo Gonzalez-Gonzalez
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
2
|
Yadav N, Babu D, Madigubba S, Panigrahi M, Phanithi PB. Tyrphostin A9 attenuates glioblastoma growth by suppressing PYK2/EGFR-ERK signaling pathway. J Neurooncol 2023; 163:675-692. [PMID: 37415005 DOI: 10.1007/s11060-023-04383-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a fatal primary brain tumor with extremely poor clinical outcomes. The anticancer efficiency of tyrosine kinase inhibitors (TKIs) has been shown in GBM and other cancer, with limited therapeutic outcomes. In the current study, we aimed to investigate the clinical impact of active proline-rich tyrosine kinase-2 (PYK2) and epidermal growth factor receptor (EGFR) in GBM and evaluate its druggability by a synthetic TKI-Tyrphostin A9 (TYR A9). METHODS The expression profile of PYK2 and EGFR in astrocytoma biopsies (n = 48) and GBM cell lines were evaluated through quantitative PCR, western blots, and immunohistochemistry. The clinical association of phospho-PYK2 and EGFR was analyzed with various clinicopathological features and the Kaplan-Meier survival curve. The phospho-PYK2 and EGFR druggability and subsequent anticancer efficacy of TYR A9 was evaluated in GBM cell lines and intracranial C6 glioma model. RESULTS Our expression data revealed an increased phospho-PYK2, and EGFR expression aggravates astrocytoma malignancy and is associated with patients' poor survival. The mRNA and protein correlation analysis showed a positive association between phospho-PYK2 and EGFR in GBM tissues. The in-vitro studies demonstrated that TYR A9 reduced GBM cell growth, cell migration, and induced apoptosis by attenuating PYK2/EGFR-ERK signaling. The in-vivo data showed TYR A9 treatment dramatically reduced glioma growth with augmented animal survival by repressing PYK2/EGFR-ERK signaling. CONCLUSION Altogether, this study report that increased phospho-PYK2 and EGFR expression in astrocytoma was associated with poor prognosis. The in-vitro and in-vivo evidence underlined translational implication of TYR A9 by suppressing PYK2/EGFR-ERK modulated signaling pathway. The schematic diagram displayed proof of concept of the current study indicating activated PYK2 either through the Ca2+/Calmodulin-dependent protein kinase II (CAMKII) signaling pathway or autophosphorylation at Tyr402 induces association to the SH2 domain of c-Src that leads to c-Src activation. Activated c-Src in turn activates PYK2 at other tyrosine residues that recruit Grb2/SOS complex and trigger ERK½ activation. Besides, PYK2 interaction with c-Src acts as an upstream of EGFR transactivator that can activate the ERK½ signaling pathway, which induces cell proliferation and cell survival by increasing anti-apoptotic proteins or inhibiting pro-apoptotic proteins. TYR A9 treatment attenuate GBM cell proliferation and migration; and induce GBM cell death by inhibiting PYK2 and EGFR-induced ERK activation.
Collapse
Affiliation(s)
- Neera Yadav
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Sailaja Madigubba
- Department of Laboratory Medicine, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Prakash Babu Phanithi
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
3
|
Pan D, Yang Y, Nong A, Tang Z, Li QX. GRP78 Activity Moderation as a Therapeutic Treatment against Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15965. [PMID: 36498048 PMCID: PMC9739731 DOI: 10.3390/ijerph192315965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Glucose-regulated protein 78 (GRP78), a molecular chaperone, is overexpressed in patients suffering from obesity, fatty liver, hyperlipidemia and diabetes. GRP78, therefore, can be not only a biomarker to predict the progression and prognosis of obesity and metabolic diseases but also a potential therapeutic target for anti-obesity treatment. In this paper, GRP78 inhibitors targeting its ATPase domain have been reviewed. Small molecules and proteins that directly bind GRP78 have been described. Putative mechanisms of GRP78 in regulating lipid metabolism were also summarized so as to investigate the role of GRP78 in obesity and other related diseases and provide a theoretical basis for the development and design of anti-obesity drugs targeting GRP78.
Collapse
Affiliation(s)
- Dongjin Pan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yunzhu Yang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Aihua Nong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenzhou Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Vohra MS, Ahmad B, Serpell CJ, Parhar IS, Wong EH. Murine in vitro cellular models to better understand adipogenesis and its potential applications. Differentiation 2020; 115:62-84. [PMID: 32891960 DOI: 10.1016/j.diff.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, PJ 47500, Selangor, Malaysia.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|